Bijective counting of tree-rooted maps

Olivier Bernardi

Séminaire Combinatoire, LaBRI, Bordeaux

Bijective counting of tree-rooted maps

e Maps and trees.
e Tree-rooted maps and parenthesis systems. (Mullin, Lehman \& Walsh)
e Bijection :
Tree-rooted maps \Longleftrightarrow Trees \times Non-crossing partitions.
e Isomorphism with a construction by Cori, Dulucq and Viennot.

Maps and trees

Planar maps

A map is a connected planar graph properly embedded in the oriented sphere.
The map is considered up to deformation.

Planar maps

A map is a connected planar graph properly embedded in the oriented sphere.
The map is considered up to deformation.

A map is rooted by adding a half-edge in a corner.

Trees

A tree is a map with only one face.

Trees

A tree is a map with only one face.

The size of a map, a tree, is the number of edges.

Tree-rooted maps

A submap is a spanning tree if it is a tree containing every vertex.

Tree-rooted maps

A submap is a spanning tree if it is a tree containing every vertex.

A tree-rooted map is a rooted map with a distinguished spanning tree.

Tree-rooted maps and Parenthesis systems (Mullin, Lehman \& Walsh)

Parenthesis systems

A parenthesis system is a word w on $\{a, \bar{a}\}$ such that $|w|_{a}=\left|w^{\prime}\right|_{\bar{a}}$ and for all prefix $w^{\prime},\left|w^{\prime}\right|_{a} \geq\left|w^{\prime}\right|_{\bar{a}}$.

Example : $w=a a \bar{a} a \bar{a} a \bar{a}$ is a parenthesis system.

Parenthesis shuffle

A parenthesis shuffle is a word w on $\{a, \bar{a}, b, \bar{b}\}$ such that the subwords made of $\{a, \bar{a}\}$ letters and $\{b, \bar{b}\}$ letters are parenthesis systems.

Example : $w=b a a \bar{b} \bar{a} b \bar{b} a b \bar{a} \bar{a} \bar{b} a \bar{a}$ is a parenthesis shuffle.

Parenthesis shuffle

A parenthesis shuffle is a word w on $\{a, \bar{a}, b, \bar{b}\}$ such that the subwords made of $\{a, \bar{a}\}$ letters and $\{b, \bar{b}\}$ letters are parenthesis systems.

Example : $w=b a a \bar{a} \bar{a} b \bar{b} a b \bar{a} \bar{a} \bar{b} a \bar{a}$ is a parenthesis shuffle.

The size of a parenthesis system, shuffle is half its length.

Trees and parenthesis systems

Rooted trees of size n are in bijection with parenthesis systems of size n.

Trees and parenthesis systems

$a a \bar{a}$
We turn around the tree and write :
a the first time we follow an edge, \bar{a} the second time.

Trees and parenthesis systems

$a a \bar{a} a \overline{a a} a \bar{a}$
We turn around the tree and write :
a the first time we follow an edge,
\bar{a} the second time.

Tree-rooted maps and parenthesis shuffles

[Mullin 67, Lehman \& Walsh 72] Tree-rooted maps of size n are in bijection with parenthesis shuffles of size n.

Tree-rooted maps and parenthesis shuffles

$b a a \bar{b} \bar{a}$
We turn around the tree and write :
a the first time we follow an internal edge,
\bar{a} the second time,
\underline{b} the first time we cross an external edge,
b the second time.

Tree-rooted maps and parenthesis shuffles

$b a a \bar{b} \bar{a} b \bar{b} a b \bar{a} \bar{b} a \bar{a}$
We turn around the tree and write :
a the first time we follow an internal edge,
\bar{a} the second time,
b the first time we cross an external edge,
b the second time.

Counting results

e There are $\mathcal{C}_{k}=\frac{1}{k+1}\binom{2 k}{k}$ parenthesis systems of size k.

