
Towards small world emergence

Philippe Duchon1, Nicolas Hanusse1, Emmanuelle Lebhar2 and
Nicolas Schabanel2

27 février 2006

Résumé

We investigate the problem of efficiently preprocessing a network, in
a fully decentralized manner, so that the resulting network is a navigable
small world, i.e. in which the greedy routing algorithm computes paths
of polylogarithmic expected length between any pair of nodes. Previous
small world augmentation processes require global knowledge of a network
and centralized computation, which is unrealistic for large decentralized
networks. Our algorithm, based on a careful sampling of a set of leader
nodes, bypasses these limitations.

1 Introduction

In this paper, we investigate the problem of efficiently preprocessing a large
network, in a fully distributed manner, so that the resulting network is a navi-
gable small world. Namely, by adding a single entry to each address book, we
obtain a network in which greedy routing computes paths of polylogarithmic ex-
pected length between any pair of nodes. This problem arises as an application
of recent investigations on the small world phenomenon in real interaction net-
works (e.g. social networks, or peer-to-peer networks). This phenomenon consists
in the combination of a low diameter and the ability, for each node, to discover
short paths without the global knowledge of all connections, as exhibited in the
Milgram’s seminal experiment [?].

The first graph model reproducing the small world navigability was proposed
by Kleinberg in 2000 [?] and consists in a 2-dimensional regular grid augmented
by a constant number of random links per node, distributed according to the
2-harmonic distribution. Kleinberg shows that greedy routing, which chooses at
each step the closest node to the target among its neighbors according to the glo-
bally known grid distance, computes paths of polylogarithmic expected length
between any two nodes. Further investigations point out the general characte-
ristics of these models, by extending it to d-dimensional tori [?], suggesting a
more general model. Recently, several augmentation processes have been propo-
sed for larger graph classes [?, ?, ?], respectively bounded treewidth, bounded
doubling dimension, and bounded growth graphs ; results are summarized in
Table 1. These classes are often considered as reasonable approximations of real

1

Ref. Underlying structure Out-degree Expected path length Scheme

[?] Treewidth k 1 O(k log k log2 n)
[?] Group structure1 O(log2 n) O(log2 n) Centralized

[?] α doubling dimension2 O(2O(α) log n log ∆) O(log n) description

[?] b-moderate growth3 1 O((log n)5/2+2b)

this paper O(1) expansion rate 1 O(log2 n) Decentralized

Tab. 1 – Small world augmentation processes.

networks and represent navigable small-worlds. The key to these results is to
create random shortcuts at all distance scales. However, these later processes
are essentially centralized (in particular, they require the global knowledge of
the network) and therefore could hardly be implemented in the context of large
spontaneous networks. Moreover, this does not provide a convincing explana-
tion for the omnipresence of the small world phenomenon observed in interaction
networks.

Our contribution. In this paper, we present the first distributed algorithm to
augment arbitrary bounded growth graphs into small worlds. Our process uses
a sampling step to construct a relevant approximation of the network structure.
We consider the following framework. We are given a graph G representing a
virtual network with a distance labeling scheme (i.e., where each node has a
unique ID such that one can compute the hop-distance in G between any two
nodes from their IDs). The aim is to add one single random arc per node in
the graph (i.e. one single entry to each routing table in the virtual network),
such that a greedy routing using the preexisting distance labeling computes a
route of polylogarithmic expected length between any pair of nodes. Efficient
distance labeling exist for large classes of graphs, including the ones we consider
(see [?, ?, ?, ?, ?]) ; but these are often expensive to compute. Our scheme allows
to improve the overall routing performance of the network without recomputing
its distance labeling.

More precisely, our scheme first constructs a random tree-shaped overlay
network whose subtrees correctly approximate the graph metric. Then, this tree
is used to compute and route the requests for random shortcuts at all distance
scales. Our algorithm is fully distributed and asynchronous, and, with high
probability, requires O(log n log D) memory per node, O(n log n log D) messages
of size O(log n), and O(n) time. This paper improves in particular the results
presented in [?] : it avoids complete flooding by computing in polylogarithmic
time a good estimation of the graph metric.

1A group structure is a framework which includes metrics of polynomial ball growth and
hierarchies.

2The doubling dimension of a metric is α if each ball of radius 2r can be covered by 2α

balls of radius r. δ is the aspect ratio of the metric,i.e. the ratio of the largest distance over
the smallest one.

