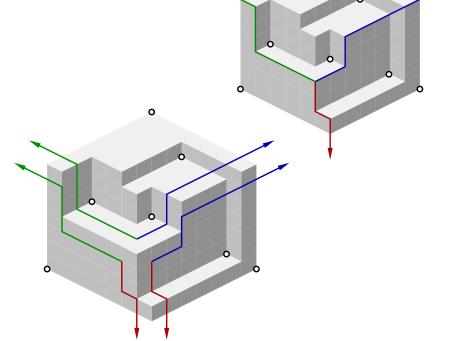
Orthogonal Surfaces Flips and Lattices

Petit École de Combinatoire LaBRI, Bordeaux March 19, 2004



Stefan Felsner

Technische Universität Berlin felsner@math.tu-berlin.de

Content

Plane Triangulations

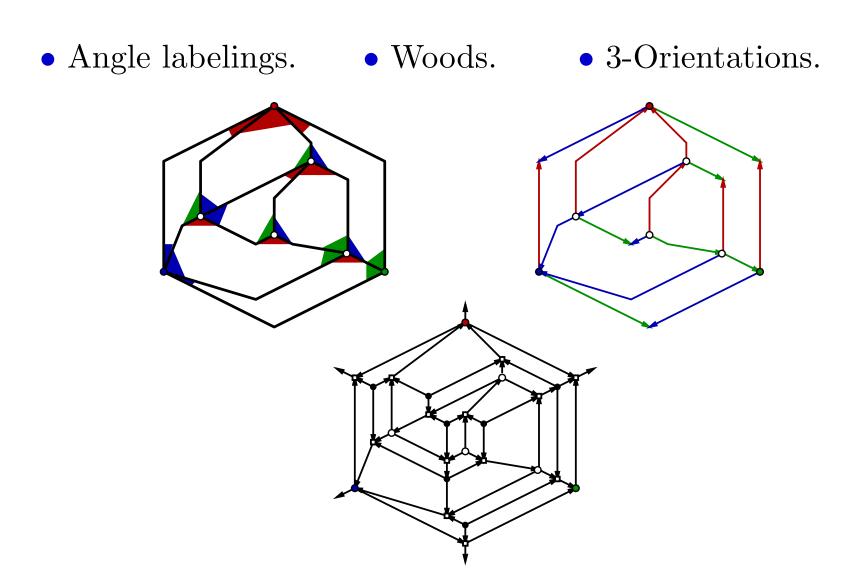
- (1) Schnyder Structures
- (2) Applications: Dimension, Drawing and Surfaces

3-Connected Plane Graphs

- (3) Schnyder Structures Revisited
- (4) Applications and more on Orthogonal Surfaces
- (5) Flips and Lattices

Todays talk covers (4) and (5).

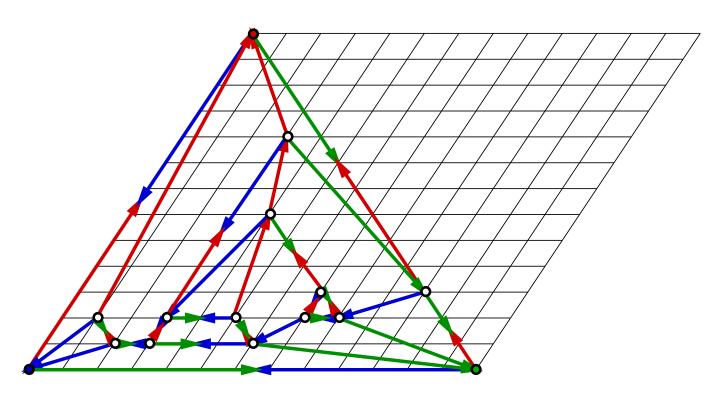
Schnyder Structures



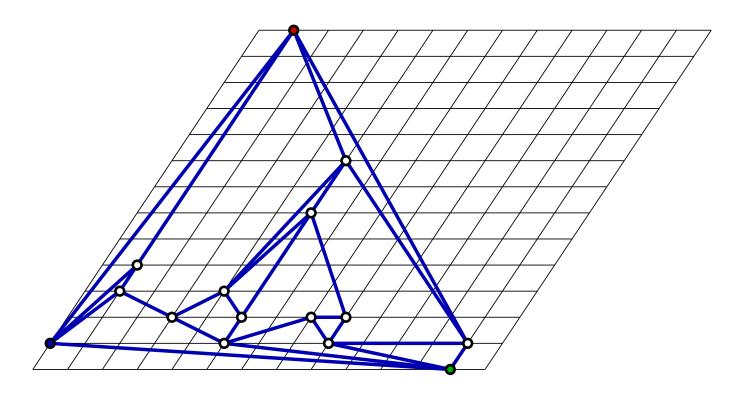
Drawings by Counting Faces

Counting faces in the three regions yields:

Theorem. 3-connected planar graphs admit convex drawings on the $(f-1) \times (f-1)$ grid.



