Parameterized complexity of modification problems on edge-coloured and signed graph homomorphisms

Fl. Foucaud^{1,a} H. Hocquard^{1,a} D. Lajou^{1,a} V. Mitsou^{2,a} Th. Pierron^{1,3,a}

¹LaBRI, Université de Bordeaux, Bordeaux.
²IRIF, Université de Paris, Paris.
³Masaryk University, Brno.
³ANR project HOSIGRA and indo-French IFCAM project AGRAHO.

IPEC 2019 September 11th, 2019

Modification Problems	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Overview			

2 H-Colouring

Modification Problems ●○○	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Overview			

2 H-Colouring

Modification Problems ○●○	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring

Take \mathcal{P} a graph property. Can we modify G so that $\mathcal{P}(G)$ is true?

Modification Problems ○●○	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring

Take \mathcal{P} a graph property. Can we modify G so that $\mathcal{P}(G)$ is true? Moreover, how to do it "optimally"?

Modification Problems ○●○	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring

Take \mathcal{P} a graph property. Can we modify G so that $\mathcal{P}(G)$ is true? Moreover, how to do it "optimally"?

We will consider three types of modifications:

Modification Problems ○●○	<i>H</i> -Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring

Take \mathcal{P} a graph property. Can we modify G so that $\mathcal{P}(G)$ is true? Moreover, how to do it "optimally"?

We will consider three types of modifications:

• Vertex deletion

Modification Problems ○●○	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring

Take \mathcal{P} a graph property. Can we modify G so that $\mathcal{P}(G)$ is true? Moreover, how to do it "optimally"?

We will consider three types of modifications:

- Vertex deletion
- Edge deletion

Modification Problems ○●○	H-Colouring	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring

Take \mathcal{P} a graph property. Can we modify G so that $\mathcal{P}(G)$ is true? Moreover, how to do it "optimally"?

We will consider three types of modifications:

- Vertex deletion
- Edge deletion
- Switching

Modification Problems ○○●	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Examples			

\mathcal{P}	Vertex deletion	Edge deletion

Modification Problems ○○●	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Examples			

\mathcal{P}	Vertex deletion	Edge deletion
Being edgeless		

Modification Problems ○○●	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Examples			

\mathcal{P}	Vertex deletion	Edge deletion
Being edgeless	Vertex Cover	

Modification Problems ○○●	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Examples			

\mathcal{P}	Vertex deletion	Edge deletion
Being edgeless	Vertex Cover	Trivial

Modification Problems ○○●	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Examples			

\mathcal{P}	Vertex deletion	Edge deletion
Being edgeless	Vertex Cover	Trivial
Being bipartite		

Modification Problems ○○●	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Examples			

\mathcal{P}	Vertex deletion	Edge deletion
Being edgeless	Vertex Cover	Trivial
Being bipartite	ODD CYCLE TRANSVERSAL	

Modification Problems ○O●	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Examples			

\mathcal{P}	Vertex deletion	Edge deletion
Being edgeless	Vertex Cover	Trivial
Being bipartite	ODD CYCLE TRANSVERSAL	Edge Bipartization

Modification Problems ○0●	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Examples			

\mathcal{P}	Vertex deletion	Edge deletion
Being edgeless	Vertex Cover	Trivial
Being bipartite	ODD CYCLE TRANSVERSAL	Edge Bipartization
Being planar		

Modification Problems ○○●	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Examples			

\mathcal{P}	Vertex deletion	Edge deletion
Being edgeless	Vertex Cover	Trivial
Being bipartite	ODD CYCLE TRANSVERSAL	Edge Bipartization
Being planar	PLANAR VERTEX DELETION	

Modification Problems ○0●	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Examples			

\mathcal{P}	Vertex deletion	Edge deletion
Being edgeless	Vertex Cover	Trivial
Being bipartite	ODD CYCLE TRANSVERSAL	Edge Bipartization
Being planar	Planar Vertex Deletion	Planar Edge Deletion

Modification Problems	H-Colouring ●○○○○○	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Overview			

3 Vertex Deletion and Edge Deletion

Modification Problems	<i>H</i> -Colouring ○●○○○○	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring

Modification Problems	<i>H</i> -Colouring ○●○○○○	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring

Modification Problems	<i>H</i> -Colouring ○●○○○○	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring

Modification Problems	H-Colouring ○●○○○○	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring

Modification Problems	H-Colouring ○●○○○○	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring

Modification Problems	H-Colouring	Vertex Deletion and Edge Deletion	Switching H-colouring
	00000		

Input: A graph G. Question: Does there exist a homomorphism from G to H?

