3-Connected Planar Graphs
Orthogonal Surfaces
and Flips

Petit École de Combinatoire LaBRI, Bordeaux

March 12, 2004

Stefan Felsner

Technische Universität Berlin felsner@math.tu-berlin.de

Content

Plane Triangulations

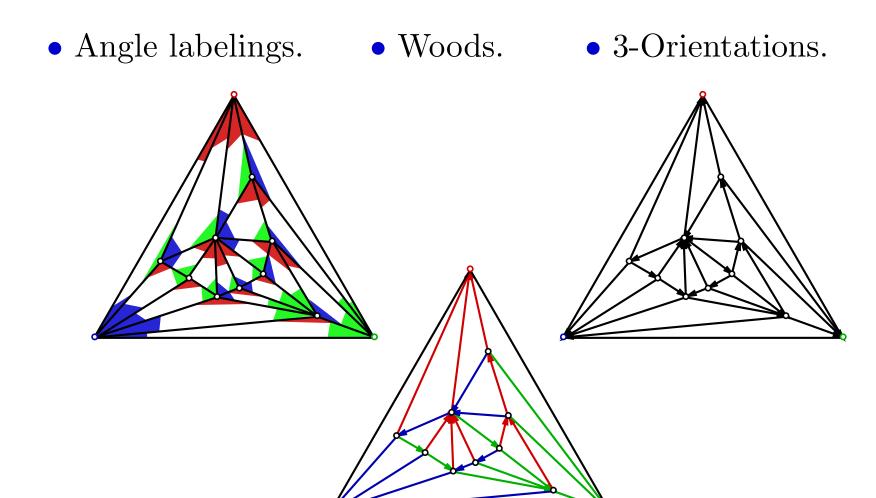
- (1) Schnyder Structures
- (2) Applications: Dimension, Drawing and Surfaces

3-Connected Plane Graphs

- (3) Schnyder Structures Revisited
- (4) Applications and more on Orthogonal Surfaces
- (5) Flips and Lattices

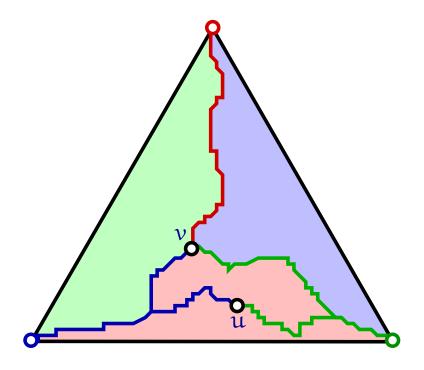
Todays talk covers (3) and (4).

Schnyder Structures



The Regions of a Vertex

• Every vertex has three distinguished regions.



• If $u \in R_i(v)$ then $R_i(u) \subset R_i(v)$.

Schnyder Region Counts

 $\phi : regions \rightarrow \mathbb{R}^+ \text{ such that}$

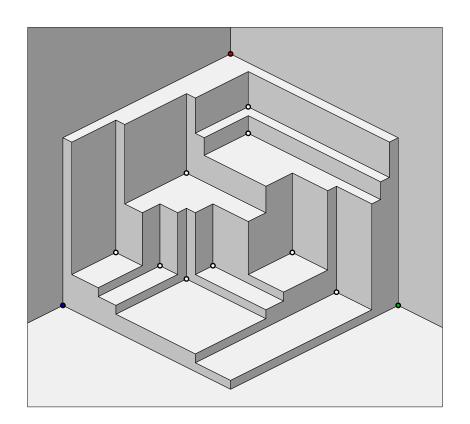
- $R_i(u) \subset R_i(v) \implies \phi(R_i(u)) < \phi(R_i(v))$
- $\phi(R_1(v)) + \phi(R_2(v)) + \phi(R_3(v)) = C$

Applications:

- 3-realizer for planar graphs.
 - \implies dim(G) \leq 3 for G planar.
- Straight line drawings on small integer grids.

