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Bijective counting of tree-rooted maps

Maps and trees.

Tree-rooted maps and parenthesis systems.
(Mullin, Lehman & Walsh)

Bijection :

Tree-rooted maps ⇐⇒ Trees × Non-crossing partitions.

Isomorphism with a construction by Cori, Dulucq and
Viennot.
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Maps and trees
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Planar maps

A map is a connected planar graph properly embedded in
the oriented sphere.
The map is considered up to deformation.
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Planar maps

A map is a connected planar graph properly embedded in
the oriented sphere.
The map is considered up to deformation.

6==

A map is rooted by adding a half-edge in a corner.
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Trees

A tree is a map with only one face.
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Trees

A tree is a map with only one face.

The size of a map, a tree, is the number of edges.
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Tree-rooted maps

A submap is a spanning tree if it is a tree containing every
vertex.
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Tree-rooted maps

A submap is a spanning tree if it is a tree containing every
vertex.

A tree-rooted map is a rooted map with a distinguished
spanning tree.
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Tree-rooted maps and Parenthesis systems
(Mullin, Lehman & Walsh)
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Parenthesis systems

A parenthesis system is a word w on {a, a} such that
|w|a = |w′|a and for all prefix w′, |w′|a ≥ |w′|a.

Example : w = aaaaaaaa is a parenthesis system.
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Parenthesis shuffle

A parenthesis shuffle is a word w on {a, a, b, b} such that
the subwords made of {a, a} letters and {b, b} letters are
parenthesis systems.

Example : w = baababbabaabaa is a parenthesis shuffle.
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Parenthesis shuffle

A parenthesis shuffle is a word w on {a, a, b, b} such that
the subwords made of {a, a} letters and {b, b} letters are
parenthesis systems.

Example : w = baababbabaabaa is a parenthesis shuffle.

The size of a parenthesis system, shuffle is half its length.
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Trees and parenthesis systems

Rooted trees of size n are in bijection with parenthesis
systems of size n.
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Trees and parenthesis systems

aaa

We turn around the tree and write :
a the first time we follow an edge,
a the second time.
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Trees and parenthesis systems

aaaaaaaa

We turn around the tree and write :
a the first time we follow an edge,
a the second time.
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Tree-rooted maps and parenthesis shuffles

[Mullin 67, Lehman & Walsh 72] Tree-rooted maps of size
n are in bijection with parenthesis shuffles of size n.
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Tree-rooted maps and parenthesis shuffles

baaba

We turn around the tree and write :
a the first time we follow an internal edge,
a the second time,
b the first time we cross an external edge,
b the second time.
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Tree-rooted maps and parenthesis shuffles

baababbabaabaa

We turn around the tree and write :
a the first time we follow an internal edge,
a the second time,
b the first time we cross an external edge,
b the second time.
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Counting results

There are Ck =
1

k + 1

(

2k

k

)

parenthesis systems of size

k.
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Counting results

There are Ck =
1

k + 1

(

2k

k

)

parenthesis systems of size

k.

There are
(

2n

2k

)

ways of shuffling a parenthesis system

of size k (on {a, a}) and a parenthesis system of size
n − k (on {b, b}).
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Counting results

There are Ck =
1

k + 1

(

2k

k

)

parenthesis systems of size

k.

There are
(

2n

2k

)

ways of shuffling a parenthesis system

of size k (on {a, a}) and a parenthesis system of size
n − k (on {b, b}).

=⇒ There are Mn =
n

∑

k=0

(

2n

2k

)

CkCn−k parenthesis

shuffles of size n.

Waterloo, March 2006 Olivier Bernardi - LaBRI – p.11/31



Counting results

Mn =
n
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Counting results

Mn =
n

∑
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Theorem : The number of parenthesis shuffles of size n is

Mn = CnCn+1.
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Counting results

Mn =
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Theorem [Mullin 67] : The number of tree-rooted maps of
size n is

Mn = CnCn+1.
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A pair of trees ?

Theorem [Mullin 67] : The number of tree-rooted maps of
size n is

Mn = CnCn+1.

Is there a pair of trees hiding somewhere ?
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A pair of trees ?

Theorem [Mullin 67] : The number of tree-rooted maps of
size n is

Mn = CnCn+1.

Is there a pair of trees hiding somewhere ?

Theorem [Cori, Dulucq, Viennot 86] : There is a
(recursive) bijection between parenthesis shuffles of size n

and pairs of trees.
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A pair of trees ?