Modification Problems	H-Colouring	Vertex Deletion and Edge Deletion	Switching H-colouring
	00000		

Input: A graph G. Question: Does there exist a homomorphism from G to H?

• G is edgeless iff $G \to K_1$,

000 0000	

Input: A graph G. Question: Does there exist a homomorphism from G to H?

- G is edgeless iff $G \to K_1$,
- G is bipartite iff $G \to K_2$,

	Vertex Deletion and Luge Deletion	Switching H-colouring
000 00000		

Input: A graph G. Question: Does there exist a homomorphism from G to H?

- G is edgeless iff $G \to K_1$,
- G is bipartite iff $G \to K_2$,
- $\chi(G) \leq t$ iff $G \to K_t$.

	Vertex Deletion and Luge Deletion	Switching H-colouring
000 00000		

Input: A graph G. Question: Does there exist a homomorphism from G to H?

- G is edgeless iff $G \to K_1$,
- G is bipartite iff $G \to K_2$,
- $\chi(G) \leq t$ iff $G \to K_t$.

Theorem (Hell and Nešetřil, 1990)

H-COLOURING is polynomial if H has a loop or is bipartite. It is NP-Complete otherwise.

Switching *H*-colouring

Definition (core)

The core of H is the smallest subgraph C of H such that $H \rightarrow C$. If C = H then H is a core. H-Colouring ○○○●○○ Vertex Deletion and Edge Deletion

Switching *H*-colouring

Definition (core)

The core of H is the smallest subgraph C of H such that $H \rightarrow C$. If C = H then H is a core.

We have :

 $G \rightarrow H \text{ iff } G \rightarrow C.$

Definition (core)

The core of H is the smallest subgraph C of H such that $H \rightarrow C$. If C = H then H is a core.

We have :

$$G \to H \text{ iff } G \to C.$$

Not a core Not a core

Definition (core)

The core of H is the smallest subgraph C of H such that $H \rightarrow C$. If C = H then H is a core.

We have :

 $G \rightarrow H$ iff $G \rightarrow C$.

Definition (core)

The core of H is the smallest subgraph C of H such that $H \rightarrow C$. If C = H then H is a core.

We have :

 $G \rightarrow H$ iff $G \rightarrow C$.

Theorem (Hell and Nešetřil, 1990)

If H is a core then H-COLOURING is polynomial if H is a loop or is K_2 . It is NP-Complete otherwise.

Switching *H*-colouring

Definition

A homomorphism φ of a t-edge-coloured graph G to an edge-coloured graph H is a mapping from the vertices of G to the vertices of H such that for every edge $xy \in E(G)$, $\varphi(x)\varphi(y)$ is an edge of H with the same color as xy.
Vertex Deletion and Edge Deletion

Switching *H*-colouring

Definition

Vertex Deletion and Edge Deletion

Switching *H*-colouring

Definition

Vertex Deletion and Edge Deletion

Switching *H*-colouring

Definition

Vertex Deletion and Edge Deletion

Switching *H*-colouring

Definition

Vertex Deletion and Edge Deletion

Switching *H*-colouring

Problem $(H-COLOURING_t)$

Input: A t-edge-coloured graph G. Question: Does there exist a homomorphism from G to H? H-Colouring

Vertex Deletion and Edge Deletion

Switching *H*-colouring

Problem (H-COLOURING_t)

Input: A t-edge-coloured graph G. Question: Does there exist a homomorphism from G to H?

Problem (VD H-COLOURING_t)

Input: A t-edge-coloured graph G. Parameter: k. Question: Does there exist $S \subseteq V(G)$, $|S| \leq k$ and a homomorphism from G - S to H?

Problem (ED H-COLOURING_t)

Input: A t-edge-coloured graph G. Parameter: k. Question: Does there exist $S \subseteq E(G)$, $|S| \le k$ and a homomorphism from G - S to H?

Modification Problems	H-Colouring 000000	Vertex Deletion and Edge Deletion ●○○○○○○○○	Switching <i>H</i> -colouring
Overview			

2 H-Colouring

If H-COLOURING_t is NP-complete then so is VD H-COLOURING_t.

If H-COLOURING_t is NP-complete then so is VD H-COLOURING_t.

Theorem (R. C. Brewster, 1994)

H-COLOURING_t is polynomial when H is a path.

Theorem (R. C. Brewster, R. Dedić, F. Huard and J. Queen, 2005)

H-COLOURING_t is polynomial in the following cases:

- H has order 2,
- *H* has order 3, is loop-free and contains no monochromatic triangle.

Theorem (R. C. Brewster and P. Hell, 2009)

H-COLOURING_t is polynomial for some cycles.