3A graph has b-moderate growth if the ratio of a ball of radius 2r is at most O(logb r)

2

Theorem 1 Any c-bounded 1 n-nodes graph of diameter D can be turned into
a navigable small-world graph with O(n log n log D) messages on expectation,
O(log n log D) space of memory per node w.h.p. and O(n) rounds.

Related works. Successful known small world augmentation processes on
bounded growth graphs [?, ?] rely on pairing each node to a random node
at distance r with probability 1/bu(r), where bu(r) is the number of nodes at
distance ≤ r in G from u.

Principle of our algorithm. In order to avoid expensive exploration of the
graph, we build a tree-shaped overlay network which parsimoniously encodes
good approximation of the sizes of the balls centered on each node with expo-
nentially increasing radii (which is enough for our purpose). Indeed, thanks to
the bounded growth, in order to draw its random shortcut, each node uses the
ball of radius 2i of its ancestor at level i in the tree, as a good approximation its
own ball of radius 2i. Each node of level i approximates its ball by the union of
the subtrees of its sons of level i−1 at distance ≤ 3.2i. Each node starts at level
0 and increases its level with some probability or stops if level log D is reached.
The subtrees are disjoint and the probability to join the upper level is suitably
adjusted so that the tree covers completely the graph with high probability and
thus the approximated balls are correct up to a constant factor (which is enough
for our purpose).

2 Preliminaries

2.1 Notation et model

For every node u, we assign a long-range contact Lu, designed by the small-
worldization process. Bu(r) is the set of nodes at distance at most r from u
within graph G. bu(r) is the cardinality of Bu(r).

2.2 Probabilistic properties of bounded growth graph

Technical probabilistic Lemmas 2 and 3 guarantee that the random construc-
tion executed in Algorithm 3.1 succeeds with high probability, namely, they
guarantee that every ball of radius 2i contains at least one node of level i (the
cover property).

Lemma 2 Let G = (V,E) be a c-bounded growth graph with total number of
vertices N . Assume some random set of vertices S is selected by including each
vertex independently, and such that u is included with probability pu at least
min(1, C ln(N)/bu(r)) and at most C ′ ln(N)/bu(r), where C and C ′ are arbitrary
constants such that C ≥ 8c.

times the size of the ball of radius r and of same center, and the size of a sphere of radius r
is at most 1/r times the size of the ball of same center and same radius.

1A graph is c-bounded if for any node u, |Bu(2r)|/|Bu(r)| ≤ c.

3

Then, for any positive integer k, with probability 1 − O(1/N2), each ball
with radius (2k − 1)r in G contains at least one element of S, and at most
2ckC ′ ln(N).

Proof. We only prove the lower bound for k = 1 ; if “small” balls contain
elements of S, then larger balls do to. We can assume that bu(r) > C ln(N) for
all u, as any u with pu = 1 will only result in balls that are certain to intersect
S.

Let u be some arbitrary vertex, and set B = Bu(r). For any v ∈ B, Bv(r) ⊂
Bu(2r), so that bv(r) ≤ cbu(r). Also, B ⊂ Bv(2r), so that bv(2r) ≥ bu(r) and
bv(r) ≥ bu(r)/c. Thus, for the event Ev = {v ∈ S}, we have

C ln(N)
cbu(r)

≤ Pr(Ev) ≤ cC ′ ln(N)
bu(r)

(1)

Thus, the probability that S contains no vertices in bu(r), is at most(
1− C ln(N)

cbu(r)

)bu(r)

≤ e−(C/c) ln(N) = N−C/c.

In other words, choosing C ≥ 3c ensures that this probability is smaller than
N−3 ; summing this bound over all N possible centers, the probability that at
least one such ball contains no vertices in S is no larger than N−2.

We now prove the upper bound, first for k = 1, then for general k. For any
v ∈ Bu(r),

C

c

ln(N)
bu(r)

≤ pv ≤ cC ′ ln(N)
bu(r)

.

Thus, the number of vertices in S∩Bu(r) is the sum of independent Bernoulli
trials with total expectation at least C ln(N)/c and at most cC ′ ln(N). Through
the usual Chernoff bound (see, e.g., Theorem 4.1 in [?] for the version we are
using here), the probability that it is higher than 2cC ′ ln(N) (that is, at least
twice its expectation) is at most(e

4

)(C/c) ln(N)

= N−(2 ln(2)−1)C/c.

