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1-2-3-Conjecture

Definition

An s-proper labelling ¢ of a graph G is a labelling such that
00 =2 ek(c) H(uv) is a proper coloring.

A nice graph is a graph with no connected component isomorphic
to Ks.

Conjecture (1-2-3-Conjecture, Karonski, Luczak, and Thomason

2004)

Every nice graph G admits an s-proper 3-labelling.
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Overview of some results

Theorem (Kalkowski, Karonski and Pfender 2010)

Every nice graph G admits an s-proper 5-labelling.

Theorem

Every nice graph G such that

@ G has chromatic number at most 3 (Karoriski, tuczak,
Thomason 2004), or

@ G has chromatic number at most 4 and is
4-edge-connected (Wu, Zhang, Zhu 2017),

admits an s-proper 3-labelling.
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The function 7y is a proper
coloring of G.
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Others 1-2-3-Conjecture

Definition

An p-proper labelling ¢ of a graph G is a labelling such that
T = [Luveg(e) (uv) is a proper coloring.

Conjecture (Multiplicative 1-2-3-Conjecture, J. Skowronek-Kaziéw

2012)

Every nice graph G admits a p-proper 3-labelling .

9/24
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Overview of some results

Theorem (Skowronek-Kaziéw 2012)

Every nice graph G admits a p-proper 4-labelling.

Theorem (Skowronek-Kaziéw 2012)

Every nice graph G of chromatic number at most 3 admits a
p-proper 3-labelling.
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Others 1-2-3-Conjecture

Definition

For a labelling £ of a graph G, let uy be the function which
associates with a vertex u the multiset 0(u) containing the labels
of the edges incident with u. If uy is a proper coloring of G, we say
that ¢ is m-proper.

Observation
If ¢ is s-proper or p-proper then it is m-proper.

Theorem (VuZkovi¢ 2018)

Every nice graph G admits an m-proper 3-labelling.
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Main results

Theorem

Every nice graph G of chromatic number at most 4 admits a
p-proper 3-labelling.

Theorem

| A\

Every graph G admits a 3-labelling such that:
@ if u and v are adjacent and 7y(u) = my(v) then
me(u) = me(v) =1,
@ the subgraph of G induced by the vertices u with my(u) =1

contains only connected components with at most two
vertices.

We say that £ is almost p-proper.
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Regular graphs

Every nice regular graph G admits a p-proper 3-labelling. I

Proof. Let £ be an m-proper 3-labelling of G. Suppose

mo(u) = me(v)
132b3c — 1d2e3f

As 2 and 3 are coprime, b=e and c = f.
As G is k-regular, k=a+b+c=d+e+f.
Hence a = d, a contradiction.
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@ dr(u), the 2-degree of a vertex u, is the number of 2-labelled
edges incident with u,

e ds3(u), the 3-degree of a vertex u, is the number of 3-labelled
edges incident with u.
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Notation

For a 3-labelling ¢:

@ dr(u), the 2-degree of a vertex u, is the number of 2-labelled
edges incident with u,

e ds3(u), the 3-degree of a vertex u, is the number of 3-labelled
edges incident with u.

Note that a 3-labelling ¢ is p-proper if and only if for every pair
{u, v} of adjacent vertices d»(u) # da(v) or d3(u) # d3(v).
We say that

) =1,
@ u is 2-monochromatic if do(v) > 0 and d3(u) =0,
@ u is 3-monochromatic if dy(u) = 0 and d3(u) > 0, and
@ u is bichromatic if d>(u) > 0 and d3(u) > 0.

@ u is 1-monochromatic if my(u
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%1
drb>0and d3 =0

Vo

> = / ::
d3_Oandd2 0 2.2 :. /

V3
d3 > 0 odd and d» > 0

Vs
d3 > 0 even and dr» >0

@ Vertices in Vi are 1-monochromatic or 2-monochromatic.
@ Vertices in V5 are 1-monochromatic or 3-monochromatic.
@ Vertices in V3 are bichromatic with odd 3-degree.

@ Vertices in V4 are bichromatic with even 3-degree.
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V1 are 1-monochromatic or 2-monochromatic.
V5 are 1-monochromatic or 3-monochromatic.
V3 are bichromatic with odd 3-degree.

V4 are bichromatic with even 3-degree.
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Step 1: Partition V(G) into k independent sets Vi, ..., V such
that each u € V; has a neighbor in every V; for j < i.
Step 2: Label edges incident with vertices of Vi, Vi_1, ..., V3.

@ v € Vi: 1-monochromatic or 2-monochromatic;
@ v € V5: 1-monochromatic or 3-monochromatic;
v € V3: bichromatic, da(v) =1, and da(v) + d3(v) even;
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Proof idea for “almost p-proper labellings”

Step 1: Partition V(G) into k independent sets Vi, ..., V such
that each u € V; has a neighbor in every V; for j < i.
Step 2: Label edges incident with vertices of Vi, Vi_1, ..., V3.

@ v € Vi: 1-monochromatic or 2-monochromatic;
@ v € V5: 1-monochromatic or 3-monochromatic;
v € V3: bichromatic, da(v) =1, and da(v) + d3(v) even;
v € V4: bichromatic, d3(v) =2, and da(v) + d3(v) odd,;
v € Vis: bichromatic, da(v) = 2, and da(v) + d3(v) even;

v € Vi, bichromatic, d3(v) = n, and da(v) + d3(v) odd;
v € Vopy1: bichromatic, da(v) = n, and da(v) + d3(v) even;
° ...

Step 3: Try to fix conflicts between vertices of V; and V5.



Conjecture Our main results Our other results
. I ) ®00

Overview

e Our other results
@ A new conjecture



The 1-2-3 Conjecture Our main results Our other results
000000000 0000000000 oeo

Every graph G admits a 3-labelling such that, for every x € N, the
subgraph induced by x-colored vertices is a forest.
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Corollary

Every graph G admits a 3-labelling such that, for every x € N, the
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Corollary

Every graph G admits a 3-labelling such that, for every x € N, the
subgraph induced by x-colored vertices is a forest.

| A\

Conjecture

Every graph G admits a 2-labelling such that, for every x € N, the
subgraph induced by x-colored vertices is a forest.

Theorem

| A\

A graph G admits a 3-labelling such that, for every x € N, the
subgraph induced by x-colored vertices is a forest, if

@ G is a complete graph, or
@ G is bipartite, or

@ G is subcubic.
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Thank you for your attention.
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