Figure: The twelve 2-edge-coloured graphs of order at most 2.

H-Colouring

Switching *H*-colouring

Vertex deletion: P vs NP-complete

Theorem (Lewis and Yannakakis, 1980)

 \mathcal{P} VERTEX-DELETION for nontrivial graph-properties \mathcal{P} that are hereditary on induced subgraphs is NP-complete.

H-Colouring

Switching *H*-colouring

Vertex deletion: P vs NP-complete

Theorem (Lewis and Yannakakis, 1980)

 \mathcal{P} VERTEX-DELETION for nontrivial graph-properties \mathcal{P} that are hereditary on induced subgraphs is NP-complete.

We can extend this result to *t*-edge-coloured graphs.

Vertex deletion: P vs NP-complete

Theorem (Lewis and Yannakakis, 1980)

 \mathcal{P} VERTEX-DELETION for nontrivial graph-properties \mathcal{P} that are hereditary on induced subgraphs is NP-complete.

We can extend this result to *t*-edge-coloured graphs.

Theorem

VERTEX DELETION H-COLOURING_t for a t-edge-coloured core H is polynomial if H is a vertex having all t coloured loops and NP-complete otherwise.

H-Colouring

Vertex Deletion and Edge Deletion

Switching *H*-colouring

Vertex deletion: P vs NP-complete

H-Colouring

Switching *H*-colouring

Edge deletion: P vs NP-complete

Theorem

Let H be an edge-coloured core of order at most 2. If each colour of H induces a set of loops or contains all three possible edges, then EDGE DELETION H-COLOURING_t lies in P, otherwise it is NP-complete.

Alternate formulation, if H contains one of these two patterns, then it is NP-complete:

 $\underset{000}{\mathsf{Modification}} \text{ Problems}$

H-Colouring

Vertex Deletion and Edge Deletion

Switching *H*-colouring

Vertex deletion and Edge deletion: P vs FPT vs W-hard

Theorem (R. C. Brewster, R. Dedić, F. Huard and J. Queen)

H-COLOURING_t is polynomial when *H* has order 2 by reduction to 2-SAT.

H-Colouring

Vertex Deletion and Edge Deletion

Switching *H*-colouring

Vertex deletion and Edge deletion: P vs FPT vs W-hard

Theorem (R. C. Brewster, R. Dedić, F. Huard and J. Queen)

H-COLOURING_t is polynomial when *H* has order 2 by reduction to 2-SAT.

Theorem

If H has order 2 then there exists an FPT algorithm for VERTEX DELETION H-COLOURING_t and another FPT algorithm for EDGE DELETION H-COLOURING_t.

H-Colouring

Switching *H*-colouring

Vertex deletion: P vs FPT vs W-hard

H-Colouring

Switching *H*-colouring

Edge deletion: P vs FPT vs W-hard

Modification Problems	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Overview			

2 H-Colouring

3 Vertex Deletion and Edge Deletion

We consider two types of homomorphisms:

- G →_s H: We can switch on G an arbitrary number of times to get G' and G' →₂ H,
- G →^{≤k}_s H: We can switch on G at most k times to get G' and G' →₂ H.

We consider two types of homomorphisms:

- G →_s H: We can switch on G an arbitrary number of times to get G' and G' →₂ H,
- G →^{≤k}_s H: We can switch on G at most k times to get G' and G' →₂ H.

Problem (SIGNED *H*-COLOURING)

Input: G. Question: Does $G \rightarrow_s H$?

Problem (SWITCHING *H*-COLOURING)

Input : G and k. Parameter: k. Question: Does $G \rightarrow_{s}^{\leq k} H$?
 Modification Problems
 H-Colouring
 Vertex Deletion and Edge Deletion
 Switching H-colouring

 000
 0000000
 00000000
 00000000

Switching: P vs NP-complete

H-Colouring

Vertex Deletion and Edge Deletion

Switching *H*-colouring

Switching: P vs NP-complete

Theorem (Brewster, Foucaud, Hell, Naserasr, 2017 and Brewster, Siggers, 2018)

Let H be a signed graph. SIGNED H-COLOURING is polynomial if the switching core of H has at most two edges, and NP-complete otherwise.

Switching: P vs NP-complete

Switching: P vs NP-complete

Switching: P vs FPT vs W-hard

Modification Problems	H-Colouring 000000	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring ○000000●
Open questions			

• What about other *H*'s ?

Modification Problems	H-Colouring	Vertex Deletion and Edge Deletion	Switching <i>H</i> -colouring
Open questions			

- What about other *H*'s ?
- What about VERTEX DELETION SIGNED H-COLOURING ?
- \bullet What about Edge Deletion Signed H-Colouring ?

