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TREES
BY

G. X.VIENNOT

Dans ce cercle qui avance du méme pas que mui, entrent les arbres, lentement,
I'un aprés l'antre ou par groupes. J'aime 4 les voir émerger du néant, formes
lourdes ol se dessinent bientdt les membres figés, la résille cristallisée des
rameaux. Ils s’avancent, lourds de leur mystére, plus chargés de poésie gue
Jamais. Bient6t ils sont sur moi. Au dessus, & coté, derriere, enveloppants et
amoureux. Est-il dans toute la mythologie quelques déesses qui font Pamour
avec des arbres 7 Sans doute.

Bernard CrLavEL

1. Introduction

Auprés de mon arbre, je vivais heureux. . .
Jaurais jamais dii m'éloigner d'mon arbre.
Georges BRASSENS

The following picture shows a tree which has never existed except on the
screen of a computer. It is a synthetic image of a tree which has been produced
by an algorithm based on some combinatorial Mathematics.

The combinatorics underlying the algorithm producing such trees is very
rich and forms the subject of this paper.

It started in Hydrageology by Horron [26] and SThauLER [66] in some work
about the morphological structure of river networks. Then analog studies have
been made in other sciences (Botanic, Anatomy, Neurophysiology,...) where
branching patterns appear. Underlying each branching pattern in nature, one
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Fig. 1 : Combinatorics is beautiful

can define an abstract tree, by remembering only the “topological™ structure of
the ramifications. without considerations of the particular geometric details of
the pattern. This abstract tree is a mathcmatical (combinatortal) object.

Horton Strahler analysis can be made for combinatorial trees. In particular,
the determination of the mean, of the parameters for all trees with a given nnm-
ber of branching points involves deep asympiotic analysis, (see MeIR, MooN
and Pouxper [36], [37], [11]. Kemp [29], FrajoLer, Racunr, VeeesiN [19]).
Some mathematical considerations appeat, in relation with Number Theory.
The famous zeta Riemann function is needed there.

In fact the last two papers quoted above are concerned about some optimiza-
tion problems in Computer Science : what is the minimum number of registers
needed to evaluate an arithmetic expression 7 Curiously this problem involves
the Horton Strahler parameter introduced in Hyvdrogeology.

The surprise 1s bigger when this parameter appears again in Molecular
Diology in some theoretical considerations about secondary structures of single-
stranded nncleic acids (see De GExyEs [8]. MiTiko Go [40]. VAUCHAUSSADE
DE CravMonT, VIENNOT (69, [70], WATERMAN 73]}

For the determination of the generating functions for secondary struc-
tures (i.c. partition functiors for physicists) we have ysed the methodology
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SCHUTZENBERGER introduced in [58] : coding of combinatorial objects with
words of an elgebraic lenguage and introduction of systems of equations in non-
commutative variables. This methodology have been verv useful for many other
problems, see Cort [5], DELEsT, ViEnnoT [10], [11], Gouyou-BEAUCHAMPS
[21], VienNoT [72], [73].

Behind all the above studies related to the Horton-Strahler analysis s &
beantiful combinatorial world, involving bijections and correspondences be-
tween paths and different families of trees (FrRaNgox [20], KREWERAS [31]
VavcHauvssape Dy CHAUMONT [69], VIENNOT [71], ZEILBERGER [79]).

The combinatories of the Horton—Strahler analysis have been used in Cormi-
puter Graphics for the creation of faithful synthetic images of trees, see
Evrovies [17], ViEnNoT, EvRoOLLES, ARQUES, JAKEY [84] and the pictures
of trees in this paper.

1

The Hearton—Strahler parameters (bifurcation ratios....) can be considered
as an attempt to give quantitative informations about the visual aspect.
or “shape”. of a tree. In relation with fractals theory, MANDELBROT [35], many
works are done in Physics studying the “shape” of branching patterns oceuring
in nature or simulated on a computer, sce for example NIkMEVER, PIETRONERO,
Wirsmany [43] about electric breakdown, N1rTaany. DACCORD, STANLEY [45]
about mscous fingering, Sawapa, DovcurRTY, GOLLUB [63] about electrolytic
metal deposits or WIITEN, SANDERS [76] about the DILA {diftusion limited
aggregation).