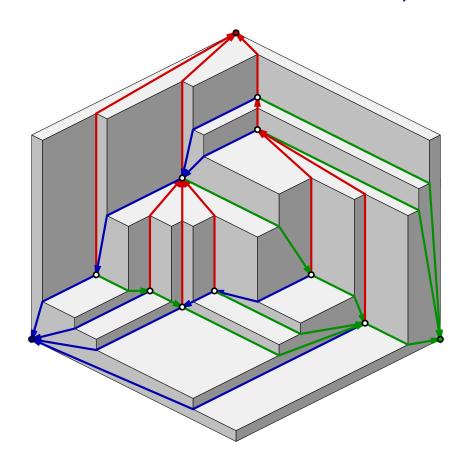
Using 3 Coordinates

Take the count of faces in the three regions as a set P of points in \mathbb{R}^3 . Let P generate an ideal I_P^{\leq} the boundary ∂I_P^{\leq} is the orthogonal surface generated by P.



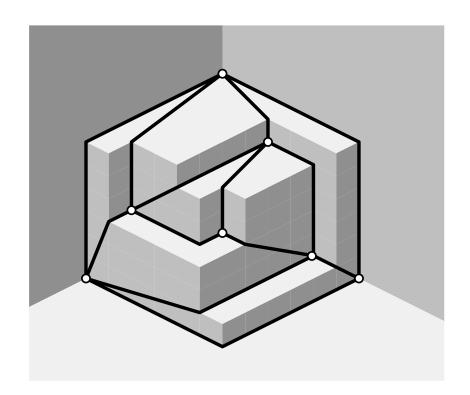
Schnyder Woods on Orthogonal Surfaces

The Schnyder wood used for the count of faces is nicely represented on the orthogonal surface ∂I_{P}^{\leq} .



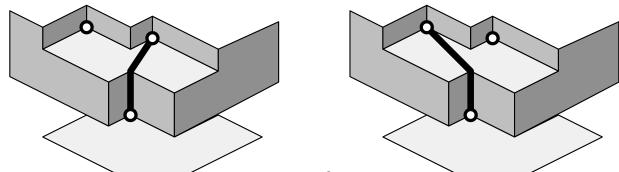
From Orthogonal Surfaces to Graphs

The graph of an orthogonal surface need not be a triangulation:

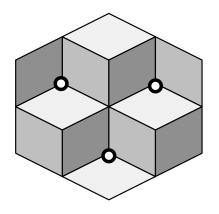


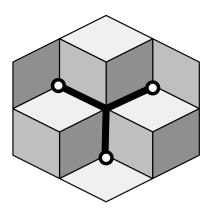
Orthogonal Surfaces and Graphs II

• The graph of an orthogonal surface is not necessarily unique



• Not every orthogonal surface carries a graph





Digression: More on Dimension

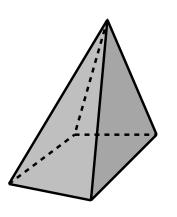
Let \mathcal{F}_{P} be the face lattice of a polytope and let dim denote order dimension

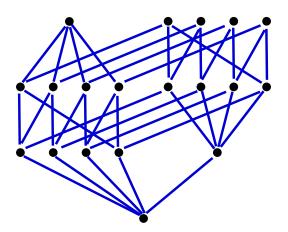
Theorem [Schnyder].

If P is a simplicial 3-polytope and F is any face of P, then

•
$$\dim(\mathcal{F}_{P} \setminus F) = 3$$
 • $\dim(\mathcal{F}_{P}) = 4$

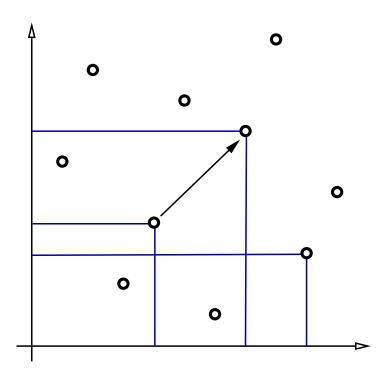
•
$$\dim(\mathcal{F}_{\mathsf{P}}) = 4$$

