
ALGORITHMS FOR THE RELAXED ONLINE BIN-PACKING
MODEL∗

GIORGIO GAMBOSI† , ALBERTO POSTIGLIONE‡ , AND MAURIZIO TALAMO§

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 5, pp. 1532–1551

Abstract. The typical online bin-packing problem requires the fitting of a sequence of rationals
in (0, 1] into a minimum number of bins of unit capacity, by packing the ith input element without
any knowledge of the sizes or the number of input elements that follow. Moreover, unlike typical
online problems, this one issue does not admit any data reorganization, i.e., no element can be moved
from one bin to another.

In this paper, first of all, the “Relaxed” online bin-packing model will be formalized; this model
allows a constant number of elements to move from one bin to another, as a consequence of the
arrival of a new input element.

Then, in the context of this new model, two online algorithms will be described. The first presents
linear time and space complexities with a 1.5 approximation ratio and moves, at most once, only
“small” elements; the second, instead, is an O(n logn) time and linear space algorithm with a 1.33 . . .
approximation ratio and moves each element a constant number of times. In the worst case, as a
result of the arrival of a new input element, the first algorithm moves no more than three elements,
while the second moves as many as seven elements. Please note that the number of movements
performed is explicitly considered in the complexity analysis.

Both algorithms are below the theoretical 1.536 . . . lower bound, effective for the online bin-
packing algorithms without the movement of elements. Moreover, our algorithms are “more online”
than any other linear space online bin-packing algorithm because, unlike the algorithms already
known, they allow the return of a (possibly relevant) fraction of bins before the work is carried out.

Key words. complexity, approximation algorithms, online algorithms, bin packing

AMS subject classifications. 68Q25, 68R05, 90C27

PII. S0097539799180408

1. Introduction.

1.1. The bin-packing problem. The bin-packing problem (see survey in [7]
and in [8]) is a major issue in theoretical computer science: it consists of “packing”
a set of nonoverlapping objects into a minimum number of well-defined areas. More
formally [7], [8], given a positive integer C, it provides for the packing of a set of integer
size elements L = {a1, a2, . . . , an}, with size(ai) ∈ (0, C]∩N0, into a minimum number
of bins of equal capacity C.

This problem models the variable partitioning storage management in multipro-
grammed computer systems and the assignment of commercials to mass media station
breaks and truck packing. Bin-packing also models a variant of the scheduling prob-
lem in multiprocessors where the objective is to minimize the number of processors in

∗Received by the editors January 1, 1999; accepted for publication (in revised form) January
28, 1999; published electronically November 17, 2000. This work was partially performed in the
framework of Esprit BRA project 3075, “Algorithms and Complexity,” and of Italian MURST 40%
project, “Algoritmi e Strutture di Calcolo,” and was partially supported by National Research Coun-
cil project “Sistemi Informatici e Calcolo Parallelo.”

http://www.siam.org/journals/sicomp/30-5/18040.html
†Dipartimento di Matematica, University “Tor Vergata,” via della Ricerca Scientifica, 00133

Rome, Italy (gambosi@mat.uniroma2.it).
‡Dipartimento di Scienze della Comunicazione, University of Salerno, via Ponte don Melillo, 84084

Fisciano (SA), Italy (ap@unisa.it).
§Dipartimento di Informatica e Sistemistica, University “La Sapienza,” via Salaria 113, 00198,

Rome, Italy (talamo@dis.uniroma1.it).

1532

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ALGORITHMS FOR THE RELAXED ONLINE BIN-PACKING MODEL 1533

which all tasks are to be completed within a given deadline. (When the common dead-
line is the capacity, processors are represented by bins and elements are represented
by tasks whose size is given by the execution time.)

An interesting case is when C = 1 and size(ai) ∈ (0, 1]
⋂
Q, which results in

a combinatorial optimization problem that is NP-hard in the strong sense1 since it
contains 3-Partition as a special instance [15].

We are interested in searching for approximated fast (polynomial) online bin-
packing algorithms that require the packing of the ith element without information
on the sizes or the number of the following input elements and whose solution is far
from the optimal for a small, fixed, multiplicative constant.