Selecting C ≥ 8c ensures that this probability is smaller than N−3, and the
union bound again ensures that the probability that even one such ball contains
more than 2cC ′ ln(N) is at most N−2.

For larger k, the lower bound on the expected size of S ∩Bu(r) is of course
a lower bound on the expected size of S ∩Bu((2k − 1)r). For the upper bound,
we use the fact that, if v ∈ Bu((2k − 1)r), then Bv(r) ⊂ Bu(2kr), so that we
have

1
ck

bu(r) ≤ bv(r) ≤ ckbu(r).

Plugging the lower bound part of this inequality into the expression for the
pv, and summing over all v ∈ Bu((2k − 1)r), we get that the expected size of

4

S ∩Bu((2k − 1)r) is at most ckC ′ ln(N), and the rest of the proof is similar to
the case k = 1. �

In our proofs, we will make use of a slightly different version of Lemma 2,
where the events (Ev)v∈V are not independent.

Lemma 3 Assume graph G and constants C and C ′ are as in Lemma 2, and
that we have a collection (Xu)u∈V of independent, uniform [0, 1] random va-
riables, and a set of integers (b̃u)u∈V , such that, for each u,

bu(r)
C ′ ≤ b̃u ≤

bu(r)
C

.

Then, for the set S ⊂ V defined by

S = {v ∈ V : Xv ≤ ln(N)/b̃v},

the conclusions of Lemma 2 hold.

Proof. Consider the two sets S0 and S1, which both satisfy the conditions of
Lemma 2 :

S0 =
{

v ∈ V : Xv ≤
C ln(N)
bu(r)

}
S1 =

{
v ∈ V : Xv ≤

C ′ ln(N)
bu(r)

}
The conditions on b̃u imply that S0 ⊂ S ⊂ S1 holds with probability 1. The

lower bound of Lemma 2 (on S0) implies the lower bound for S, and the upper
bound (on S1) implies the upper bound for S. �

Lemma 4 If an α-approximation of balls size can be computed, the cover pro-
perty holds with high probability.

Proof. Taking C = ... and C ′ = �

3 The overlay network

3.1 Overlay network construction

Overlay network tree-like structure : The overlay network is composed
of a tree of height log D and a sequence of graphs G0, . . . , Gi, . . . , Glog D connec-
ting nodes of same level. For all i, two nodes of level i are connected in Gi if
their distance in G is ≤ 2i. For each node, `u denotes the highest level reached
by u. u has one self-copy in the overlay network for each level in 0, . . . , `u, each
of these copies are connected to further and further neighbors in the graphs Gi.

Overlay network at a node u : For each level i ≤ `u, u stores :

5

– a parent : one node v of level i + 1, noted P i
u, such that dG(u, v) ≤ 2i+1

(P i
u = u if i < `u) ;

– its neighbors : the list of nodes N i
u = {w : `w ≥ i and dG(u, wj) ≤ 5.2i}

and the size of the subtrees T i
w rooted at each w ∈ N i

u. Note that u belongs
to N i

u whenever i ≤ lu. For convenience, we distinguish the close neighbors
Ñ i

u = {w ∈ N i
u : dG(u, w) ≤ 3.2i}.

– its children : the list of nodes Ci
u = {v : P i−1

v = u}.
For each i ≤ `u, we define the tree T i

u rooted on the copy at level i of u
whose subtrees are the T i−1

v , for v ∈ Ci
u.

The function Inform(u, i) consists in flooding a message from node u to
all the nodes at distance at most 3 from u in Gi using a BFS. u waits for an
acknowledgment at the end of this flooding, required for u to decide whether it
stays at level i.

Algorithm 1 Contruction of the overlay network
Input : a c-bounded growth graph, c and lnn given
Set C ′ = 8c4

Choose Xu ∈ [0, 1] uniformly at random ;
T 0

u = {u}, i = 0, N0
u ← the set of nodes at distance 5 from u (BFS explora-

tion).
b̃u(1) = bu(1)/C ′

while Xu < ln n
b̃u(2i)

and Bu(2i) 6= N i
u do

i← i + 1.
Inform(u, i) that u is now at level i
Wait until all the nodes at distance at most 3 hops in Gi−1 send their
decision of staying (or not) at a same level in order to build N i

u.
b̃u(2i+1) = 1

C′

∑
v∈Ñi

u
|T i

v| ;
`u ← i.