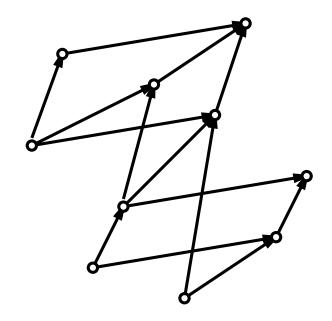




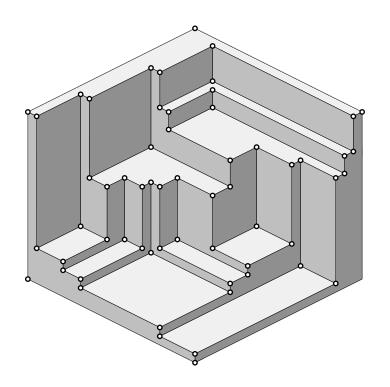
Dimension of Orders

The dimension of an order P = (X, <) is the least t, such that P is isomorphic to a suborder of \mathbb{R}^t with the product ordering.



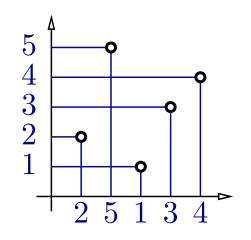


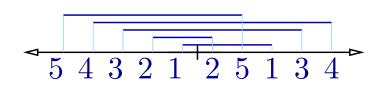
An Example in Dimension 3



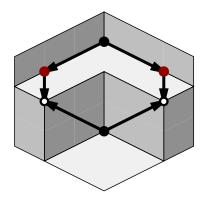
Characterizations

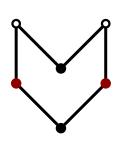
• Dimension 2: Containment orders of intervals.





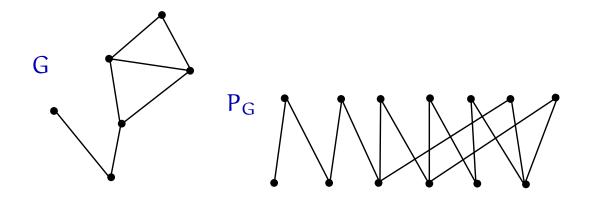
• Dimension 3: Containment orders of triangles.





Incidence Orders and Dimension

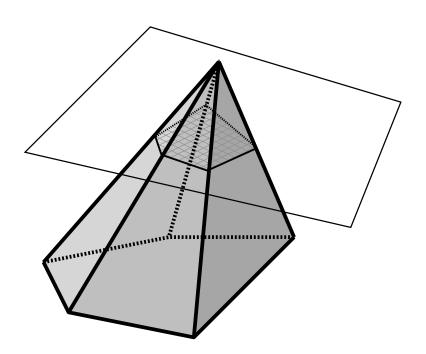
The incidence order P_G of G



- $1. \ \dim(G) \leq \dim(P_G) \leq \dim(G) + 1.$
- 2. If $\delta(G) \geq 2$, then $\dim(G) = \dim(P_G)$.

Dimension of Polytopes: Lower Bound

Theorem. If P is a d-polytope, then $\dim(P) \ge d + 1$.



More Examples

• Boolean lattice:

$$\dim(\mathbf{B}_n) = n$$

• Standard example of an n dimensional order: Atoms and coatoms of a Boolean lattice:

$$\dim(\mathbf{B}_{\mathfrak{n}}[1,\mathfrak{n}-1])=\mathfrak{n}$$

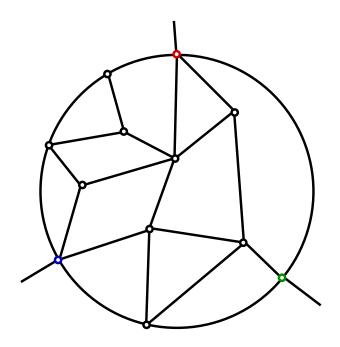
• First two levels of a Boolean lattice:

$$\dim(\mathbf{B}_{\mathfrak{n}}[1,2]) \sim \log \log \mathfrak{n}$$

$\dim(K_n) \leq$	2	3	4	5	6	7	8
$n \leq 1$	2	4	12	81	2646	1422564	229809982112

Chapter 3: Schnyder Structures for 3-Connected Plane Graphs

We adapt Schnyder's structures for 'suspended' 3-connected planar graphs.