- What about other *H*'s ?
- What about VERTEX DELETION SIGNED H-COLOURING ?
- What about Edge Deletion Signed *H*-Colouring ?
- Find other polynomial cases for H-COLOURING_t.

- What about other *H*'s ?
- What about VERTEX DELETION SIGNED H-COLOURING ?
- What about Edge Deletion Signed *H*-Colouring ?
- Find other polynomial cases for H-COLOURING_t.

Thank you for your attention!

Theorem (R. C. Brewster, R. Dedić, F. Huard and J. Queen)

The H-COLOURING_t problem is polynomial when H has order 2 by reduction to 2-SAT.

$E_i(H)$	Clause
Ø	
{00}	$(\overline{x_u})(\overline{x_v})$
{01}	$(x_u + x_v)(\overline{x_u} + \overline{x_v})$
{11}	$(x_u)(x_v)$
$\{00, 01\}$	$(\overline{x_u} + \overline{x_v})$
$\{01, 11\}$	$(x_u + x_v)$
$\{00, 11\}$	$(x_u + \overline{x_v})(\overline{x_u} + x_v)$
$\{00, 01, 11\}$	Т

Problem (VARIABLE DELETION ALMOST 2-SAT)

Input: A 2-CNF formula F, an integer k.

Parameter: k.

Question: Is there a set of k variables that can be deleted from F (together with the clauses containing them) so that the resulting formula is satisfiable?

Problem (CLAUSE DELETION ALMOST 2-SAT)

Input: A 2-CNF formula F, an integer k. Parameter: k. Question: Is there a set of k clauses that can be deleted from F so that the resulting formula is satisfiable?

CLAUSE DELETION ALMOST 2-SAT and VARIABLE DELETION ALMOST 2-SAT were proved to be FPT (I. Razgon and B. O'Sullivan for the former and M. Cygan *et al.* for the later).

$E_i(H)$	Clause before	Clause after modification
Ø	1	$(x_{ii} + x_{ij})(\overline{x_{ii}} + x_{ij})(x_{ii} + \overline{x_{ij}})(\overline{x_{ii}} + \overline{x_{ij}})$
{00}	$(\overline{x_{u}})(\overline{x_{v}})$	$(\overline{x_{u}} + \overline{x_{v}})(\overline{x_{u}} + \overline{x_{v}})(\overline{x_{v}} + \overline{x_{u}})$ $(\overline{x_{u}} + \overline{x_{v}})(\overline{x_{v}} + \overline{x_{u}})$
{01}	$(x_u + x_v)(\overline{x_u} + \overline{x_v})$	$(x_u + x_v)(\overline{x_u} + \overline{x_v})$
{11}	$(x_u)(x_v)$	$(x_u+x_v)(x_u+\overline{x_v})(x_v+\overline{x_u})$
$\{00, 01\}$	$(\overline{x_u} + \overline{x_v})$	$(\overline{x_u} + \overline{x_v})$
$\{01, 11\}$	$(x_u + x_v)$	$(x_u + x_v)$
$\{00, 11\}$	$(x_u + \overline{x_v})(\overline{x_u} + x_v)$	$(x_u + \overline{x_v})(\overline{x_u} + x_v)$
$\{00, 01, 11\}$	Т	Т

Theorem

If H has order 2 then there exists an FPT algorithm for VERTEX DELETION H-COLOURING_t.

Problem (GROUP DELETION ALMOST 2-SAT)

Input: A 2-CNF formula F, an integer k, and a partition of the clauses of F into groups such that each group has a variable appears in all of its clauses.

Parameter: k.

Question: Is there a set of *k* groups of clauses that can be deleted from *F* so that the resulting formula is satisfiable?

Theorem

GROUP DELETION ALMOST 2-SAT is solvable in FPT time.

Corollary

If H has order 2 then there exists an FPT algorithm for EDGE DELETION H-COLOURING_t.

For H = 2, $G \rightarrow_2 H$ iff G has no cycles with an odd number of positive edges (Bawar, Brewster and Marcotte). \Rightarrow The parity of the number of positive edges of a cycle does not change by switching.

For $H = \frac{1}{2}$, reduction from VERTEX COVER.

For $H = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, $G \rightarrow_2 H$ iff $\downarrow_{V_0 V_1} \downarrow_{V_2 p V_2 p+1} \rightarrow_2 G$ (Bawar, Brewster and Marcotte). The only way to remove such a path is to switch at one of $V_0, V_1, V_{2p}, V_{2p+1}$. Thus we can have an FPT branching algorithm.