To each trec, we associate a stochastic matrix, called ramification matriz.
This notion can be considered as a refinement of the Horton-Strahler analysis
and gives some pertinent quantitative informations about the “shape” of
the tree. It is at the basis of the generation of the synthetic images of trees
of this paper and [18]. To each matrix corresponds a family or “species”
of synthetic trees. With VANNIMENUS, we are studying these ramifications
matrices in Physies (81}, and PExaup [47)] has just determined the ramification
matrix of a random hinary tree. Horton-Strahler analysis has also just bern
introduced in Physics by Hixricusen, MALey, FEpER and Jossanc [83].

In a completetely different context, Horton-Strahler parameter of binary
trees appears again in the determination of a basis of the derived series of a
free Lie algebra. RevTrNaver [80],
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2. Horton—Stirahler analysis in Hydrogeology

Cette existence a I'abri de la cohue publigue
révele des voix dans les arbres,

des livres dans les ruisseaux qui coulent,
des lecons dans les pierres

¢t le bien en toute chose,

SHAKESPEARE, Comtne il vous plaira

Acte II, sceéne I (trad. Victor Huco).

The hydrogeologist Horron introduced in [26] a process classifying the rivers
of a fluvial network. The rule, modified by STRAHLER [66] is the following.

A river starting at a source point has order 0. Two rivers of order & joining
together give rise to a river of order (k + 1}. A river of order i joining a river
of order k with ¢ < &k gives rise to a river of order &k (see Figure 2 next page).
We have supposed that the river network has no island and that no more than
two rivers join at the same point {(as at Trois-Rivieres in Canada),

Intuitively, the order of a river should reflect the “importance™ of that river
in the fluvial basin. On Figure 2, the reader will recognize the main rivers
of the Garonne network : Dordogne, Lot, Tarn, Ariege, each having order 3.
The orders are not increasing rapidly in the area of the Lannemezan plateau.

Many works have been done in Hydrogeology in order to discover certain laws
about the frequency of rivers of given order and if there exists some correlation
between length, width and order of river.

A segment of order & is a maximal portion of a river of order k. In other
words, a segment of order & starts at the junction of two segments of order
(b —1) (uniess if & = 0. it starts at a source point) and ends at the junction
with a river of order &' > & (unless & is the maximum possible order, and then
the scgment ends in the sea), Let b be the number of segments of order k.
The bifurcation ratio 35 of order k is defined by the relation

b

b1

(1) 57

Hydrogeologists have discovered that in general, the bifurcation ratios of a
given river network are constant 3¢ = 3. The constant 3 depends upon the
particular network and is usually between 3 and 5.

For a given river network, we can define the average length (in kilometers)
£y of the segments of order k. It has been observed that in general, the ratio
£y 1/fx = Xy 1s a constant for a given fluvial basin. This constant is A ~ 3/2,
Similar laws seem to have been observed for the width of rivers in correlation
with their order.

Similar studies have been made for other branching patierns occuring in
various natural sciences as Botanics, Mac Manox [34] or in Anatomy for

* -



in “Mots”, mélanges offert a M.P.Schutzenberger, M.Lothaire éd., Hermes, Paris, 1990, pp 265-297

TREES 269
"
3
8 o
2 2
A3 =
]
5
¥ 3 3
5
& 3 o
o
5 F) < : ] )
3 4 E
<]
= 5 s & )
3 ty ¥ 3
3
r P
: 5k ! 2
33
2 j
£1

Fig. 2 : The Horton-Strahler rule for the Garonne river network

bronchial networks or arterial vessels, WoLDENBERG [78], or Neurcphysiology,
PERCHERON [48]. Similar laws seem to appear.

Prun’HomMe, NavpIN and VieNeaux [42], [49)], [50] and Gvin [23] have
studied possible correlations between the shape of rivers metworks and the
geological structure of the underground. More precisely, they introduce the
isolines of length-values joining the points at the middle of each segment of
given order k and labelled by the length of this segment (in the same way as
one would draw some level curves joining some points of a map labelled by
their altitude). They have shown some correlation between these curves and
the structure of the underground. When the order £ is increased, the curves
change and the correlation appears deeper (until 2 km for big order). Their
experiment have been done in the South-West of France and also for the golfe
of Gascogne in the Atlantic Ocean. Some “river networks™ can be defined on the
submarine ground. A surprising continuity appears on isolines of length-values
on both side of the seashore.
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An interesting study can be made by comparing the above Horton-Strahler
analysis of river networks with the analog analysis for random mathematical
binary trees.