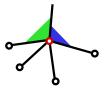


- Schnyder angle labelings,
- Schnyder woods,
- 3-orientations.

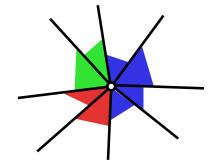
Schnyder Angle Labelings

Axioms for the 3-coloring of angles:

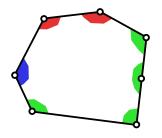
(A1) Angles at the half-edges:



(A2) Rule of vertices:



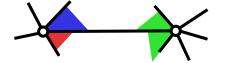
(A3) Rule of faces:



Angles at an Edge

Lemma. Let **G** be a plane graph with a Schnyder angle labeling, then the four angles of each edge contain all three colors.

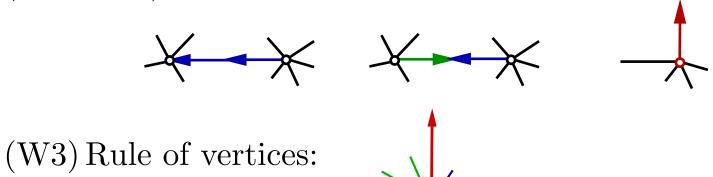
Consequently, there are only two types of edges:



Schnyder Woods

Axioms for 3-coloring and orientation of bi-edges:

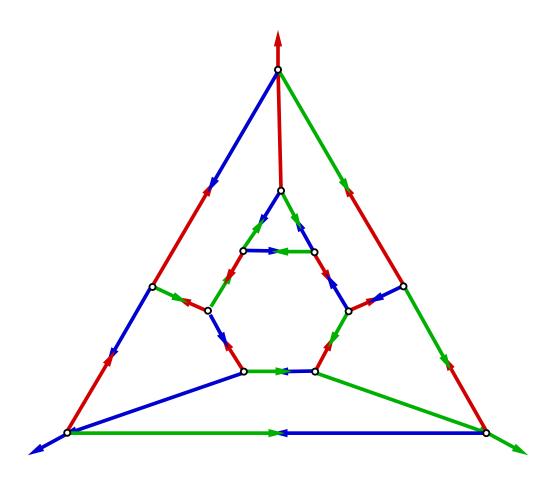
(W1 - W2) Rule of edges and half-edges:



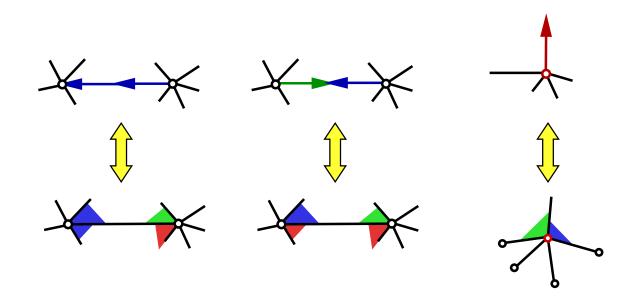
(VVO) Itale of Vertices.

(W4) There is no interior face whose boundary is a directed cycle in one color.

We need W4!



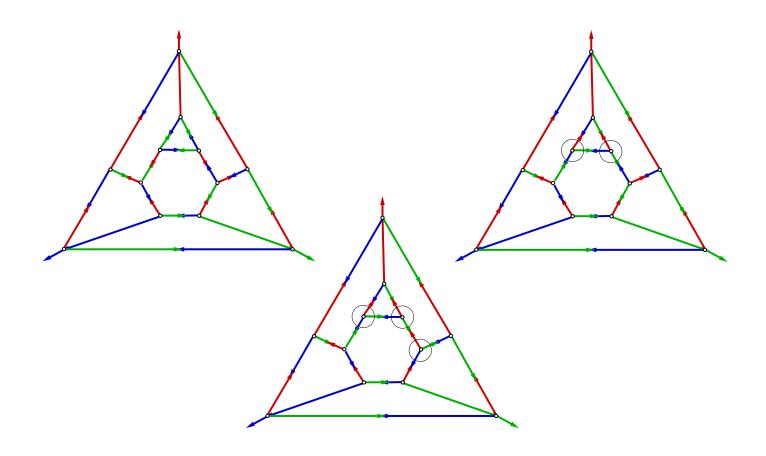
Equivalence of Schnyder Woods and Angle Labelings