Counting results

e There are $\mathcal{C}_{k}=\frac{1}{k+1}\binom{2 k}{k}$ parenthesis systems of size k.
e There are $\binom{2 n}{2 k}$ ways of shuffling a parenthesis system of size k (on $\{a, \bar{a}\}$) and a parenthesis system of size $n-k$ (on $\{b, \bar{b}\}$).

Counting results

e There are $\mathcal{C}_{k}=\frac{1}{k+1}\binom{2 k}{k}$ parenthesis systems of size k.
e There are $\binom{2 n}{2 k}$ ways of shuffling a parenthesis system of size k (on $\{a, \bar{a}\}$) and a parenthesis system of size $n-k$ (on $\{b, \bar{b}\}$).
\Longrightarrow There are $\mathcal{M}_{n}=\sum_{k=0}^{n}\binom{2 n}{2 k} \mathcal{C}_{k} \mathcal{C}_{n-k}$ parenthesis shuffles of size n.

Counting results

$$
\begin{aligned}
\mathcal{M}_{n} & =\sum_{k=0}^{n}\binom{2 n}{2 k} \mathcal{C}_{k} \mathcal{C}_{n-k} \\
& =\frac{(2 n)!}{(n+1)!^{2}} \sum_{k=0}^{n}\binom{n+1}{k}\binom{n+1}{n-k} \\
& =\frac{(2 n)!}{(n+1)!^{2}}\binom{2 n+2}{n}
\end{aligned}
$$

Counting results

$$
\begin{aligned}
\mathcal{M}_{n} & =\sum_{k=0}^{n}\binom{2 n}{2 k} \mathcal{C}_{k} \mathcal{C}_{n-k} \\
& =\frac{(2 n)!}{(n+1)!^{2}} \sum_{k=0}^{n}\binom{n+1}{k}\binom{n+1}{n-k} \\
& =\frac{(2 n)!}{(n+1)!^{2}}\binom{2 n+2}{n}
\end{aligned}
$$

Theorem : The number of parenthesis shuffles of size n is

$$
\mathcal{M}_{n}=\mathcal{C}_{n} \mathcal{C}_{n+1} .
$$

Counting results

$$
\begin{aligned}
\mathcal{M}_{n} & =\sum_{k=0}^{n}\binom{2 n}{2 k} \mathcal{C}_{k} \mathcal{C}_{n-k} \\
& =\frac{(2 n)!}{(n+1)!^{2}} \sum_{k=0}^{n}\binom{n+1}{k}\binom{n+1}{n-k} \\
& =\frac{(2 n)!}{(n+1)!^{2}}\binom{2 n+2}{n}
\end{aligned}
$$

Theorem [Mullin 67] : The number of tree-rooted maps of size n is

$$
\mathcal{M}_{n}=\mathcal{C}_{n} \mathcal{C}_{n+1}
$$

A pair of trees?

Theorem [Mullin 67] : The number of tree-rooted maps of size n is

$$
\mathcal{M}_{n}=\mathcal{C}_{n} \mathcal{C}_{n+1}
$$

Is there a pair of trees hiding somewhere?

A pair of trees?

Theorem [Mullin 67] : The number of tree-rooted maps of size n is

$$
\mathcal{M}_{n}=\mathcal{C}_{n} \mathcal{C}_{n+1}
$$

Is there a pair of trees hiding somewhere?

Theorem [Cori, Dulucq, Viennot 86] : There is a (recursive) bijection between parenthesis shuffles of size n and pairs of trees.

A pair of trees?

Theorem [Mullin 67] : The number of tree-rooted maps of size n is

$$
\mathcal{M}_{n}=\mathcal{C}_{n} \mathcal{C}_{n+1}
$$

Is there a pair of trees hiding somewhere?

Theorem [Cori, Dulucq, Viennot 86] : There is a (recursive) bijection between parenthesis shuffles of size n and pairs of trees.

Is there a good interpretation on maps?

Tree-rooted maps

Trees \times Non-crossing partitions

Orientations of tree-rooted maps

Orientations of tree-rooted maps

e Internal edges are oriented from the root to the leaves.