All the known online algorithms share the approach that no element can be moved
from the bin it was first inserted in. Moreover, all the Θ(n)-space algorithms are offline
on output, i.e., no algorithm releases any of the used bins until the end of the input
list has been reached, while all the Θ(1)-space algorithms release all the bins except
for a constant number of them.2

As pointed out in [23] a bin-packing algorithm is an algorithm made up of two
parts: the first part reorders the list according to a preprocessing rule; the second
part generates the packing. An online algorithm has no preprocessing step.

1.2. The relaxed model for the online bin-packing problem. In this pa-
per, we will focus our attention on online algorithms, according to the classical defi-
nition [1], which states the following.

Definition 1.1. The online execution of a sequence of instructions σ requires
that the instructions in σ be executed from left to right and that the ith instruction in
σ be executed without looking at any of the instructions that follow.

The above definition corresponds to the definition of online algorithms considered
in task systems and server problems (see, for example, [4] and [28]). Please note that
the above definition admits internal data reorganization, which is a frequent practice
in most online algorithms.

According to these definitions, we introduce a new online bin-packing model,
named “Relaxed,” which allows a constant number of elements to be moved from one
bin to another consequent to the arrival of new input elements. This new model calls
for a careful definition of a cost function on the set of the possible item movements,
in order to account explicitly for them in the overall algorithm complexity analysis.

Please note that a very limited number of applications of the bin-packing problem
cannot be represented by our model. A typical example of such an application is the
cutting stock problem, where the more abstract operation “assign an element of size
s to a bin” is interpreted in terms of “cut a piece of length s from a stock element.”

On the other side there are many real-life situations where the rearrangement of
an allocated element is possible and this affects (by lowering) the cost of the resolution
process, i.e., packing trucks and multiprocessor memory management strategies. The
“Relaxed” model works very well in all situations in which the operation modeled by
the assignment of an element to a bin can be “undone” by paying something. Such

1Note that, when the number of possible element sizes is a priori bounded, or (it is the same)
in the integer formulation C is fixed, the problem can be exactly solved in polynomial time by
exhaustive search, although the degree of the polynomial can be very high [7], [8] or it can be exactly
solved asymptotically using special linear programming techniques [16], [17]; moreover, the decision
problem “Is there a partition of L into disjoints sets L1, L2, . . . , Lk such that

∑
a∈Li

size(a) ≤ C,

for each Li” is NP-complete and solvable in pseudopolynomial time for each fixed k ≥ 2.
2Online algorithms which are not offline on output were considered in [10].

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1534 A. POSTIGLIONE, M. TALAMO, AND G. GAMBOSI

a situation arises, for example, when the input list is not known in advance (it could
be infinite, too) and each element (that could arrive with a considerable delay from
the previous one) needs to be processed online, while the guaranteed performance
needs to be maintained at any time for the set of elements currently involved. In this
situation a classical online algorithm (BEST-FIT, HARMONICM , etc.) or an offline
algorithm could be applied in correspondence to each element arrival. In the first case
no known algorithm uses, in the worst case, more than 63% of the bin space, while
no algorithm can use, in the worst case, more than 65% of the bin space (since 1.53
is the theoretical lower bound). In the second case whenever an element arrives all
other elements can be moved out from the bin they are contained in and be assigned
to some other bin, according to the new computed solution. In our model only a
(known) limited number of element movements is admitted, in correspondence to the
arrival of a new element.

In general, this new model is particularly suitable when the elapsed time between
two consecutive input elements is ≥ δK, where δ is the maximum cost for each ele-
ment movement, and K is the maximum number of element movements occurring in
correspondence to each input element (so this model permits us to take advantage of
the “dead times” between two successive input elements).

In [11] and [13] we informally introduced the “Relaxed” model and gave an
O(n log n)-time O(n)-space class of algorithms that, for each prefix of the input se-
quence, returns a 1.5 asymptotical approximation ratio. This value is below the 1.53 . . .
theoretical lower bound [5], [26] well grounded for the restricted case and indicates
that the relaxation of the classical online bin-packing problem conditions is convenient
and theoretically interesting. Some experimental simulations allow us to guess that
this class of algorithms has (on the average) very good behavior.