3. Horton Strahler analysis for random binary trees

A binary tree B is a very classical object in Combinatorics and in Computer
Science. An example is visualized on Figure 3 below. If B has only one vertex,
then B is reduced to this vertex. Else B is a triple B = (L, r, R) where r is a
vertex of B called the root of B, and L (resp. f) is a binary tree called the left
{resp. right) subtree. There is two kinds of vertices : the internal vertices, each
having two sons {a left son and a right son), ard the external vertices, having
no son, The internal (resp. external) vertices are marked by a “o” (resp. a “0”)
on Figure 3.

Fig. 3 : A binary tree

If a binary tree has » internal vertices, then it has (nz + 1) external vertices.
The total number of vertices is always an odd number 2n + 1. The number of
binary trees with n internal vertices is the classical Catalan number

1 2n
2 C‘” = o
(2) - on+1 ( n )
with generating function y = 3~ ., Cnt" solution of the following algebraic
equation -
(3) y=1t+y°

The first values of C,, are displayed on Table 1.

n.|(]123456?89 10
cn|1 1 2 5 14 42 132 429 1430 4862 16796

Table 1 : The Catalan numbers.
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On Figure 4 are displayed the five possible binary trees with 3 internal vertices.

N D>m>\

N
; b

a

Fig. 4 : The five binary trees with 3 internal vertices

To each river network (having no island and no multiple branching point),
one can associate a binary tree, when making abstraction of the real geometric
details of the whole network and remembering cnly the mathematical arrange-
ment of the different branchings. A natural question is to ask which kind of
binary trees oceurs in river networks. For example, there are approximatively
105 possible binary trees with 100 external vertices. Which choice is made
among all pessible river networks with 100 source points? Does a river net-
work looks like a random binary iree (i.e. each binary tree with n + 1 external
vertices appears with the same probability 1/C, ), or does certain families of
binary trees are privileged ?

A partial answer can be given by comparing real quantitative measurement
as the branching ratio 5, or the length segment ratio X, with their analog mcan
value for random binary trees.

In a river network, the notions of order and segment depend anly of the
underlying binary tree. An edge in a binary tree is pair (z,y) where y is a son
of z. Each edge has an order. A segment is a maximal sequence of edges of the
same order and going towards the rvot (see Figure 5 next page).

The Strahier number St(B) of the binary tree B is the maximal order of its
edges. In other words. this parameter can be defined inductively by

St(0) =0;
(4) St{L,7, D) =if S5t(L) = St(R)then 1+ St(L)
else max(St(L).St(r)).
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Fig. 5 : Order and segment in a binary tree

In the case of river networks the length of a segment was measured in
kilometers. Here we will define the (abstract) length as the number of edges of
the segment,

The two binary trees displayed on Figure 6 (next page) appear as two
extremc cases. Figure 6a shows a perfect binary tree, that is a binary tree
where all external vertices have the same heigth k (distance from the root).
The Strahler number of such tree is & and is the biggest possible among binary
trees with a given number of vertices. Each segment is reduced to a single edge
and the bifurcation ratio &; are all equal to 2. Such ratic are the smallest
possible among all binary trees.

On the opposite, the binary tree of Figure 6b looks like the so-called
“gourmand de la vigne”. They grow in springtime on the bottom part of the
winetrees and has to be cut in order to get better quality and quantity of wine.
Such binary tree has only one seginent of order 1 and the bifurcation ratio 3, of
order 1 is the number of external vertices of the binary tree. Thus 5, can be as
large as possible. Cambining these two extreme cases, the reader will imagine
how to construct families of binary trees where the bifurcation ratio 3 is as
large as possible for any k.

* om
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FANIVAN

Fig. 6a : Perfect tree

Fig. 6b : “Gourmand de la vigne”

Fig. 6 : Two extreme cases of binary trees : perfect tree
and “gourmand de la vigne"

The bifurcation ratios seem to be a good quantitative information about the
‘shape” of the binary tree. SHREVE [61] generated the number of segments for
large binary trees and found simiiar empirical laws for these numbers. As in
the case of river networks, they tend to approximate geometric series. Rigorous
asymptotic studies have been made by Meier, Moon and Pounoer [36], [37]
and [41].

Let s7 be the mean number of segments of order k atnong all binary trees
with n internal vertices, Moon [41] proved the following result

i B33 o)
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for fixed integer k as n — oc, This relation implies

sy - G 1
L — -
(6) A 2n +0(n2)

It is a good surprise that all the bifurcation ratios 3, of a large random
binary trees tend to be equal to 4, which is just between the two values 3 and 5
coming from Hydrogeology.