Upon reception of message Inform(v, i+1) from a neighbor v ∈ N i
u :

if u stays at level `u = i and d(v, u) ≤ 2i+1 then
Choose v as a parent and send “Pu = v” to v.

Upon reception of message Pv = u from a neighbor v ∈ N i−1
u : add

v to the list of children Ci
u.

3.2 Overlay network properties

During the hierarchical sampling process, we will use Lemma 3 repeatedly
to prove that, with high probability, every node u of level i or higher will be
able to compute its neighbors N

(i)
u and ball size estimates b̃u(2i).

3.2.1 Connectivity of Gi

The next Lemma ensures the correctness of Algorithm 1 in terms of incre-
mental construction of graphs Gi, namely, each node u is able to compute N i

u,

6

for any i.
Consider two nodes u and v in Gi (that is, both u and v have level i or

higher).

Lemma 5 With high probability, Gi contains a path of length at most 1 +
dG(u, v)/2i+1 between u and v.

Proof. Consider a shortest path (in G) u = u0, u1, . . . , u` = v from u to v,
and nodes wj = u(2j−1)2i (1 ≤ j ≤ `/2i+1), regularly spaced on the path. With
high probability, each ball Bwj (2

i) contains at least one node sj with level at
least i. Triangle inequalities imply that sj and sj+1 are within distance 4.2i of
each other, and are thus neighbours in Gi. Similarly, u and s1 are neighbours,
and so are s`/2i+1 and v, so that the required path is (u, s1, . . . , s`/2i+1 , v). �

Corollary 6 With high probability, if two vertices are neighbours in Gi+1, then
they are within distance 3 of each other in Gi.

Corollary 6 implies that, once stage i has been finished (that is, each node
of level i or higher knows its neighbours in Gi), then any node u that ends up
entering level i + 1 can discover all its neighbours in Gi+1 (that is, compute
N

(i+1)
u) by a breadth-first exploration of Gi up to distance 3, thus allowing the

completion of stage i + 1.

3.2.2 Tree partition and ball size estimates

According to Lemma 4, every node u of level i < log D is able to choose its
parent of level i + 1. It follows :

Lemma 7 With high probability, for any i, the set of tree nodes {w ∈ T i
u|lu ≥ i}

partition the set of nodes V .

This tree partition provides an efficient way to compute estimates of ball
sizes. Roughly speaking, Bu(2i) is covered by the set of subtrees (of small depth)
rooted at the neighbors of u within Gi. More precisaly, we have :

Proposition 8 With high probability, for any node u of level i, Bu(2i) ⊂⋃
v∈Ñ

(i)
u

T
(i)
v ⊂ Bu(5.2i).

Proof. Every node p ∈ Bu(2i) has a parent P i
p within a distance less than

2i+1, thus d(P i
p, u) ≤ 3.2i and P i

p ∈ Ñu(i). It follows that all the ancestors of
level i of nodes of Bu(2i) belongs to Ñ i

u. The second inequality is an obvious
consequence of the triangle inequality and the definitions of Ñ

(i)
u and T

(i)
u .

Now, assume that the proposed inequality holds for level i, and consider the
level i + 1 sampling. If, for each level i vertex u, there is at least one level i + 1
(or higher) vertex v within distance 2i+1, then u ∈ Ñ

(i)
v , so that u will receive

7

a message from v when it enters level i + 1 and will be able to set its P
(i+1)
u .

From Lemmas 2 and 3, this situation occurs with high probability. �
From Proposition 8 and the c-bounded growth, it directly follows that com-

putation of b̃ provides a c3-approximation of balls sizes :

Lemma 9 bu(2i) ≤ b̃u(2i+1) ≤ c3bu(2i).

3.3 Performance analysis

[A FAIRE]
DEGRE, MESSAGE, NB RONDES ...
If we do not pay a particular attention to the total number of messages and

the number of rounds, we get

Lemma 10 For given i, a 1-approximation of ball size bu(2i+1) for all u ∈ Si

can be computed with O(n) extra messages of size O(log n) and within 2i rounds.

Proof. Let u be a node of level i. Take a node v within distance 2i+1 from u.
Its ancestor s of level i is so that d(u, s) ≤ 2i+1. It follows that d(s, u) ≤ 4.2i

and s ∈ N i
u.