Our paper shows how this result is improved in two different ways by giving two
linear space algorithms: the first presents a 1.5 approximation ratio with an O(n) time
complexity; the second presents a 1.33 . . . approximation ratio with an O(n log n) time
complexity (they fill each bin in the worst case at least for 66% and 75%). Moreover,
at the arrival of each input element, in the worst case the first algorithm moves no
more than three elements while the second may move up to seven elements.

Last, please note that these algorithms are “more online” than all the other linear
space online bin-packing ones because, unlike the known algorithms, they allow the
return of a (possibly relevant) fraction of the bins before the work is carried out.

Section 2 gives definitions and a brief summary of the previous results on the
online bin-packing problem; section 3 shows the “Relaxed” model, with regard to
element movement, small element grouping operations, and definition of movement
evaluation function; section 4 introduces the linear algorithm A1 while section 5 gives
an analysis of its performance; the O(n log n) algorithm A2 is introduced in section
6 and its performance is analyzed in section 7; section 8 examines some conclusions
and open problems.

2. Definitions and previous results.

2.1. Problem definition. The classical one-dimensional bin-packing problem
can be stated [15] as follows.

Definition 2.1. Given a finite set L = {a1, a2, . . . , an} of “elements” and a
rational “size,” size(a) ∈ (0, 1], for each element a ∈ L, find a partition of L into
disjoint subsets L1, L2, . . . , Lk such that the sum of the sizes of the elements in each
Li is no greater than 1 and such that k is as small as possible.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ALGORITHMS FOR THE RELAXED ONLINE BIN-PACKING MODEL 1535

Since the bin-packing problem contains 3-partition as a special case, it is an NP-
hard problem in the strong sense [15], [21]. It is therefore very unlikely that there are
fast (polynomial) algorithms for finding the best solution, unless P = NP, even if the
magnitude of the numbers involved is bounded by a polynomial in n.

Given an (approximate) algorithm A for the bin-packing problem and a set L of
elements, let A(L) be the number of bins used by A to pack L. Therefore

OPT (L) ≥
∑
ai∈L

size(ai)(2.1)

is a lower bound for the number of bins necessary to pack L.
Now we are able to give some algorithm performance definitions [7], [8].
Definition 2.2. The performance of A with respect to OPT on the list L is

RA(L) ≡ A(L)

OPT (L)
.(2.2)

Definition 2.3. The absolute performance ratio RA of the algorithm A is

RA ≡ inf{r ≥ 1|RA(L) ≤ r, ∀ list L}.(2.3)

Definition 2.4. The asymptotic performance ratio R∞
A of the algorithm A is

R∞
A ≡ inf{r ≥ 1| for some N > 0, RA(L) ≤ r, ∀ L with OPT (L) ≥ N}(2.4)

Note that RA ≥ R∞
A .

2.2. Previous results on the online version. The classical problem presents
a variety of cases [7], [8]. In the online version [10] the following definition exists.3

Definition 2.5. “Items are assigned to bins in order (a1, a2, . . .), with item ai
assigned only according to the size of the previous items and the bins to which they
were assigned, without considering the size or number of items that follow.”

The simplest bin-packing algorithm is Next-Fit [7], [8] which is O(n)-time and
O(1)-space, but whose asymptotical performance, both in the worst and in the average
cases, is very poor, respectively, 2.0 and 1.33 [7], [8], [9], [12].

The bin-packing algorithms most extensively used are BEST-FIT and FIRST-FIT
[23]. Both algorithms are O(n log n)-time and O(n)-space and present an acceptable
asymptotical worst-case performance (i.e., 1.7, [23]) but an optimal asymptotically
average performance [2], [3], [12], [32].4

Until now, the best online algorithms for the bin-packing problem, without moving
elements from the bins they have been assigned to, belonged to the HARMONIC class,
first introduced in [25], where an approximated algorithm called HARMONICM was
introduced; this algorithm is the optimal among all the O(1)-space algorithms. Such
an algorithm has an O(n)-time complexity and a ratio R∞

H (M) ≤ 1.692 for allM ≥ 12.
Lee and Lee [25], moreover, proved that R∞

A ≥ 1.6910 for all constant space algorithms
and that limM→∞R∞

H (M) = 1.6910.