Let Ly(B) be the total length of all segments of order k in the binary
iree B. Let Lf be the mean of Ly(B) among all binary trees with = internal
vertices. Then Mrier and Moon proved [36] the following relations (for a fixed
kand n — ) :

0 =g e 4= 1) ofd)
®) d 2150 o)

Thus analoguous Horton Strahler laws exist for large random binary trees.
All the length segment ratios tends to A = 2, which is half of 3 = 4. According
to bifurcation ratio and length of segments, river networks tend to have the
same behaviour as random binary trees.

4. Optimization problems in Theoreticai Computer Science

Strahler number of binary trees have reappeared in Computer Science.
We consider arithmetical expressions involving only binary laws. Such expres-
sions can be identified with labelled binary trees. Each internal vertex corre-
sponds to a binary law, each external vertex corresponds to a variable, see
Figure 7.

Fig. 7. The binary tree associated to the arithmetical expression
(a,+b)/((c*d+e*f’)*g)
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The computation with a computer of an arithmetical expression requires a
certain number of registers where are performed the arithmetical operations.
Here is an example of a possible computation of the arithmetical expression
displayed on Figure 7 using 4 registers.

Rye—a; Ry«b; R «— R +Rs;

Ry e—c¢; Rz+d; Ry RyxRy;
Rg+—e; Ry f; Ry RzxRy:
Ry~ o+ Ry; HRye—g; Ry~ Ry*Ra;
B, — R\ /R,.

In fact it would have been possible to use only 3 registers, and this number
18 the minimum possible.

The following result is due to ERsHov [16] : the minimum number of registers
required in the evaluation of an arithmetic expression is exactly the Strahler
number, increased by one, of the corresponding binary tree. Such problem is
equivalent to a pebbles problem. Given a binary tree B, one can put pebbles
on the vertices of B with the following rule. A pebble can be put on a vertex z
in the following two possible cases : clse x is an external vertex. else x has two
sons each having a pebble, What is the minimum number of pebbles required
to put a pebble on the root of B? Pcbbles correspond to registers and the
computation of the arithmetical expression corresponds to a possible movement
of the pehbles,

Frasoret, Raover, VunLemiy [19] and independently Kemp [29] have
solved the problem of finding an asymptotic expression for the minimum
number of registers required to evaluate a long random arithmetical expression
{in other words, the mean St,, of the Sirahler number of binary trees with n
internal vertices, when n — 2c). They found the following beautiful result

. (9) Sty = logy n + D(logyn) + O(1),

where D(t) is a continuous periodic function with period one.

This function can be defined as follows. Let T(n) be the number of ones in
the binary expansions of all integers 0,1,...,n — 1. A result of DELANGE (9] is
that there exist a real function ¥ such that for all » > 0,

1
(10) Tlh) = —énl(ign +nF(logn).

i with F' continuous and periodic with period 1.
Let Hy(x) be the 4th Hermite polvnomial, that is e‘z(ddjdt“}(e‘tz). Let ~

| be the Euler constant. Then the function D(t) appearing in the relation (9) is
defined by

| (11) B |

/ LH, () F (logt + -u]e_fz dt.
N
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Explicit expressions can be given for the coefficients of the Fourier transform
of D(t). These coefficients involve the famous Riemann zeta function.

Strahler numbers of binary trees are also related to optimum procedures
for traversing all vertices of a binary tree. A very classical procedure called
preorder, exists in programming (see for example KNUTH (30]). This procedure
can be implemented in a ron recursive way by using a stack. If the number
of internal vertices is n, then the maximal possible height of this stack is »
and the average is in »'/%. Using Strahler numbers of subtrees and a rule very
similar to the above pebhles or registers problem, one can define an optimal
procedure called economic order in [19]. The maximum height of the stack is
in log, n and the average in log, n.

5. Combinatorics of Strahler numbers

Arbres de la forér, vous connaissez mon ame

Au gré des envieux, la foule loue et blime

Vous me connaissez, vous! Vous m’'avez vu souvent,
Seul dans vos profondeurs, regardant et révant.
Victor Huao

The proof of relation (9) relies on an explicit expression for the generating
function of binary trees having a given Strahler number.

Let S+ (resp. Sp <x) be the number of binary trees B with n intcrnal
vertices and Strahler number 5t(B) = k (resp. St(B) < k). We denote the
corresponding generating functions by

(12) Se(t) =3 Sout” and Sqp(t) = Y S, <t

n>0 n=0

Let U,(t} be the n'" Tchebycheff polynomial of second kind, that is the
polynomial defined by the relation

(13) sin(n + 1)8 = sin@ Uy, (cos ).