This mapping preserves the axioms,

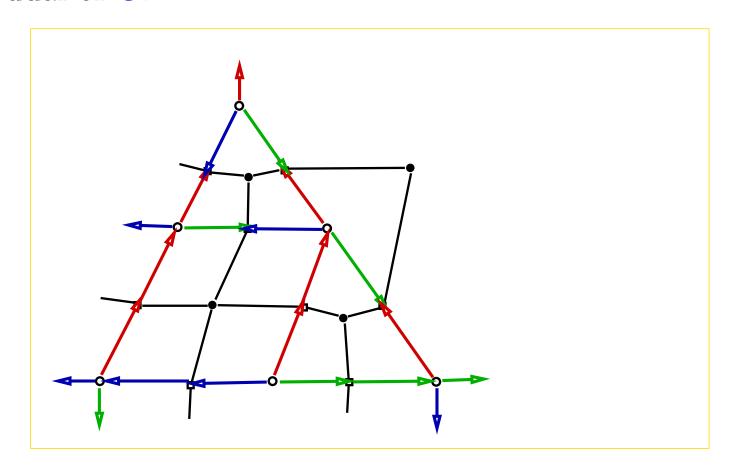
$$(A1),(A2),(A3) \iff (W1),(W2),(W3),(W4)$$

3-Orientations?



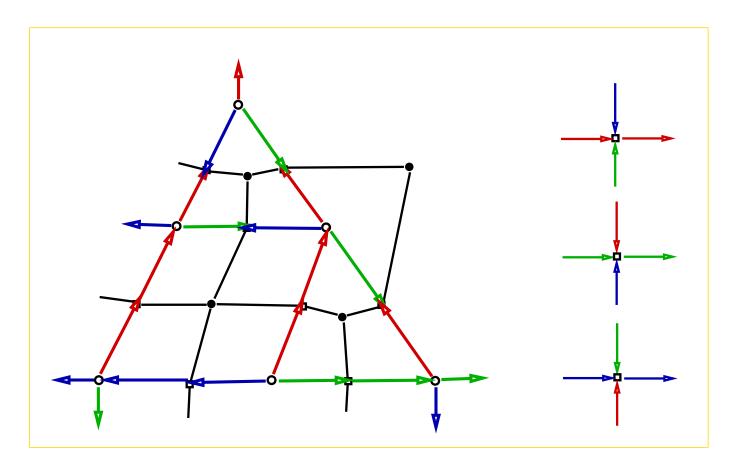
Primal and Dual

A Schnyder coloring of G induces a Schnyder coloring of the dual of G.



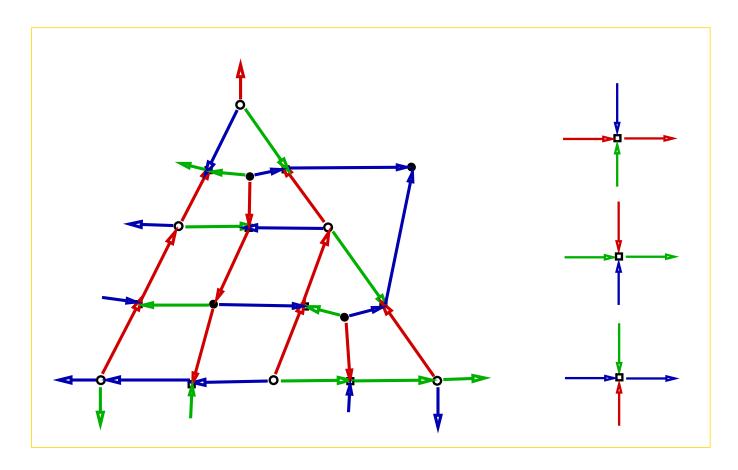
Primal and Dual

A Schnyder coloring of G induces a Schnyder coloring of the dual of G.