3More appropriately in such a case, we deal with a sequence of elements to be packed and not
with a set.

4Note that in [10] it is proved that BEST-FIT obtains its worst-case performance even if a
constant (k ≥ 2) number of bins is maintained online; this reduces the computation time to O(n log k),
that is, O(n) since k is a small constant.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1536 A. POSTIGLIONE, M. TALAMO, AND G. GAMBOSI

The same authors gave a more complex O(n) algorithm, REFINED HARMONIC,
which uses O(n) space and presents a ratio R∞

RH = 373
228 = 1.636

Later, the MODIFIED HARMONIC algorithm was introduced in [31], which is
O(n) both in time and in space complexity with a ratio R∞

MH = 1.61(561)
∗
. The

authors also showed how an online algorithm with R∞
A < 1.59 can be obtained.

3. The relaxed model.

3.1. Motivations and previous results. All the algorithms mentioned in sec-
tion 2.2 introduce the additional limit that the solution for 〈a1 a2 . . . ai〉 must derive
from the one for 〈a1 a2 . . . ai−1〉 without performing any reorganization of the ele-
ments in the bins; that is, none of the elements among a1, a2, . . . , ai−1 can be moved
from the bin it belongs to. In other words, all of these algorithms only search for
a suitable bin to which to assign element ai in order to obtain a good asymptotic
approximation of the optimal solution. In this context some interesting lower bounds
have been proved, as already pointed out.

A question arising from the above considerations is the following: “What happens
if we interpret the online property of bin-packing in a less restricted way, just like the
large majority of online models? Is it possible to obtain more efficient performances
if a bin-packing algorithm can move the elements a certain number of times from one
bin to another?”

In [11] and [13] an affirmative answer to this question is given by presenting a
class of online algorithms, HARMONICREL(M),5 with time complexity O(n log n),
space complexity O(n), and asymptotic ratio R∞

HREL(M) ≤ 1.5. In the worst case, the
approximation ratio is independent of M, for M ≥ 3, and the number of movements
is limited in an amortized way by a (small) constant (2, for M = 3).

3.2. Grouping elements. In this paper we introduce a new operation: the
“grouping of elements,” i.e., we assume that a certain number of very small items in
the same bin can be collected together and considered as a single unit. More formally,

Given a constant 0 < c < 1, we assume that any set of elements smaller than c
in the same bin can be collected together in a single group of overall size ≤ c. This
group will be considered as a single unit from now on.

Obviously, the grouping of elements does not modify the approximation ratio of
OPT, since OPT is measured as the sum of the elements in the input list. We also
assume that there is no kind of movement inside any group.

In the bin-packing problem the grouping operation is possible and convenient.
For example, in the truck-packing problem it is useful to fit a collection of very
small elements in the same box and then move them as a whole by moving the box.
In multiprocessor storage management strategies, the grouping simply consists in
collecting a subset of pages.

3.3. Moving elements. In the relaxed model, the critical operation regards
moving (part of) the contents from one bin to another.

In the following, i, j are two bins and σ is a subsequence of (not necessarily
contiguous) input element(s), all contained in the same bin.

The fundamental operation could therefore be stated as

MOVE(i, j, σ), i �= j,(3.1)

which means that σ is moved from bin i to bin j.

5Where REL stands for “Relocation.”

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ALGORITHMS FOR THE RELAXED ONLINE BIN-PACKING MODEL 1537

This approach is quite natural for all the applications in which we may assume
that several small elements can be “carried” from one bin to another in a single step.

3.4. MOVE operation cost. An online algorithm processes the input data one
at a time, possibly modifying its internal data structures. Thus the evaluation of the
performance of an algorithm is more realistic if it takes into account the number of
movements of the elements in its data structures.