We denote by F,(t) the polynomial

(14) E.(t) = U, (%z)

This polynomial is a monic (i.e. coefficient of 2 is 1) polynomial of degree n.
The reciprocal F(t) = t"F,(¢t7!) is an even polynomial and we can define
R.(t) by the relation

(15) R.(t?) = t"F, G)
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These polynomials satisfies the recurrence
(16) Rﬂ_+1{f) = Rn(t} - tRn—l(t}; RD(_t) == 1: RI(E} = 1.

We have the following explicit expression for the generating function of binary
trees B with 5t(B) < k (see [19], [29])

R
(7 Sl = ——R%_ftﬂ-

Using some identity on Tehebycheff polynomials, one can deduce the relation
t“ﬁl‘ —1

-

In fact, very interesting combinatorics appear behind identities (17) and (18).

; Define a Dyck word as a word w on the alphabet {z, %} satisfying the two
following conditions

{ (i) lwle = |wls,

19
(1<) {i1) for every factorization w = wr. |ul, > |uls,

where fw|, denotes the number of occurrences of the letter z in the word w.

Such Dyck word (classically called restricted Dyck word on two letters) can
be visualized by what I call a Dyck path, that is a sequence of points (sg,...,83,)
of N x N such that sy = (0,0), s2, = (2n.0) and each “elementary step”

A (3,.8;.1) is North-East or South-East (see Figure 8),

, The number of Dyck paths (or words) of length 2n is again the Catalan
! number C',. A classical bijection is defined between binary trees with (2n + 1)
| vertices and Dyck words of length 2n. This bijection is obtained by traversing
the binary tree in prefix order, and writing = (resp. Z) when one encounters
‘ an internal (resp. external) vertex. An example is displayed on Figure & next
page.
The height H{w} of a Dyck path (or Dyck word) w is the maximal height of
its vertices, that is

(20) H(w) = ogls?:‘}én{y" | 8= (gl )

Classically, the generating function for Dyck paths w with bounded height
H{w) < p is given by the relation (Kreweras [31])

iz _ _Bpft)
20 Z t © Bun(t)

w Dyck paths
Hiw)<p
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Fig. 8 : The correspondence between binary trees and Dyck paths

A bijective proof of this last identity can be given (see VienvoT [71]) using
the fact that F,(t) is the maiching polynomial of the graph Seg, formed by a
segment of length 7. The matching polynomial of a graph 7 is defined as

(22) Palt) = Z (_1)|a|tn--2c.|
‘ o matchings
of G

where n is the number of vertices of ¢ and a iy a matching of &, that is a
set of two by two disjoint edges of &' (no common vertices), see an example
on Figure 9.

Fig. 9 : A matching of the graph Seg,

v
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Identity (17) says that the two following parameters have the same distri-
bution : Strahler number St(B) of binary trees having (2n + 1) vertices and
[logo (1 + H(w))| {integer part of the logarithm of the height) for Dyck paths
w having length 2n. It is difficult to find a bijection between binary trees and
Dyck paths (words) transforming one parameter into the other. Such a bijec-
tion has been defined recursively by Frangon [20], using the so-called Motzkin
paths and the operator contraction of Motzkin path (see also ViExyoT [71] in
connection with the notion of contraction in a continued fraction).

6. Secondary structures in Molecular Biology

More recently, Strahler numbers have appeared again in some theoretical
problems in Molecular Biology.

We consider molecules of single-stranded nucleic acids as for example RNA,
l_ mRNA (messager RNA) of tRNA (transfert RNA). The primary structure of
such molecule is the sequence of bases linked by phosphodiester honds. There
are four possible bases in RNAs : A (Adenine), {7 {Uracyl), G (Guanine) and
' (Cytosine). A primary structure is encoded by a word on the alphabet
{4,U,G,C}. Such bases can be linked together by hydrogen bonds (A with
U, G with C). The primary structure is thus folded into a planar graph called
the secondary structure. The vertices of this graph are the bases and the edges
are the primary and secondary bonds, see Figure 10 next page.