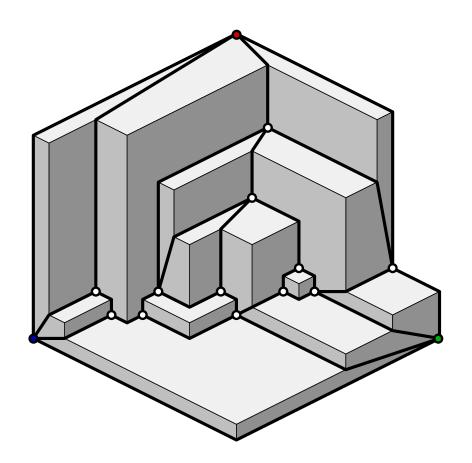
Drawings by Counting Vertices



This is not the right way for producing convex drawings for 3-connected planar graphs.

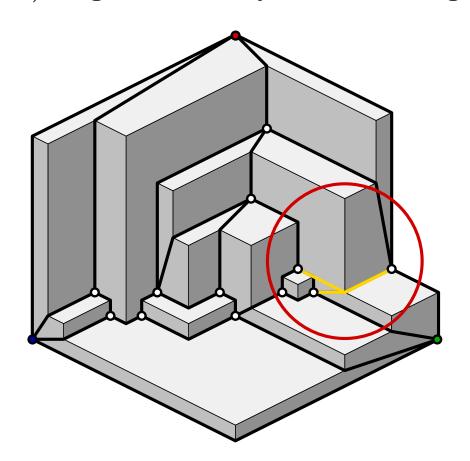
Graphs and Orthogonal Surfaces

Every 3-connected planar graph is generated by some orthogonal surface.



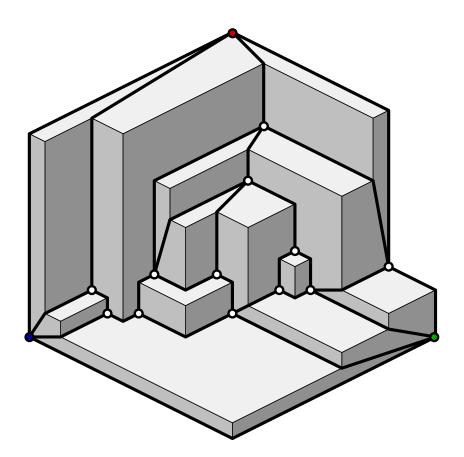
Graphs and Orthogonal Surfaces

Every 3-connected planar graph (more precisely every Schnyder wood) is generated by some orthogonal surface.



Rigid Orthogonal Surfaces

A modified definition of regions \implies every 3-connected planar graph is generated by a *rigid* orthogonal surface.



Rigid Orthogonal Surfaces

Theorem [Felsner'01].

G 3-connected and planar.

There is a bijection between

Schnyder woods of G and rigid orthogonal surfaces generating G.

Dimension of Polytopes

A rigid orthogonal surface generating G induces three permutations (projections) of vertices, edges and faces.

Theorem [Brightwell+Trotter'92,Felsner 01].

The hypergraph of vertices, edges and bounded faces of a 3-connected planar graph G is of dimension 3.

Equivalently

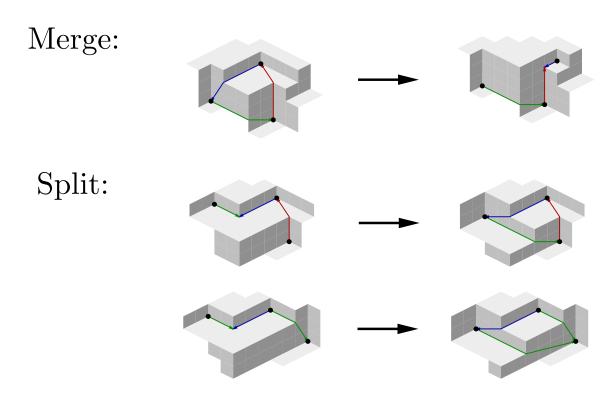
Theorem.