In a bin-packing algorithm when the elements move, several kinds of cost functions
for the MOVE(i, j, σ) operation could be defined.

Definition 3.1. The cost of the MOVE operation is equal to the total size of all
elements moved (

∑
x∈σ size(x)).

Definition 3.2. The cost of the MOVE operation is equal to the number of
elements moved (|σ|).

In this paper we will consider a third way to define such a function. In our ap-
proach we assume that each group can be moved at unitary cost. That is, while moving
a “large” element always has a cost equal to 1, we assume that “small” elements can be
grouped together and moved as a whole, at unit cost. Therefore we have the following.

Definition 3.3. The cost associated to the MOVE(i, j, σ) operation is equal to
the number of elements and groups contained in σ.

If the element moving cost would only be a function of the size of the elements,
any reasonable algorithm would tend to move a lot of small elements because the
performance is better and there is no cost difference in moving a lot of small elements
instead of a few big elements. If the element moving cost would only be a function
of the number of the elements moved, there will be no cost difference between an
algorithm that moves light elements and another that moves the same number of
heavy elements. Therefore, the third cost function is the most likely. It should be clear
that for any c, σ this function has a value which is in between the values assumed by
the first two cost functions above defined.

3.5. Formal definition of grouping. Let us consider the following nonuniform
partition of (0, 1] in M + 1 subintervals:

(0, 1] =
M⋃
k=0

Ik,

I0 =

(
3

4
, 1

]
; I1 =

(
2

3
,
3

4

]
; I2 =

(
1

2
,
2

3

]
; . . . ; IM−1 =

(
1

M − 1
,
1

M

]
; IM =

(
0,

1

M

]
.

Let c = 1
M be the border item size. The grouping operation consists of collecting a

set of elements smaller than c in a single group g (that will be a sort of “superitem”),
so that, in each bin B (let size(g) =

∑
a∈g size(a)),

• for all g ∈ B, size(g) ≤ c;
• there are no pairs of groups g ∈ B, h ∈ B, such that size(g) + size(h) ≤ c;
• each group g ∈ B, except at most one, has size(g) ≥ 1

2c.

3.6. Grouping primitives.

3.6.1. Create group. This primitive regards the arrival of a new element in
(0, 1

M] that cannot be merged in any group of the target bin. The operation consists
in creating an empty group and in inserting this new element in it. At all times, there
will be no more than one IM -bin open.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1538 A. POSTIGLIONE, M. TALAMO, AND G. GAMBOSI

3.6.2. Append. This primitive regards the arrival of a new element in (0, 1
M]

that has to be merged into an existing group.

3.6.3. Primitive performances. Since we are not interested in any kind of
arrangement of the elements within the group, a suitable representation (i.e., linked
lists) allows all of these operations to be executed in constant time and space. This
leads to the “packing” of such elements together, so that they can/must be moved as
a whole, in one single step.

3.7. Evaluation function. Below we will show that each bin will contain a
constant number of groups. Since the algorithm performance is measured as a function
of the space wasted with respect to the sum of the sizes of the elements in the input
list, the grouping of the elements does not affect the performance in any manner.

We will not detail the operations involved in inserting and deleting elements to
and from bins nor the ones involved in the maintenance of the support data structures,
mainly in empty conditions, because they can be easily performed in constant time.

In the following, let
m be the maximum number of MOVE operations performed upon the arrival of

a new element6;
r be the asymptotic performance of the algorithm.

Thus, we can assign to an approximation algorithm a pair of numbers, such as

A(m, r).

For example, the well-known BEST-FIT algorithm is A(1,1.7) since its performance
ratio is 1.7. In general, we can say that a classical online bin-packing algorithm is
A(1,r) (r ≥ 1.53) since it does not move the elements already fitted in the bins
and 1.53 is the lower bound for this kind of algorithm. Please note that the exact
algorithm is A(m,1), for some m ≥ 0, while our first algorithm, A1, is A(3,1.5), and
A2 is A(7,1.33).

