Graphes et application, évaluation rapide en classe

Paul Dorbec

1 Bipartis complets

Dans cette partie, une preuve détaillée n'est pas exigée, mais un argument de justification est attendu.

Soient $a, b \ge 1$. Le graphe biparti complet $K_{a,b}$ est le graphe ayant pour ensemble de sommets $V_1 \cup V_2$, où $|V_1| = a$ et $|V_2| = b$, et dont l'ensemble des arêtes est $\{uv \mid u \in V_1, v \in V_2\}$.

Question 1.1 Quel est le nombre d'arêtes de $K_{a,b}$?

Question 1.2 Quelle est la taille d'un stable (= indépendant) maximum de $K_{a,b}$?

Question 1.3 Quelle est la taille d'un couplage maximum de $K_{a,b}$ (noté $\alpha'(K_{a,b})$)?

Question 1.4 Quelle est la taille d'un dominant minimum de $K_{a,b}$?

2 Couplages

Soit G un graphe. On note \overline{G} le graphe complémentaire de G (tel que $uv \in E(\overline{G}) \iff uv \notin E(G)$). On rappelle que $\chi(G)$ est le nombre chromatique de G.

Question 2.1 Montrez que pour tout graphe G vérifie $2\alpha'(G) + \chi(\overline{G}) \geq n$.

3 Vizing

Question 3.1 Soit G un contre-exemple minimal à la conjecture de Vizing, s'il existe. Soit G' le graphe obtenu en fusionnant dans G les sommets u et v (en un sommet u' tel que $N(u') = N(u) \cup N(v)$). Montrez que $\gamma(G') < \gamma(G)$.