Hamming polynomials and their partial derivatives

Boštjan Brešar^{*} University of Maribor Faculty of Electrical Engineering and Computer Science Smetanova 17, 2000 Maribor, Slovenia

Paul Dorbec[†] ERTé Maths à Modeler Groupe de recherche GéoD, Laboratoire Leibniz 46 av. Félix Viallet, 38031 Grenoble CEDEX, France

Sandi Klavžar[‡] Department of Mathematics and Computer Science PeF, University of Maribor Koroška cesta 160, 2000 Maribor, Slovenia

Michel Mollard[§] ERTé Maths à Modeler, Groupe de recherche GéoD, Laboratoire Leibniz 46 av. Félix Viallet, 38031 Grenoble CEDEX, France

Abstract

Hamming graphs are Cartesian products of complete graphs and partial Hamming graphs are their isometric subgraphs. The Hamming polynomial h(G)of a graph G is introduced as the Hamming subgraphs counting polynomial. K_k -derivates $\partial_k G$ ($k \ge 2$) of a partial Hamming graph are also introduced. It is proved that for a partial Hamming graph G, $\frac{\partial h(G)}{\partial x_k} = h(\partial_k G)$. A couple of combinatorial identities involving the coefficients of the Hamming polynomials of Hamming graphs are also proven.

Key words: Hamming graph; Hamming polynomial; Partial Hamming graph; Combinatorial identity

MR Subject Classification (2000): 05C75, 05C12, 05A15, 05A19

^{*}Supported in part by the Ministry of Science of Slovenia; bostjan.bresar@uni-mb.si $^{\dagger}\rm UJF;~paul.dorbec@imag.fr$

[‡]Supported in part by the Ministry of Science of Slovenia; sandi.klavzar@uni-mb.si [§]CNRS; michel.mollard@imag.fr