
Right-cancellability of a family of operations
on binary trees

Philippe Duchon
LaBRI, U.R.A. CNRS 1304, Université Bordeaux 1, 33405 Talence, France†

We prove some new results on a family of operations on binary trees, some of which are similar to addition, multipli-
cation and exponentiation for natural numbers. The main result is that each operation in the family is right-cancellable.

1 Introduction
The product a.b where a and b are positive integers can be expressed as the sum of b terms, each being
equal to a. Similarly, ab can be expressed as the product of b factors, each being equal to a. This basically
works well because the sum and product operations for integers are associative; to push this process one
level further (i.e., define a new operation by iterating exponentiation), one needs to decides on how to
order the operations in the expression

a ↑ a ↑ . . . ↑ a

(where ↑ is the exponentiation operation).
One solution is to always perform the operations in a fixed order, usually right-to-left (see [1] or [6]).

Another, richer solution is to use the structure of a binary tree to set the order, and use binary trees instead
of integers.

In [2] and [3], Blondel defines a family of operations on binary trees. Each new operation is defined in
terms of the preceding one. The first three operations are generalizations of addition, multiplication and
exponentiation for positive integers, while the others have no natural counterpart among positive integers.

The first operation, 1., is defined in the following way : if a and b are binary trees, a
1. b is the binary tree

whose left subtree is a, and whose right subtree is b. Writing trees as parentheses systems, this translates
to a

1. b = (ab).
Operation k. is defined recursively using k−1. :

- a
k. • = a

- if b = (bLbR), then a
k. b = (a k. bL) k−1. (a k. bR)

Another way of defining k. is that the shape of tree b indicates an order in which to compute the k−1. -
product of n copies of a, n being the number of leaves of b. For example,

a
k.((••)(•(••))) = ((a k−1. a) k−1. (a k−1. (a k−1. a)))

†E-mail: duchon@labri.u-bordeaux.fr

1365–8050 c© Chapman & Hall

2 Philippe Duchon

Using the number of leaves as the weight, operations 1., 2. and 3. act as the natural operations of addition,
multiplication, and exponentiation respectively : |a 1. b| = |a|+ |b|, |a 2. b| = |a|.|b|, and |a 3. b| = |a||b|.

Our main result is the proof of a conjecture given by Blondel, which states that all the operations k. are
right-cancellable, that is, for any integer k and trees a, b and c, a

k. b = c
k. b implies a = c. This result is

easy to prove for k = 1, 2, 3; we show that it holds for all k > 3.
Section 2 introduces a few notations, and recalls some definitions and results on the family of opera-

tions. In section 3, the conjecture is reduced to a particular case. The partial ordering defined in section 4
has no direct use in the proof, but appears to be the best to obtain growth results. Section 5 redefines the
operations using the notion of synthetic attributes, and section 6 finally gives the proof of the conjecture.

2 Notations
The weight (number of leaves) of a tree b will be written |b|. When dealing with a word w, |w| will denote
its length.

b = ((••)(•(••)))

bd = (•(•(•(••))))

For any tree a, a 3. b = a 3. bd

Fig. 1: Two trees with weight 5

In [2], Blondel proves several algebraic properties of the k. operations, a few of which are recalled
below.

- Only operation 2. is associative.

- No k. is commutative.

- a
3. b depends only on the weight of b, not on its shape, which justifies the use of notation a

3. |b|.

Right-cancellability of a family of operations on binary trees 3

- All operations k. with k ≥ 3 can be defined in terms of 3. the following way : a
k. b = a

3.(a �k b),
where the natural number a �k b is defined inductively by :

– a �3 b = |b|

– a �k • = 1

– a �k(bLbR) = (a �k bL) �k−1(a
k. bR) if k > 3.

- Each tree has a unique factorization into an ordered 2.-product of prime binary trees, i.e., trees that
cannot be further factorized. Any tree with a prime number of leaves is clearly prime, but the reverse
is not true.

Since operation 2. acts somewhat like multiplication, we will write a.b for a
2. b. Similarly, since a

3. b
does not depend on the shape of tree b but only on its weight, and is only the result of a.a . . . a (with |b|
factors), we will write a|b| for a

3. b.
Using these notations, we have the familiar property an+m = an.am (this translates into a

3.(b 1. c) =
(a 3. b) 2.(a 3. c), which follows from the definitions of 3. and 1.).

3 Preliminary lemma
To prove the conjecture, we will first reduce it to a simpler form using the following lemmas.

Lemma 1 Let a, b, c and d be four binary trees, with a 6= • and c 6= •, and let k and k′ be integers no
smaller than 3.

If a
k. b = c

k′
. d, then there is a binary tree u and two integers m and n such that a = un and c = um.

Proof : We can rewrite a
k. b = aa �k b and c

k′
. d = cc �k′ d, so we only need to prove the lemma for

k = k′ = 3.
Consider the factorization of a and c into products of prime trees, and write them as words A and C on

the (infinite) alphabet of prime trees. The factorizations of ar and cs are, respectively, A repeated r times,
and C repeated s times (written Ar and Cs, but bear in mind that |Ar| = r|A|). |A|, here, is the number
of (not necessarily distinct) prime trees involved in the factorization of a.