Orientations of tree-rooted maps

e Internal edges are oriented from the root to the leaves.
e External edges are oriented in such a way their heads appear before their tails around the tree.

Orientations of tree-rooted maps

Proposition :

e The orientation is root-connected: there is an oriented path from the root to any vertex.

Orientations of tree-rooted maps

Proposition :

e The orientation is root-connected: there is an oriented path from the root to any vertex.
e The orientation is minimal :
every directed cycle is oriented clockwise.

Orientations of tree-rooted maps

Proposition :

e The orientation is root-connected: there is an oriented path from the root to any vertex.
e The orientation is minimal :
every directed cycle is oriented clockwise.

We call tree-orientation a minimal root-connected orientation.

Orientations of tree-rooted maps

Theorem : The orientation of edges in tree-rooted maps gives a bijection between tree-rooted maps and tree-oriented maps.

Orientations of tree-rooted maps

Theorem : The orientation of edges in tree-rooted maps gives a bijection between tree-rooted maps and tree-oriented maps.

From the orientation to the tree

We turn around the tree we are constructing.

From the orientation to the tree

We turn around the tree we are constructing.

From the orientation to the tree

We turn around the tree we are constructing.

From the orientation to the tree

We turn around the tree we are constructing.

From the orientation to the tree

We turn around the tree we are constructing.

From the orientation to the tree

We turn around the tree we are constructing.

From the orientation to the tree

We turn around the tree we are constructing.

Vertex explosion

Vertex explosion

We explode the vertex and obtain a vertex per ingoing edge + a (gluing) cell.

Example

Example

Example

A tree!

Bijection

Proposition :

e The map obtained by exploding the vertices is a tree.

Bijection

Proposition :

e The map obtained by exploding the vertices is a tree.
e The gluing cells are incident to the first corner of each vertex. They define a non-crossing partition of the vertices of the tree.

Bijection

Theorem : The orientation of tree-rooted maps and the explosion of vertices gives a bijection between tree-rooted maps of size n and trees of size $n \times$ non-crossing partitions of size $n+1$.

Bijection

Theorem : The orientation of tree-rooted maps and the explosion of vertices gives a bijection between tree-rooted maps of size n and trees of size $n \times$ non-crossing partitions of size $n+1$.

Corollary : $\mathcal{M}_{n}=\mathcal{C}_{n} \mathcal{C}_{n+1}$.

Example

Example

Example

Example

Example

Isomorphism with a bijection by Cori, Dulucq and Viennot

Tree code Φ

Definition :

e $\Phi(\epsilon)=u \bullet v$.
e Φ_{a} : Replace last occurrence of u by $u \bullet v$.
e Φ_{b} : Replace first occurrence of v by $u \bullet v$.
e $\Phi_{\bar{a}}$: Replace first occurrence of v by

e $\Phi_{\bar{b}}$: Replace last occurrence of u by

Tree code Φ
Example : $b a \bar{a} a \bar{b} \bar{a}$

Tree code Φ
Example: $b a \bar{a} a \bar{b} \bar{a}$

Partition code Ψ

Definition:

e $\Psi(\epsilon)$:

e Ψ_{a} : Replace last active left leaf

e Ψ_{b} : Replace first active right leaf

e $\Psi_{\bar{a}}$: Inactivate first active right leaf.
e $\Psi_{\bar{b}}$: Inactivate last active left leaf.

Partition code Ψ

Example : $b a \bar{a} a \bar{b} \bar{a}$

Partition code Ψ

Example : $b a \bar{a} a \bar{b} \bar{a}$

$b a \bar{a} a \bar{b} \bar{a}$

Isomorphism

Isomorphism tree code :

Isomorphism tree code :

Isomorphism tree code :

Isomorphism tree code :

$$
\text { u } \delta \mathrm{u} \boldsymbol{\square}
$$

Isomorphism tree code :

Isomorphism tree code :

Isomorphism tree code :

Isomorphism tree code:

Isomorphism tree code:

Isomorphism tree code:

u u

Isomorphism tree code :

Thanks.