By hypothesis, for two given nodes u and v of G, we are able to compute
their distance. u asks to its neighnors of level i (at distance less than 4.2i) the
number of nodes of their subtrees that are at distance at most 2i+1 from u. This
can be done by a BFS traversal of the subtrees. Whenever a leaf v receives such
a request, it computes its distance toward u and send an acklowledgement to
its parent. Internal nodes sum the total number of leaves being within Bu(2i+1)
and forwards the answer to the its parent.

A quick analysis leads to a total number of messages equal to O(ni). However,
there is no message whenever two copies of a same node (of consecutive levels)
“exchange” a piece of information. It follows that the BFS traversal of the
subtrees of the neighbors has a cost O(n) in terms of messages. �

4 Small world augmentation process

While the overlay network described in the previous section provides a set
of hierarchical shortcuts, they are inoperative as small world shortcuts. Indeed,
greedy routing only uses the original distances of G to navigate, and therefore
does not follows a link towards a higher level node if this node is not closer
to the target in the original graph. However, the overlay network and the ap-
proximation of ball sizes obtained enable us to build parsimoniously, and in a
distributed manner, a set of random shortcuts that make the augmented graph
a small world.

We give two different constructions, both using our overlay network as a
starting point. In both constructions, each node receives one additional “long-
range” link. In the first construction, the links received by different nodes are

8

independent ; in the second construction, they are not independent, which makes
it possible to significantly decrease the workload of high level nodes.

4.1 A first small-worldization process

In Algorithm 2, each node u 1) picks uniformly at random a length scale i ∈
{0, . . . , log D} and 2) asks its ancestor s of level i to select a random shortcut for
him. s then picks uniformly one of its neighbors s′ with probability proportional
to |T i

s′ |, and (recursively) chooses uniformly at random a leaf of T i
s′ , using the

tree structure. A memory efficient distributed implementation of this step can
be found in [?].

Algorithm 2 Long-Range Contact(u)
Choose a level i ∈ [1.. log D] uniformly at random
If i > `u, send (LinkRequest, u, i) to Pu

If i ≤ `u, choose a node v ∈ Ñ i
u with probability proportional to #T i

v, and
send (LeafRequest, i, u) to v.
Wait for reception of message (Link, v) and set Lu ← v.

Upon reception of message (LinkRequest, w, i) :
If i > `u, send (LinkRequest, w, i) to Pu

If i ≤ `u, choose a node v ∈ Ñ i
u with probability proportional to #T i

v, and
send (LeafRequest, w, i) to v.

Upon reception of message (LeafRequest, w, i) :
If i = 1, select v ∈ T 0

u uniformly at random and send (Link, v) to u
Otherwise, select v ∈ Ci

u randomly, with probability proportional to #T i−1
v ,

and send (LeafRequest, w, i− 1) to v.

Theorem 11 The resulting graph is a navigable small world. More precisely,
– for any two nodes u and v, the expected length of the greedy path from u

to v is at most c7 log2(D) log2(d(u, v)) = O(ln2 n), and
– with high probability, for any two nodes u and v, the length of the greedy

path from u to v is at most 4c7 lnn log2
2(D) = O(ln3 n).

Proof. The long-range link that u will finally store is chosen uniformly at
random from the nodes whose level i ancestor is either the level i ancestor of u,
or at distance at most 3.2i of u’s level i ancestor. This set of nodes contains all
nodes in Bu(2i), and is a subset of Bu(9.2i) - a set whose cardinality is at most
c4 times larger than Bu(2i). Thus, for any v ∈ Bu(2i), we have

Pr(Lu = v) ≥ 1
c3bu(2i) log2 D

We now mirror Kleinberg’s proof ?? and show that, for any destination v,

Pr
(

d(Lu, v) ≤ 1
2
d(u, v)

)
= Ω

(
1

lnn

)
.

9

Set d = d(u, v), and i = dlog2(3d/2)e, so that Bv(d/2) ⊂ Bu(2i) ⊂ Bv(4d).
Thus, the wanted probability is at least bv(d/2)/(c4bu(2i) ln D), and we have
bu(2i) ≤ c3bv(d/2), so that we get the lower bound

Pr
(

d(Lu, v) ≤ 1
2
d(u, v)

)
≥ 1

c6 ln(D)
≥ 1

c7 lnn
.

Thus, the expected number of nodes the greedy algorithm visits before it
finds one whose long range link cuts the distance to v in half, is at most c7 lnn,
and with probability 1− n−4, this happens before it visits 4c7 ln2 n nodes. The
two claims follow from repeating this log2 D times.