4. The linear algorithm A1. A1 is based on a nonuniform partition of interval
(0, 1] into four subintervals (levels):

(0, 1] =

3⋃
k=0

Ik,

I0 =

(
2

3
, 1

]
; I1 =

(
1

2
,
2

3

]
; I2 =

(
1

3
,
1

2

]
; and I3 =

(
0,

1

3

]
.

In order to describe it, let us introduce the following points:
• S = 〈a1 a2 . . . an . . .〉 is the “input list.”
• Let ai ∈ Ik (0 ≤ k ≤ 2) be an element of S. Then ai is called “Ik-element.”
• Let ai ∈ I3 be an element of S. Then ai is called “I3-group.”
• Let B be a bin. Then B is an “Ik-bin (I3-bin)” (0 ≤ k ≤ 2) if the first element

that was initially assigned to it were an Ik-element (I3-group).
By subinterval definition, each Ik-bin (1 ≤ k ≤ 2) contains no more than k
Ik-elements and each I0-bin contains no more than one I0-element.

6the first insertion of a new element corresponds to a MOVE from outside into a bin

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ALGORITHMS FOR THE RELAXED ONLINE BIN-PACKING MODEL 1539

If an Ik-bin (1 ≤ k ≤ 2) exactly contains k Ik-elements it is “filled”; otherwise
it is “unfilled”. An I0-bin with an I0-element is “filled” and an I3-bin is filled
only when its gap is < 1

3 .
7

• For each k (0 ≤ k ≤ 3) let Ak be the name of the only unfilled Ik-bin.
• “gap(B)” is the space available in an Ik-bin, B (0 ≤ k ≤ 2), to insert
Il-elements (I3-groups) (k < l ≤ 2). If B is filled, then gap(B) = 1 −∑
a∈B size(a); otherwise we conventionally assume that gap(B) = 0.

Algorithm A1 is reported below (where l denotes the level of the next input
element, x). Please note that if x ∈ I1 is a “small” I1-element (i.e., size(x) < 2

3), A1

tries to insert some I3-groups in its gap; if this is not possible A1 will mark this bin
for a future I3-group insertion. Please note that if x ∈ I3, then A1 first tries to insert
it in the gap of some marked I1-bin with enough room.

The algorithm uses two stacks of bins, L1 and L3, respectively associated with
levels 1 and 3. L1 maintains all the bins whose gap is still “fat” (i.e., ≥ 1

3), while L3

maintains all the I3-bins. If there is an unfilled I3-bin, then it is the first bin in L3.
Please note that in every moment no more than one between L1 and L3 can be “not
empty.”

We do not explicitly consider the management of unfilled bins. For example, we
assume that an unfilled bin is automatically generated at the arrival of an element
which can be assigned to no other bin available at that time.

Algorithm A1

For each input element x:
if x ∈ I0 then “Insert x in A0”.
if x ∈ I1 then

• “Insert x in A1”;
• while (gap(A1) ≥ 1

3) AND (“There still exists an I3-group”, g) do “Move g to A1.”

• if “There is no more I3-groups” AND (gap(A1) ≥ 1
3) then “Push A1 in L1.”

if x ∈ I2 then
• “Insert x in A2”;

if x ∈ I3 then
• if “There exists an I1-bin, B, in L1”

then “Insert x in B, removing B from L1 if its gap becomes < 1
3 .”

else “Insert x in A3”

5. Performance analysis of A1. In order to analyze the performance of A1

we must first consider the total number of element movements within the bins at the
arrival of a new element. Next, we will consider its asymptotic performance ratio.

5.1. Time, space, and movements.
Lemma 5.1. Each filled I1-bin contains no more than two groups in its gap.
Proof. Let us assume there are more than two groups in a filled I1-bin. Let x, y, z

be three of them. Since an I1-bin B has gap(B) < 1
2 , it follows that size(x)+size(y)+

size(z) < 1
2 . By definition, we know that in every bin all the groups except for one

(at most) are ≥ 1
6 in size. Without loss of generality (w.l.o.g.) let us assume that

size(x) ≥ 1
6 . Therefore

1

2
> size(x) + size(y) + size(z) ≥ 1

6
+ size(y) + size(z) ⇒ size(y) + size(z) <

1

3
,

which is a contradiction, since every pair of groups in each bin has a total size
> 1

3 .

