Bijective counting of tree-rooted maps

Olivier Bernardi

Séminaire Combinatoire, LaBRI, Bordeaux

Bijective counting of tree-rooted maps

- Maps and trees.
- Tree-rooted maps and parenthesis systems.
 (Mullin, Lehman & Walsh)
- Bijection :

Tree-rooted maps \iff Trees \times Non-crossing partitions.

 Isomorphism with a construction by Cori, Dulucq and Viennot.

Maps and trees

Planar maps

A map is a connected planar graph properly embedded in the oriented sphere.

The map is considered up to deformation.

Planar maps

A map is a connected planar graph properly embedded in the oriented sphere.

The map is considered up to deformation.

A map is rooted by adding a half-edge in a corner.

Trees

A tree is a map with only one face.

Trees

A tree is a map with only one face.

The size of a map, a tree, is the number of edges.

Tree-rooted maps

A submap is a spanning tree if it is a tree containing every vertex.

Tree-rooted maps

A submap is a spanning tree if it is a tree containing every vertex.

A tree-rooted map is a rooted map with a distinguished spanning tree.

Tree-rooted maps and Parenthesis systems (Mullin, Lehman & Walsh)

Parenthesis systems

A parenthesis system is a word w on $\{a, \overline{a}\}$ such that $|w|_a = |w'|_{\overline{a}}$ and for all prefix w', $|w'|_a \ge |w'|_{\overline{a}}$.

Example : $w = aa\overline{a}a\overline{a}a\overline{a}a\overline{a}$ is a parenthesis system.

Parenthesis shuffle

A parenthesis shuffle is a word w on $\{a, \overline{a}, b, \overline{b}\}$ such that the subwords made of $\{a, \overline{a}\}$ letters and $\{b, \overline{b}\}$ letters are parenthesis systems.

Example: $w=baa\overline{b}\overline{a}b\overline{b}ab\overline{a}a\overline{b}a\overline{a}$ is a parenthesis shuffle.

Parenthesis shuffle

A parenthesis shuffle is a word w on $\{a, \overline{a}, b, \overline{b}\}$ such that the subwords made of $\{a, \overline{a}\}$ letters and $\{b, \overline{b}\}$ letters are parenthesis systems.

Example: $w=baa\overline{b}\overline{a}b\overline{b}ab\overline{a}a\overline{b}a\overline{a}$ is a parenthesis shuffle.

The size of a parenthesis system, shuffle is half its length.

Rooted trees of size n are in bijection with parenthesis systems of size n.

Trees and parenthesis systems

 $aa\overline{a}$

We turn around the tree and write:

- a the first time we follow an edge,
- \overline{a} the second time.

 $aa\overline{a}a\overline{a}a\overline{a}a\overline{a}$

We turn around the tree and write:

- *a* the first time we follow an edge,
- \overline{a} the second time.

Tree-rooted maps and parenthesis shuffles

[Mullin 67, Lehman & Walsh 72] Tree-rooted maps of size n are in bijection with parenthesis shuffles of size n.

Tree-rooted maps and parenthesis shuffles

 $baa\overline{b}\overline{a}$

We turn around the tree and write:

- a the first time we follow an internal edge,
- \overline{a} the second time,
- b the first time we cross an external edge,
- b the second time.

Tree-rooted maps and parenthesis shuffles

 $baa\overline{b}\overline{a}b\overline{b}ab\overline{a}a\overline{b}a\overline{a}$

We turn around the tree and write:

- a the first time we follow an internal edge,
- \overline{a} the second time,
- b the first time we cross an external edge,
- b the second time.

• There are $\mathcal{C}_k = \frac{1}{k+1} \binom{2k}{k}$ parenthesis systems of size k.

- There are $\mathcal{C}_k = \frac{1}{k+1} \binom{2k}{k}$ parenthesis systems of size k.
- There are $\binom{2n}{2k}$ ways of shuffling a parenthesis system of size k (on $\{a, \overline{a}\}$) and a parenthesis system of size n-k (on $\{b, \overline{b}\}$).

- There are $\mathcal{C}_k = \frac{1}{k+1} \binom{2k}{k}$ parenthesis systems of size k.
- There are $\binom{2n}{2k}$ ways of shuffling a parenthesis system of size k (on $\{a, \overline{a}\}$) and a parenthesis system of size n-k (on $\{b, \overline{b}\}$).

$$\Longrightarrow$$
 There are $\mathcal{M}_n = \sum_{k=0}^n \binom{2n}{2k} \mathcal{C}_k \mathcal{C}_{n-k}$ parenthesis

shuffles of size n.