The spatial ternary structure of the molecule will not be considered here,

Many works have been made in Molecular Biology about the prediction of the

secondary structure from the knowledge of the primary structure. The notion

‘ of order of an hydrogen bond has been introduced, in relation with the

computation of the encrgy of the secondary structure, see MiTiko Go [40],

De Gexnes [8], WaTErMAN [75]. It is convenient to introduce a certain foresi

of trees associated to each secondary structure. The vertices of the forest are the

hydrogen bonds of the secondary structure. The edges of the forest are defined
according to the “adjacency™ of hydrogen honds, as shown on Figure 10.

Such forests are not classical in Moleculer Biology. They have been intro-
duced by Vavcuavssape, DE Coaumont and Viesvor 169], [70]. They can
be very useful in the study of the homologies of secondary structures, that is
the common features of the same molecule in different species. These forests
appear precisely to be the relevant information needed in the study of homolo-
gies. For example, the homologies stated in the work [67] can be formulated
by saying that the corresponding forests have a certain common “subforest”.
Now we define the order of a vertex in a forest.

A planar rooted tree T (or iree for short) is : if T has only one vertex, then T
is reduced to this point (which is the root); else T = {r; Ty,...,T,) where r is
a vertex called the root and T, ..., T, is an ordered sequence of {planar rooted)




in “Mots”, mélanges offert a M.P.Schutzenberger, M.Lothaire éd., Hermes, Paris, 1990, pp 265-297

=

280 . X. VIENNOT

trees. A forest of (planar rooted) #rees is an ordered sequence of trees, see an
example on Figure 10.
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Fig. 10 : Secondary structure of 165-RNA of E. Coli— (from [67])
with its associated forest,

The number of forests of trees with n vertices is the Catalan number {which
1s also the number of trees with (r + 1) vertices). Very classical bijections are



in “Mots”, mélanges offert a M.P.Schutzenberger, M.Lothaire éd., Hermes, Paris, 1990, pp 265-297

TREES 281
il 1 | ¥ 13 2 -
1 2 3 4 5 6 5 9 i0 11 L2 13 14
= I T T i T T I T z I T o T b

Fig. 11 : The Golden Triangle : binary trees,
forests of trees and Dyck paths

known between forests of trees and Dyck words {or paths) and between
these forests and binary trees (called fundamenta! transform by KxuTh (30]).
Examples are given in Figure 11 above. The triangle formed by these classical
bijections is commutative.
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A flament of a forest is a maximal sequence of vertices (s;,... ,8,} such that
fori=1,...,p—1, s; has only one son and this son is s,+1, and s, is a leaf of
the forest (i.e. no son). The filaments are two by two disjoints. We introduce
the operator & “deletion of filaments” . 6(F) is the forest obtained from F by
deleting alk the vertices of all the filaments of F. If a vertex is deleted at stage i,
then this integer ¢ is called the order of the vertex. The maximal order possible
in a forest F, that is the minimal integer k such that 8%(F) = 0, is called the
order of the forest.

¢ Q0 ;

Fig. 12 : Filaments. order of a forest and
the operator &

In a secondary structure, the order of an hvdrogen bond is the order of the
corresponding vertex in the underlying forest of the molecnle. The order of the
secondary structure is the order of the underlying forest. These definitions are
equivalent to the ones given in [8], [40], [73].

WaTeERMAN [75] raised the problem of finding the generating function
for all possible secondary structures of order & (that is all planar graphs
representing possible secondary structures). This problem has been solved in
Vauvcravssane DE CaaumoxsT, ViEssoT [69]. [70]. The solution applies a
methodology introduced by ScHUTZENBERGER in [58] and [59] more than 25
VOATS ago.

Secondary structures of order k are encoded by words of an algebraic lan-
guage. Then we write down a system of algebraic equations satisfied by the
non-commutative generating function of such words. Each equation is equiva-
lent to a certain combinatorial lemma on the objects. Then, by sending all
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: the non-commutative variables onto a single variable, we get an ordinary alge-
i braic system. This system may be solved. Usually this methodology have been

used in order to explain the algebricity of generating functions, once formula
are known by classical enumerative method (Lagrange inversion formula.. .. ).
A deep example is given in the numerous work of Cort and Vavgueris [5], [6]
following some work by Tu1Te on the enumeration of planar maps.

Here the method is reversed in order to get new enumerative formule. Such
methodology, combined with an intensive use of macsyma, has been sucees-
sively applied in polyominees and aenimals enumerations by DELEsT, DrLucy,
Govyou-Beaucuamps and ViEnnor [10], [11], [21], {22), [72], [73]. In the case
ol secondary structures, the coding with words of algebraic languages is very
| simple. The difficult part is in solving the commutative algebraic system. Some
analogues of the Tchebycheff polynomials with on parameter have to be used,
| together with the combinatorial theory of orthogonal polvnomial intraduced in
VienyoT [71]. The explicit solution is the following.