Since ar = bs, the same applies to the words: Ar = Cs. Let g be the gcd of |A| and |C|, and U the
left factor of length g of both A and C. Since A, repeated r times, is the same as C, repeated s times, it
follows that A = U |A|/g , and C = U |C|/g .

Converting U back into a binary tree, we get exactly a = un and b = um with n = |A|/g and
m = |C|/g. 2

Using this lemma, we can reduce the conjecture to the case where trees a and c are powers of a common
tree u, which means we only need to prove that, when n and m are different integers, (un) k. b and (um) k. b

are different. In fact, when n < m, (um) k. b is a vastly larger tree (in most sensible senses of “larger”,
including the one defined in the next section) than (un) k. b, but we will only prove that (un) k. b is a strict
subtree of (um) k. b.

4 Philippe Duchon

4 Partial ordering of binary trees
Operation 2. can be described geometrically in the following way : a

2. b is obtained by changing every leaf
of b into a copy of a. Thus, since un+1 = u.un, we can see that successive powers of a single tree u are
prefixes of each other, in the sense that a copy of un with the same root is included in un+1. This property
is not limited to powers of a single tree (the same relationship exists between b and a.b), but we will only
consider such a situation when defining a partial ordering on the set of binary trees.

Definition 2 Two binary trees a and b are called comparable if there exist a tree u and two integers n
and m, such that a = un and b = um. We will then write a ≤ b if n ≤ m.

The above definition is correct : if more than one tree u can be chosen, n and m will always be in the
same order whatever the chosen tree. The defined relation is a partial ordering on the set of binary trees :
since |un| = |u|n, the relation is the weight semi-ordering, restricted to pairs of trees that are powers of a
common tree.

u

u

u

u

unLeaves of un

Fig. 2: The identity un+1 = u.un

Using this partial ordering, minimal elements are those trees that are not a power of some other tree.
Each minimal element is comparable only to its powers, and the order is exactly that of the exponents.
Finally, each tree is comparable to exactly one minimal element.

This partial ordering is not explicitly used in the proof of the conjecture. It is only given here because it
is the underlying ordering that is somewhat compatible with the k. operations and related functions (in the
sense that a ≤ b implies (a k. c) ≤ (b k. c and (c k. a) ≤ (c k. b), when k ≥ 3). Obtaining similar properties
for more “natural” orderings (like those obtained by considering prefix trees, or prime factorizations as
subwords or factors of each other) has proved to be difficult.

Right-cancellability of a family of operations on binary trees 5

Definition 3 Let k ≥ 3 be an integer, and u a binary tree. We define fu,k as the function of two integer
variables n and m defined by :

fu,k(n, m) = (un) �k(um)

or, equivalently,
(un) k.(um) = (un)fu,k(n,m) = un.fu,k(n,m)

When k = 3, fu,3 is simple : fu,3(n, m) = |um| = |u|m. This function is thus strictly increasing
according to m (as long as u 6= •), and increasing (in fact, constant) according to n. The proof of the
conjecture is based on proving that, for each k > 3, fu,k is strictly increasing according to both its
variables. This translates to the following : operations �k and k. are compatible with the ordering defined
above as long as their operands are comparable.

Surprisingly enough, having a be a prefix of b is not sufficient, as can be seen by taking a = ((•(••))•)
and b = ((•(•(••)))•) : a is a prefix of b, but a

3.(••) is not a prefix of b
3.(••)‡.

5 Redefining operations k.

We now show that operations k. and the related fu,k functions can be defined in terms of a very particular
case of synthetic attributes. Attributes are normally associated to a context-free grammar (see [5] for
a detailed definition), which is a formal rewriting system used to recursively define the structure of the
combinatorial objects studied. In the case of binary trees, the simplest thing to do is to say that a binary
tree is either the single node •, either composed of left and right subtrees which themselves are binary
trees. This translates into the formal grammar T = •+ (T.T), which is the underlying grammar in all the
attributes defined below.

A synthetic attribute can be defined on a binary tree by choosing a two-variable function f (the “com-
puting rule”) and a value to be given to each leaf in the tree (f should be defined on E × E with values
in E, where E is some domain including all values given to leaves). This allows us to compute a value
(attribute) for each node in the tree, using the following recurrence rule : if the left and right sons, respec-
tively, of an internal node, have values α and β, then the node has value f(α, β). The attribute for the tree
is the value of its root node.

Using this context, the definition for a
k. b can be translated into a synthetic attribute computed on binary

tree b :

• each leaf in b has value a;

• the computing rule is k−1. : if the left and right sons of an internal node have respective values u

and v, this node has value u
k−1. v.

This description of k. corresponds to the fact that, when computing a
k. b, the shape of tree b indicates

exactly how to associate terms in the calculus of a
k−1. a · · · a k−1. a (where a appears |b| times), since this

expression is ambiguous whenever k 6= 3. For example, if b is the tree in figure 3 (b = ((••)•)), a
k. b is

(a k−1. a) k−1. a.
When computing fu,k(n, m), we get : fu,k(n, m) is the synthetic attribute value for tree um when

leaves have value |u|n and the computing rule is fu,k−1.