If P is a 3-polytope and F is any face of P, then

•
$$\dim(\mathcal{F}_{P} \setminus F) = 3$$
 • $\dim(\mathcal{F}_{P}) = 4$

This Weeks Work

With Nicolas Bonichon we have been discussing orthogonal surfaces and semi-flips:

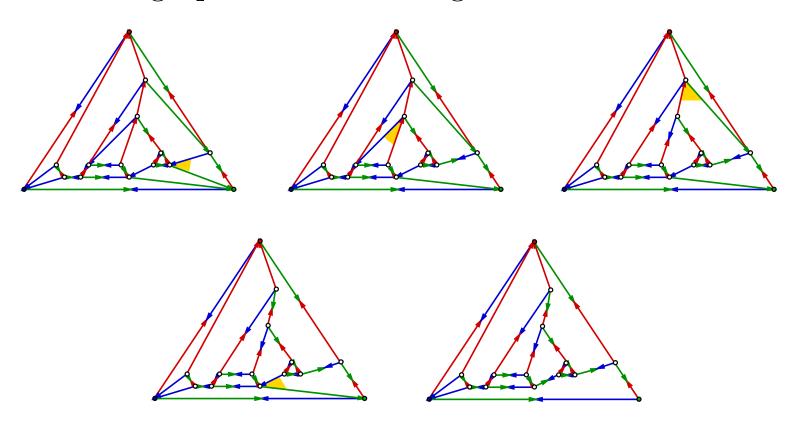


New Results

- Rigid embeddings [simplified proofs]
- Flat embeddings [good description]
- Drawings of 3-connected plane graphs [more compactly]

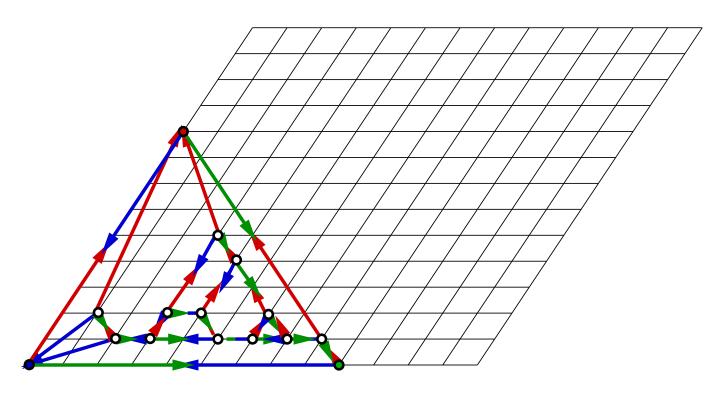
Compact Drawings I

Reduce the graph with semi-merges.



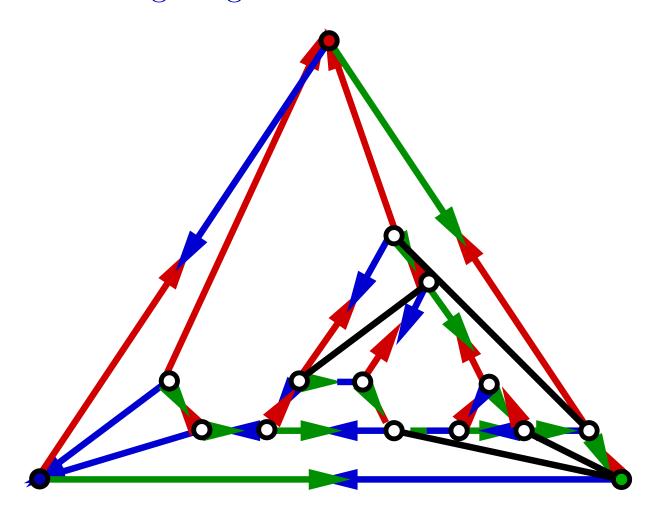
Compact Drawings II

Draw the graph on the $(f-1) \times (f-1)$ grid.