The generating function for the number a,, of (unlabelled) secandary
| structures of order k is given by

¢k}
23 T . A T —_ y 'th k- _ £ 2k_l B 2
(23) ﬂZ};a el a-ov v with p(k) =5 x ,

and V; is the sequence of palynomials defined by the recurrence

(24) Vit = (V)2 —2t78) 3o =192t 43

The problem of enumerating all forests having a given order is simpler and
can be solved using the same methodology. The surprise is that we get exactly
the generating function (18) enumerating binary trees having a given Strahler
number. Thus we have the remarkable fact :

The number of forests of (planar rooted) trees having n vertices and order

% is the same as the number of binary trees having n internal vertices and
Strahler number k.

Remark that the binary trees considered in this paper can be viewed as
particular cases of planar rooted trees. When applying (ke definition of order
with filaments, one get the Strahler number of the binary tree. But this trivial
fact is no help in the previous proposition.

I have proposed a prize of ten bottles of Domaine des Mates 1981 (red wine
produced by myself at Isle-Saint-Georges near Bordeaux) for a bijective proof
of this fact. D. ZEILBERGER [79] get a (recursive) bijection {and get the ten
} bottles of wine). BENDER and CANFIELD get also a bijection.
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Thus we have three parameters having the same distribution : Strahler
number, [log,(1+ H{w))| and order, with non-trivial bijections relating them.
In fact more can be said. The following double distributions are the same :

— for binary trees B with n internal vertices, Strahler number St{B) and
the number left external vertices (i.e. vertices o );

O

for Dyck paths w having length 2n|log,(1 + H(w))| and number of
South-East steps going from an even level to an odd level:

-- for forests F' of {planar rooted) trees. Order Or(F') and number of leaves
of the forest.

7. Ramification matrix

In relation with some considerations in Computer Graphics (see below
Paragraph 8), we have introduced the notion of remification matriz of a
binary tree. It appears as a refinement of the Horton Strahler considerations.

Let B be a binary tree with §¢(B) = & and x be an internal vertex of B.
The order of the vertex x is St(B) il z is the root of B, else is the order of the
edge {x,y} where y is the father of r (£ is the son of y). The biorder of the
vertex x is the pair formed by the order of the edges joining r to its two sons.

A arler & f

/\,

bigrder {1,k} biorder {k—1.4 =1}

k-1 E—1

Fg. 13 : Order and biorder of an internal vertex in a binary tree

We define successively the following quantities

(25) a4 is the number of internal vertices having order k ;
(26) {bk,‘- is the number of vertices of biorder (k,{), for 0 < i < k,

bi.i is the number of vertices of biorder (k — 1,k — 1), for 1 < k;
(27)  ppy =bx jfax for0<j< kand 1<k
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The number p;; is the probability for a vertex of order k to have a
biorder (k, 7).

The ramification matriz R(B) of the binary tree B is the & x (k+1) stochastic
matrix

(28) R(B) = (prj)ocicren 1€k

This matrix gives quantitative informations about the “shape” of a binary
tree, For example, the ramification matrix of a perfect tree is

0 1
0 0 1
Rhoool

PENAUD [47] has just proved that the ramification matrix of a random binary
Lree looks like

BS [ ROl B B[
||—~ ral

o e g | R [
DOj— [ [

=1
15

,_.
o

Tabie 2. Ramification matrix of a large random binary tree,

More precisely, he proves that the mean value of the biorder probability
Pk,i among all binary trees with n internal vertices tends (for fixed k& and 1.
as 0 — 0] to the value 1/2™* (for 0 < ¢ < k) and to 1/2* for s = k.

Recently, following the ideas of MaNDELBROT [35], many works have been
done in Physics about the study of branching patterns occuring in some
experiments or in computer simulation. Branching patterns are considered as
fractals and the measurement of the “shape” is considered by giving a fractal
dimension. Trees coming from real experimentations are digitalized and one
considers the number of points of the pattern in concentric circles of radius K.

This number is expected to behave like RE, where D is a fixed exponent called
the (fractal) mass dimension.