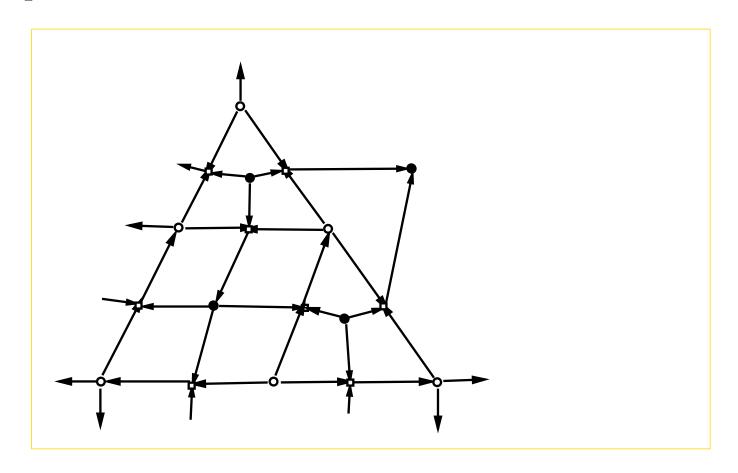
Primal and Dual

A Schnyder coloring of G induces a Schnyder coloring of the dual of G.



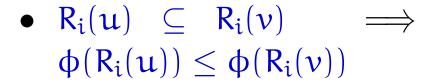
3-Orientations – Rescued

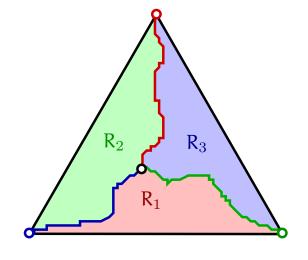
Theorem. Primal dual Schnyder woods are in bijection with primal dual 3-orientations.

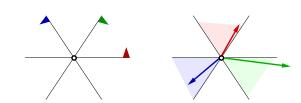


Regions and Applications

 $\phi : regions \rightarrow \mathbb{R}^+ \text{ such that }$



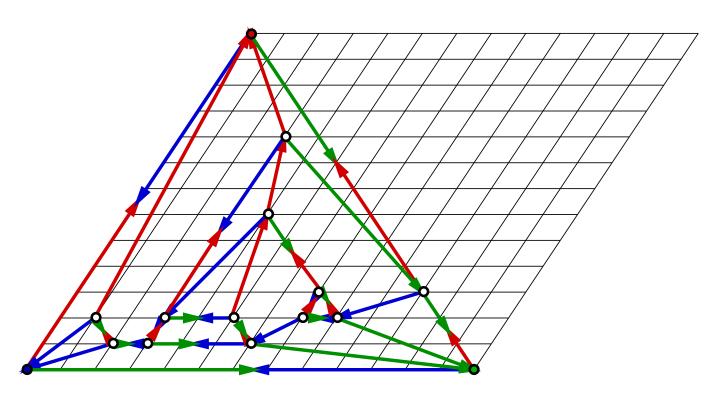




Drawings by Counting Faces

Counting faces in the three regions yields:

Theorem. 3-connected planar graphs admit convex drawings on the $(f-1) \times (f-1)$ grid.



Idea of the Proof

- (1) No vertex on an edge.
- (2) Edges are disjoint

$$\begin{aligned} &\{u,v\},\{x,y\} \in E \\ &x,y \in R_i(u), \ x,y \in R_j(v), \ u,v \in R_k(x), \ u,v \in R_l(y) \\ &\text{does not imply } i=j \text{ or } k=l \end{aligned}$$

The hard case:

$$x, y \in R_1(u)$$
 and $u, v \in R_1(x)$

(3) Convex: Inner vertices are never pointed.