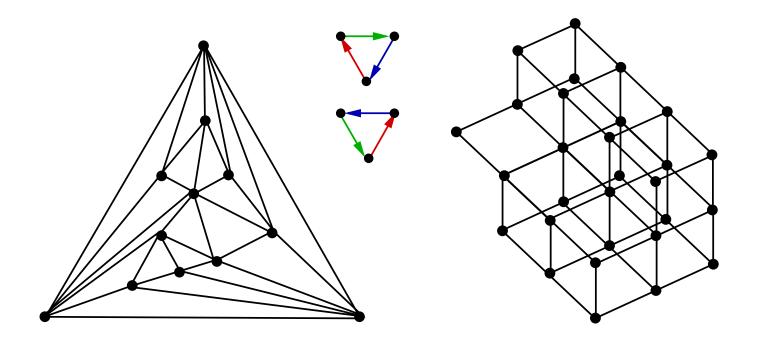
Compact Drawings III

Reinsert the merge-edges.



The Lattice of Schnyder Woods

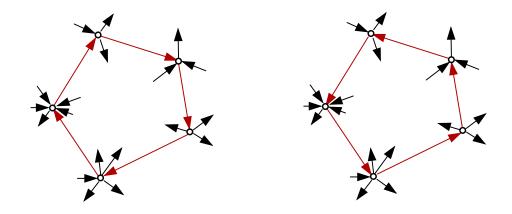
Theorem [Mendez & Brehm]. The set of Schnyder woods of a plane triangulation G has the structure of a distributive lattice.



A General Theorem

Definition. Given G = (V, E) and $\alpha : V \to IN$. An α -orientation of G is an orientation with outdeg $(v) = \alpha(v)$ for all v.

• Reverting directed cycles preserves α -orientations.



Theorem. The set of α -orientations of a planar graph G has the structure of a distributive lattice.

Proof I: Essential Cycles

Definition.

A cycle C of G is an essential cycle if

- C is chord-free and simple,
- the interior cut of C is rigid,
- there exists an α -orientation X such that C is a directed cycle in X.

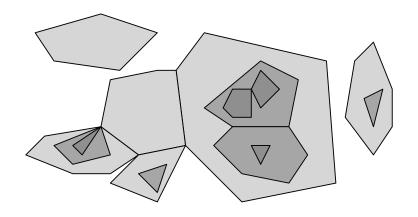
Lemma.

If e is oppositionally directed in two α -orientations then there is a simple cycle C with $e \in C$ which is oppositionally directed in both.

Proof II

Lemma.

Essential cycles are interiorly disjoint or contained.



Lemma.

If $(C_1,...,C_k)$ is a flip sequence $(\operatorname{ccw} \to \operatorname{cw})$ on X then for every edge e the essential cycles $C^{l(e)}$ and $C^{r(e)}$ alternate in the sequence.

Proof III: Flip Sequences

Lemma.

The length of any flip sequence (ccw \rightarrow cw) is bounded and there is a unique α -orientation X_{\min} with the property that all cycles in X_{\min} are cw-cycles.

• $Y \prec X$ if a flip sequence $X \rightarrow Y$ exists.

Lemma.

Let $Y \prec X$ and C be an essential cycle. Every sequence $S = (C_1, \ldots, C_k)$ of flips that transforms X into Y contains the same number of flips at C.

Proof IV: Potentials

Definition. An α -potential for G is a mapping $\wp : \mathsf{Ess}_{\alpha} \to \mathsf{IN}$ such that

- $|\wp(C) \wp(C')| \le 1$, if C and C' share an edge e.
- $\wp(C^{l(e)}) \le \wp(C^{r(e)})$ for all e (orientation from X_{\min})

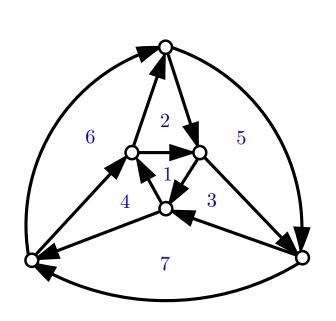
Lemma. There is a bijection between α -potentials and α -orientations.

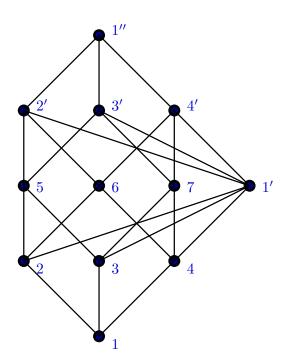
Theorem. α -potentials are a distributive lattice with

- $(\wp_1 \vee \wp_2)(C) = \max\{\wp_1(C), \wp_2(C)\}$ and
- $(\wp_1 \land \wp_2)(C) = \min\{\wp_1(C), \wp_2(C)\}\$ for all essential C.