$$\mathcal{M}_{n} = \sum_{k=0}^{n} {2n \choose 2k} \mathcal{C}_{k} \mathcal{C}_{n-k}$$

$$= \frac{(2n)!}{(n+1)!^{2}} \sum_{k=0}^{n} {n+1 \choose k} {n+1 \choose n-k}$$

$$= \frac{(2n)!}{(n+1)!^{2}} {2n+2 \choose n}$$

$$\mathcal{M}_{n} = \sum_{k=0}^{n} {2n \choose 2k} \mathcal{C}_{k} \mathcal{C}_{n-k}$$

$$= \frac{(2n)!}{(n+1)!^{2}} \sum_{k=0}^{n} {n+1 \choose k} {n+1 \choose n-k}$$

$$= \frac{(2n)!}{(n+1)!^{2}} {2n+2 \choose n}$$

Theorem: The number of parenthesis shuffles of size n is

$$\mathcal{M}_n = \mathcal{C}_n \mathcal{C}_{n+1}.$$

$$\mathcal{M}_{n} = \sum_{k=0}^{n} {2n \choose 2k} \mathcal{C}_{k} \mathcal{C}_{n-k}$$

$$= \frac{(2n)!}{(n+1)!^{2}} \sum_{k=0}^{n} {n+1 \choose k} {n+1 \choose n-k}$$

$$= \frac{(2n)!}{(n+1)!^{2}} {2n+2 \choose n}$$

Theorem [Mullin 67]: The number of tree-rooted maps of size n is

$$\mathcal{M}_n = \mathcal{C}_n \mathcal{C}_{n+1}.$$

Theorem [Mullin 67] : The number of tree-rooted maps of size n is

$$\mathcal{M}_n = \mathcal{C}_n \mathcal{C}_{n+1}.$$

Is there a pair of trees hiding somewhere?

Theorem [Mullin 67] : The number of tree-rooted maps of size n is

$$\mathcal{M}_n = \mathcal{C}_n \mathcal{C}_{n+1}.$$

Is there a pair of trees hiding somewhere?

Theorem [Cori, Dulucq, Viennot 86]: There is a (recursive) bijection between parenthesis shuffles of size n and pairs of trees.

Theorem [Mullin 67] : The number of tree-rooted maps of size n is

$$\mathcal{M}_n = \mathcal{C}_n \mathcal{C}_{n+1}$$
.

Is there a pair of trees hiding somewhere?

Theorem [Cori, Dulucq, Viennot 86]: There is a (recursive) bijection between parenthesis shuffles of size n and pairs of trees.

Is there a good interpretation on maps?

Tree-rooted maps Trees × Non-crossing partitions

Internal edges are oriented from the root to the leaves.

- Internal edges are oriented from the root to the leaves.
- External edges are oriented in such a way their heads appear before their tails around the tree.

Proposition:

The orientation is root-connected: there is an oriented path from the root to any vertex.

Proposition:

- The orientation is root-connected:
 there is an oriented path from the root to any vertex.
- The orientation is minimal: every directed cycle is oriented clockwise.

Proposition:

- The orientation is root-connected:
 there is an oriented path from the root to any vertex.
- The orientation is minimal: every directed cycle is oriented clockwise.

We call tree-orientation a minimal root-connected orientation.

Theorem: The orientation of edges in tree-rooted maps gives a bijection between tree-rooted maps and tree-oriented maps.

Theorem: The orientation of edges in tree-rooted maps gives a bijection between tree-rooted maps and tree-oriented maps.

Vertex explosion

Vertex explosion

We explode the vertex and obtain a vertex per ingoing edge + a (gluing) cell.

A tree!

Proposition:

The map obtained by exploding the vertices is a tree.

Proposition:

- The map obtained by exploding the vertices is a tree.
- The gluing cells are incident to the first corner of each vertex. They define a non-crossing partition of the vertices of the tree.

Theorem : The orientation of tree-rooted maps and the explosion of vertices gives a bijection between tree-rooted maps of size n and trees of size $n \times \text{non-crossing}$ partitions of size n+1.

Theorem : The orientation of tree-rooted maps and the explosion of vertices gives a bijection between tree-rooted maps of size n and trees of size $n \times \text{non-crossing}$ partitions of size n+1.

Corollary : $\mathcal{M}_n = \mathcal{C}_n \mathcal{C}_{n+1}$.

Isomorphism with a bijection by Cori, Dulucq and Viennot

Tree code Φ

Definition:

 $\Phi(\epsilon) = u \bullet v.$

• Φ_a : Replace last occurrence of u by $u \bullet v$.

• Φ_b : Replace first occurrence of v by $u \bullet v$.

• $\Phi_{\overline{a}}$: Replace first occurrence of v by

• $\Phi_{\overline{b}}$: Replace last occurrence of u by

Example : $ba\overline{a}a\overline{b}\overline{a}$

Tree code Φ

Example : $ba\overline{a}a\overline{b}\overline{a}$

Definition:

 $\Psi(\epsilon)$:

• Ψ_a : Replace last active left leaf

• Ψ_b : Replace first active right leaf

• $\Psi_{\overline{a}}$: Inactivate first active right leaf.

• $\Psi_{\overline{b}}$: Inactivate last active left leaf.

Partition code Ψ

Example : $ba\overline{a}a\overline{b}\overline{a}$

Partition code Ψ

Example : $ba\overline{a}a\overline{b}\overline{a}$

 $ba\overline{a}a\overline{b}\overline{a}$

۰

Isomorphism

Thanks.