Theorem [Mullin 67] : The number of tree-rooted maps of
size n is

Mn = CnCn+1.

Is there a pair of trees hiding somewhere ?

Theorem [Cori, Dulucq, Viennot 86] : There is a
(recursive) bijection between parenthesis shuffles of size n

and pairs of trees.

Is there a good interpretation on maps ?
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Tree-rooted maps
⇐⇒

Trees × Non-crossing partitions
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Orientations of tree-rooted maps
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Orientations of tree-rooted maps

Internal edges are oriented from the root to the leaves.
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Orientations of tree-rooted maps

Internal edges are oriented from the root to the leaves.
External edges are oriented in such a way their heads
appear before their tails around the tree.
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Orientations of tree-rooted maps

Proposition :
The orientation is root-connected :
there is an oriented path from the root to any vertex.
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Orientations of tree-rooted maps

Proposition :
The orientation is root-connected :
there is an oriented path from the root to any vertex.

The orientation is minimal :
every directed cycle is oriented clockwise.
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Orientations of tree-rooted maps

Proposition :
The orientation is root-connected :
there is an oriented path from the root to any vertex.

The orientation is minimal :
every directed cycle is oriented clockwise.

We call tree-orientation a minimal root-connected
orientation.
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Orientations of tree-rooted maps

Theorem : The orientation of edges in tree-rooted maps
gives a bijection between tree-rooted maps and
tree-oriented maps.
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Orientations of tree-rooted maps

Theorem : The orientation of edges in tree-rooted maps
gives a bijection between tree-rooted maps and
tree-oriented maps.
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From the orientation to the tree

We turn around the tree we are constructing.
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From the orientation to the tree

We turn around the tree we are constructing.
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From the orientation to the tree

We turn around the tree we are constructing.
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Vertex explosion
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Vertex explosion

We explode the vertex and obtain a vertex per ingoing
edge + a (gluing) cell.
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Example
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Example
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Example

A tree !
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Bijection

Proposition :
The map obtained by exploding the vertices is a tree.
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Bijection

Proposition :
The map obtained by exploding the vertices is a tree.

The gluing cells are incident to the first corner of each
vertex. They define a non-crossing partition of the
vertices of the tree.
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Bijection

Theorem : The orientation of tree-rooted maps and the
explosion of vertices gives a bijection between tree-rooted
maps of size n and trees of size n × non-crossing
partitions of size n + 1.
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Bijection

Theorem : The orientation of tree-rooted maps and the
explosion of vertices gives a bijection between tree-rooted
maps of size n and trees of size n × non-crossing
partitions of size n + 1.

Corollary : Mn = CnCn+1.
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Example
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Example
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Example
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Example
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Example
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Isomorphism with a bijection
by Cori, Dulucq and Viennot

Waterloo, March 2006 Olivier Bernardi - LaBRI – p.24/31



Tree code Φ

Definition :
Φ(ǫ) = u • v.
Φa : Replace last occurrence of u by u • v.
Φb : Replace first occurrence of v by u • v.
Φa : Replace first occurrence of v by

av T2 T2

T1

T1

Φ
b
: Replace last occurrence of u by

bu T2 T2

T1

T1
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Tree code Φ

Example : baaaba

ab baaa vuvuvu vvuuu u v vu v vu u v u
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Tree code Φ

Example : baaaba

ab baaa vuvuvu vvuuu u v vu v vu u v u

Φ
baaaba
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Partition code Ψ

Definition :
Ψ(ǫ) :

Ψa : Replace last active left leaf
a

Ψb : Replace first active right leaf
b

Ψa : Inactivate first active right leaf.
Ψ

b
: Inactivate last active left leaf.
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Partition code Ψ

Example : baaaba

b a a a b a

Waterloo, March 2006 ▽Olivier Bernardi - LaBRI – p.28/31



Partition code Ψ

Example : baaaba

b a a a b a

Ψ
baaaba
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Isomorphism

Id

baaaba

Θ
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Isomorphism
tree code :
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Isomorphism
tree code :
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Isomorphism
tree code :

u v
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Isomorphism
tree code :

u vu
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Isomorphism
tree code :

u vu v
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Isomorphism
tree code :

vu vu v
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Isomorphism
tree code :

u v vv
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Isomorphism
tree code :

v vu
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Isomorphism
tree code :

vu vu
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Isomorphism
tree code :

u vu
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Isomorphism
tree code :

u v
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Thanks.
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