Such measurements have been made for electric breakdown, see for example
NIEMEYER, PIETRONERO, WIESMANN [43], for the so-called wviscous fingers,
see for example NITTMANN, DACCORD, STANLEY [45], for electrolytic metal
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Fig. 14 : Viscous fingers (courtesy from Van Damme and LaRoche,
Laboratoire CNRS CRSOCI, Orléans)

deposit, see for example SAwaDA, DouGHERTY, GorLus [53], or for Diffusion
Aggregation Process (DLA) of WiTTEN and SANDERS [76].

As for river networks, one can associate a binary tree underlying all these
branching patterns. The mass fractal dimension give some information about
the geometry of this pattern, but this notion can be applied for any pattern,
not necessarily branching. It should be of great interest to give a quantitative
measurement of the “shape” of such branching pattern which make emphasis
of the fact that the pattern is branching. We claim that the ramification
matrix should be of interest in such considerations, With VANNIMENUS, we are
investing such matrices for branching patterns occuring in Physics [81], [82].
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8. Synthetic images of trees using Combinatories

Je suis sur la montagne, dessinant un vieux sapin de paturage. Je découvre
une loi. “Voyez, dis-je, & mon maitre : & la plus vieille branche, on peut
reconnaitre I'age de l'arbre” (... ). La plus vieille branche, la premiére & partir
du sol, propose une série croissante, probablement incontestable. Et Parbre
entier est une pure fonction mathématigue.

Le CoRrBUSIER

Very recently, many people have been interested in the creation of faithful
synthetic images of trees generated with a computer. A great variety of methods
have been considered : L-langages and “graftals”, stochastic models, fractals,
botanical models, see Aono, Kunm [1], BLooMenTar [2], DEmko, Hopors,
Navior [13), De Rerry & al. [14], Kawacuch [28], OPPENHEIMER [46].
Reeves, " Brau [52], SmiTh [64].

With EYRoLLES, we have used purely combinatorial methods based on
Horton-5trahler ideas and the introduction of ramifications matrices.

We only construct binary trees in 2 dimensions. The “geometry” of the tree
is extremely simplified and we do not try to create realistic details as bark,
leaves or flowers,... Once a (mathematical) binary tree have been generated,
the geometric parameters defining the image are : the width and length of each
edges (which is drawn as a rectangle), the branching and deviation angles for
each internal vertex of the binary tree (see Figure 15).

3
deviation angle
y o
/ length branching angle

widt:&

Fig. 15 : Geometric parameters for svnthetic 21 trees

The idea is that a branch having a big order in the tree is important, and thus
emphasis must be made on this branch by a judicious chaice of the geometric
parameters. In our program, the width and length of each branches depend
only of the order of the corresponding edge of the binary tree. The branching
and deviation angles of a branching point depend only of the biorder of the
corresponding internal vertex, Usually we have taken simple laws : linear,
polynomial or exponential.



in “Mots”, mélanges offert a M.P.Schutzenberger, M.Lothaire éd., Hermes, Paris, 1990, pp 265-297

288 . X. VIENNOT

The inputs of the program are a number k (which will be the Strahler num-
ber of the tree) and a stochastic matrix having at least k rows. The program
generates at random a binary tree having k as Strahler number and (approx-
imatively) the given matrix for ramification matrix. All the trees which can
be generated belong to a same family or species, characterized by the same
rarification matrix. Then with a given choice for the geometrical laws ruling
the width, length and angles as functions of the order and biorder, the pro-
gram draws the geometrical tree on the screen. An option can introduced some
“regularities” in the tree.

Contrarily to all previous methods, emphasis is made on the choice of the
undertying binary tree, and not on the geometry of the tree. With a very simple
and poor geometry, a great variety of trees can be obtained. This fact tends to
show that the ramification matrix is a pertinent parameter in the tree. Also an
advantage of this method is that ramification matrices give an efficient way for
controlling the general shape of the tree.

In particular, by taking linear combination of matrices, one can go contin-
uously from one species to another species. One can also mix together two or
three ramification matrices, as for example on Figure 16 : the tree behave dif-
ferently near the main branches (large order) and at the tip of the branches
(small order). Such trees can be called non seifsémilar. In fact, the notion
of self-similarity can he considered for trees, analogously to self-similarity of
fractal patterns. A possible characteristic should be that all the rows of the
ramification represent the same function. In this sense, random binary trees
are self-similar.

A complete system for the generation, drawing and manipulation of synthetic
images of realistic trees and leaves of trees has been developped in VIEXKNOT,
EvroLLEs, JanEy, ArquEs [84]. The pictures are in colonr and the system
includes the creation of landscapes.

Fig, 16 : Xon self-similar tree
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