‡ There is a “left, right, right, left, right, right” path from the root in a
3.(••), but not in b

3.(••)

6 Philippe Duchon

α β

γf(α, β)

f(f(α, β), γ)

Fig. 3: An example of synthetic attribute

Proposition 4 (Computing fu,k(n, m + 1) on um) fu,k(n, m + 1) can be computed as an attribute on
um (instead of um+1), still using computing rule fu,k−1, by giving leaves a value of fu,k(n, 1) instead of
|u|n.

Proof : Recall that um+1 is obtained by replacing all leaves of um by copies of u, so while computing
fu,k(n, m + 1) as an attribute on um+1, all internal nodes that are leaves in the prefix tree um (the roots
of copies of u) have value fu,k(n, 1). Thus, the value of the root node is not changed when these nodes
are considered as leaves with value fu,k(n, 1). 2

Given a binary tree of weight n and a computing rule f , we can now define a function of n variables as
follows : F (x1, . . . , xn) is the attribute computed with rule f on tree a if the leaves (in prefix or symmetric
order) have respective values x1, . . . , xn. We will use two very simple results :

• Initial values growth property : Assume the computing rule f is weakly increasing with respect
to both its variables; then the resulting function F is also weakly increasing with respect to all of its
variables. If f is additionally strictly increasing with respect to its first variable, then F is strictly
increasing with respect to its first variable. If f is strictly increasing with respect to all its variables,
then so is F .

• Tree branches growth property : If f is weakly increasing with respect to one of its variables and
strictly increasing with respect to the other, and if for some integer m we have f(m,m) > m, then
F (x1, . . . , xn) > min(x1, . . . , xn) provided the minimum is at least m (which is always true if the
domain for f is restricted to pairs of positive integers).

These results are easily proved by induction on the height of tree a.
We are now ready to state and prove the main property :

Proposition 5 Set k > 3 an integer, and u a binary tree, u 6= •. Then the fu,k function is strictly
increasing with respect to each of its variables.

Proof : The proof is by induction on k.

• Assume k = 4, and recall that fu,4(n, m) is obtained by computing a synthetic attribute on tree um

with computing rule fu,3 and leaf values all set to |u|n. Now fu,3(n, m) = |u|m, so this function
is strictly increasing with respect to variable m (and constant with respect to variable n). By the
initial values growth property, we can deduce that fu,4 is strictly increasing with respect to variable
n (if n increases, all leaf values increase).

Right-cancellability of a family of operations on binary trees 7

Now recall that fu,4(n, m + 1) can also be obtained by computing the synthetic attribute on tree
um, with leaf values fu,4(n, 1). Using the tree branches growth property on the computation for
fu,4(n, 1) (which uses tree u and leaf values |u|n), we have fu,4(n, 1) > |u|n, which in turns
implies (by the initial values growth property) that fu,4(n, m + 1) > fu,4(n, m). This proves that
fu,4 is strictly increasing with respect to both its variables.

• Now set k > 4 such that the stated property holds for k − 1. Replacing fu,4 and fu,3 by fu,k and
fu,k−1, respectively, in the above proof, we prove that fu,k is itself strictly increasing with respect
to both its variables, thus ending the proof.

2

6 Proof of the conjecture
We will now prove the following :

Theorem 6 (Right-cancellation) Set k > 3 an integer, and a, b, c three binary trees. If a
k. b = c

k. b, then
a = c.

Proof :
We have already shown that we only need prove this theorem when a and c are powers of some common

tree u, that is, if (un) k. b = (um) k. b, then n = m (this is only true if u 6= •, but the case when u = •
reduces to a = c = • anyway).

We will in fact prove that n 7→ (un) �k b is strictly increasing. Recall that (un) �k b can be computed as
a synthetic attribute on tree b, using fu,k−1 as the computing rule and |u|n as leaf value. Now, we know
from proposition 5 that fu,k−1 is strictly increasing with respect to both its variables, which is enough to
prove (thanks to the initial values growth property) that (un) �k b increases strictly with n.

Now since |(un) k. b| = |u|n.((un) �k b), this in turns implies that |(un) k. b| increases strictly with n, thus
(un) k. b and (um) k. b can only be equal if n = m. 2

References
[1] G. R. Blakley, I. Borosh, Knuth’s iterated powers, Adv. in Math. 34 (1979) 109–136.

[2] V. Blondel, Properties of a hierarchy of operations on binary trees, to appear in Acta Informatica.

[3] V. Blondel, Une famille d’opérations sur les arbres binaires, C. R. Acad. Sci. Paris, Série 1 321 (1995)
491–494.

[4] J. W. Grossman, R. Z. Zeitman, An inherently iterative computation of Ackermann’s function, Theo-
ret. Comp. Science 57 (1988) 327–330.

[5] D. E. Knuth, Semantics of context-free languages, Math. Systems Theory 2 (1968) 127–145.

[6] D. E. Knuth, Mathematics and computer science: coping with finiteness, Science 194 (1976) 1235–
1242.