Application I: Eulerian Orientations

• Orientations with $\mathsf{outdeg}(v) = \mathsf{indeg}(v)$ for all v, i.e. $\alpha(v) = \frac{\mathsf{d}(v)}{2}$

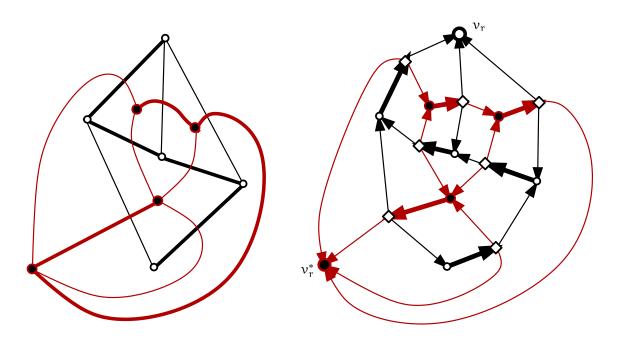




Application II: Spanning Trees

Spanning trees are in bijection with α_T orientations of a rooted primal-dual completion $\widetilde{\mathsf{G}}$ of G

• $\alpha_{\mathsf{T}}(\nu) = 1$ for a non-root vertex ν and $\alpha_{\mathsf{T}}(\nu_e) = 3$ for an edge-vertex ν_e and $\alpha_{\mathsf{T}}(\nu_r) = 0$ and $\alpha_{\mathsf{T}}(\nu_r^*) = 0$.

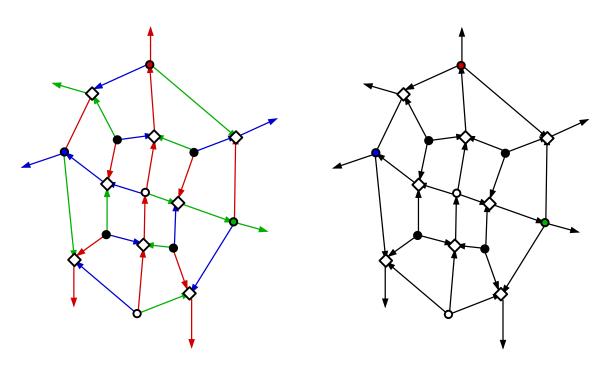


Lattice of Spanning Trees

Application III: Schnyder Woods

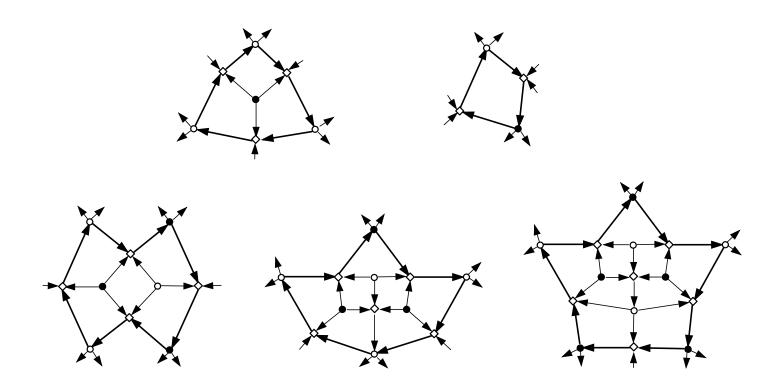
Schnyder woods are in bijection with α_S orientations of a primal-dual completion $\widetilde{\mathsf{G}}$ of G

• $\alpha_{\rm S}(\nu)=3$ for a vertex ν and $\alpha_{\rm S}(\nu_e)=1$ for an edgevertex ν_e and exterior rays.



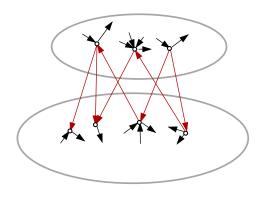
Essential Cycles

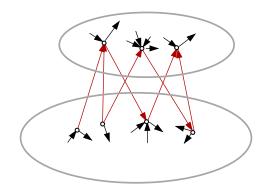
• Essential cycles for α_S .



A Dual Construction for Lattices

• Reorientations of cuts preserve flow-differences along cycles.





Theorem [Propp].

The set of all orientations of a graph G with prescribed flow-differences for all cycles has the structure of a distributive lattice.

In the future we will understand more. For now this is

THE END

Thank you.