�

4.2 An economic small-worldization process

Algorithm 3 Long-Range Contact2(u)
Construction of long-range contacts : each node u of level i ∈ [1.. log D]
Choose uniformly at random i4 leaves, noted Li

u, in the subtrees of its neigh-
bors N i

u.
Spread the set Li

u down T i
u ;

Assignment of the long-range contacts : for any node u,
Choose uniformly at random a level i ;
Choose uniformly at random a long-range contact in the list Li

s it received.

In the analysis of the long-distance link model, it is normally critical that
the long-distance links of different nodes be chosen independently. In our first
construction, they are indeed independent (conditional on the overlay network) :
once the whole hierarchical tree has been built, provided some very likely pro-
perties hold, each node in the graph receives a long-distance link that is chosen
independently of all others, under a probability distribution that guarantees
small-world routing properties.

This independence, however, comes at a heavy price : a few nodes (those
that are assigned a high level) are involved in the long-distance link choice for a
very large (polynomial in N) number of other nodes (there are roughly Θ(lnn)
nodes at the highest level, and a proportion Ω(1/ log2 D) of all link request have
to be treated by one of them).

To avoid this “long-distance link selection congestion”, we now propose an
alternative link selection process (see Algorithm 3), in which long distance links
will not be chosen independently - but this will not impact the small-world
routing properties.

Once the hierarchical tree is built, each node v of each level i, instead of wai-
ting for link requests, performs the long link selection algorithm ln(N)4 times
(each time sending a (LeafRequest, v, i) to one of its neighbors), and broad-
casts the resulting list of nodes down its tree T i

u. Each node v ∈ T i
u that, under

10

the previous model, would have asked u to select a long link for it (that is, sent
a (LinkRequest, u, i)), simply randomly selects one of the ln(N)4 proposed
nodes.

Under this new scheme, the probability distribution for the long distance link
of each node is the same, but they are no longer independent - two nodes that
share the same high level ancestor have a much higher probability of having
the same long distance link destination. But this is not significant, because
(see Theorem 11) routing paths in our original scheme are of expected lentgh
O(ln2 n), and with high probability, all are of length O(ln3 n). Thus, each time
our routing algorithm examines the long distance link of a new node, it could
first check that the link is not among those it has already seen so far (same
index in the same list of precomputed links), and declare it “useless” if it is
not the case. The proof of Theorem 11 carries over to show that the probability
of a “useless” link is only O(1/ ln(N)) ; this will, at most, result in O(ln(N))
“failed” links, and the conclusions of Theorem 11 remain valid (with very slightly
increased constants).

From the above discussion, we get the following :

Theorem 12 With high probability, Algorithms 3.1 and 3 only require each
node to send a polylogarithmic number of messages, and the long-distance links
they compute turn G into a navigable small-world where all greedy routing paths
have length O(log3 n).

Actually, there is no need for every “leader” node to select such a large
sample of links ; since a level i node will only be required to find long distance
links for vertices from its own subtree Ti, which entirely lies within distance 2i+1

of the root, with high probability, any routing path will only visit O(i2) nodes
from this tree, so that selecting i4 random link destinations is enough. While
this does not reduce the work at the highest levels, it significantly reduces the
total work of the vast majority of nodes.

5 Conclusion

One point that remains unaddressed in Kleinberg’s model is an explanation
of the emergence of the 2-harmonic long range links distribution in the grid. In
a sense, our decentralized algorithm is light enough to be considered a first step
towards a validation to real networks of Kleinberg’s model. Indeed our algorithm
is decentralized, applies to arbitrary bounded growth graphs and requires only
polylogarithmic size memory.

However, our algorithm uses a tree-shaped hierarchy (the overlay network)
which requires more coordination between the nodes than can be expected from
a spontaneous network. A more flexible structure would be a better candidate
to validate our model. We also have no failure detection mechanisms : in the un-
likely event that the overlay network fails to remain connected, no long-distance
links will cross from one component to another, and it is not clear how our
current schemes could be adapted to detect such a situation.

11

While the “trick” of Section 4.2 very significantly reduces the maximum
amount of work any node in the network will have to perform during the long
range link setup (from polynomial to polylogarithmic), it does have the draw-
back of increasing the indegree of those nodes that are selected as potential
destinations by the highest level nodes ; obviously, some few nodes will have a
polynomially high indegree. As a result, a large number of routing paths will go
through these “unlucky” nodes, potentially resulting in network congestion.

12