7Note that we distinguish among “Ik-filled bins” (that is, bins no more able to receive all possible
items of their class, but still active) and “Ik-full bins” (that is, bins whose gap is empty or that are
never used afterwards).

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1540 A. POSTIGLIONE, M. TALAMO, AND G. GAMBOSI

Please note that this bound is tight. It is easy to show that two groups can be fitted
together in the gap of this bin. An example is the following: (12 + ε), (

1
6 −2ε), (16 +3ε).

Corollary 5.2. No more than three movements will be performed at each in-
sertion.

Proof. The above lemma proves how the movements only occur at the arrival of
I1-elements with size < 2/3. However, the algorithm performs no more than three
movements since each I1-bin has a gap < 1

2 and each pair of groups has size > 1
3 .

This implies that, in the worst case, it is sufficient to move one group from A3 and
two groups from another bin in L3.

Theorem 5.3. Algorithm A1 has space complexity O(n) and time complexity
Θ(n).

Proof. The space complexity easily derives from the observation that each element
is represented no more than once in L1 and L3.

As far as time complexity, according to the above lemma we know that the max-
imum number of element insertions in a bin is bounded by 3n. Each insertion can be
performed in O(1) time. Moreover, the movement of an existing element is performed
in O(1) time since this movement uses the first element in the first bin on the list,
accessed in constant time. Therefore, the time complexity is easily derived.

5.2. Performance ratio. In order to derive the approximation ratio for A1, the
following lemmas are needed.

Lemma 5.4. If, after all elements have been considered, L3 is not empty, then
R∞
A1
< 3

2 .

Proof. The gaps of I0-bin and Ik-bin (k ≥ 2) are < 1
3 , by definition.

As far as I1-bins please note that there is at least one element in L3 whose size
is ≤ 1

3 , which has not been moved to the gap of any I1-bin; this implies that all the
gaps of I1-bins have size ≤ 1

3 .

In conclusion, the maximum gap in each bin is < 1
3 and, consequently,

R∞
A1
<

3

2
.

Lemma 5.5. If, after all the elements have been considered, L3 is empty and in
the input sequence L = {a1, a2, . . . , an} there was no pair of ai, aj , so that ai ∈ I1
and aj ∈ I2, then R∞

A1
= 1.

Proof. In this case A1 uses N0 +N1 or N0 +
N2

2 bins, where Nj is the number of
Ij-elements in the input set, since no I1-elements or I2-elements could be inserted in
any bin which already has an I0-element and 2 I2-elements are inserted in the same
I2-bin. Since OPT cannot use fewer bins, then

R∞
A1

= 1.

Lemma 5.6. If, after all the elements have been considered, L3 is empty and
in the input sequence L = {a1, a2, . . . , an} there was at least one pair ai, aj , so that
ai ∈ I1 and aj ∈ I2, then R∞

A1
≤ 3

2 .

Proof. Let Bi be the number of bins of level i used by OPT. We can derive the
maximum number of bins used by A1 as a function of the Bi’s.

By definition,

OPT = B0 +B1 +B2.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ALGORITHMS FOR THE RELAXED ONLINE BIN-PACKING MODEL 1541

Since in each I1-bin OPT could have inserted no more than one I2-element, the extra
bins for A1 are no more than B1

2 . Thus,

A1 ≤ B0 +B1 +B2 +
B1

2
≤ 3

2
(B0 +B1 +B2) =

3

2
OPT.

Theorem 5.7. Algorithm A1 has a ratio R∞
A1

≤ 3
2 .

Proof. The proof derives directly from the previous three lemmas.

Theorem 5.8. Algorithm A1 is A(3, 1.5).

Proof. The proof derives directly from Corollary 5.2 and Theorem 5.7.

6. The O(n logn) Algorithm A2.

6.1. Main features. A2 is based on a nonuniform partition of the interval (0, 1]
into six subintervals (levels):

(0, 1] =
5⋃
k=0

Ik,(6.1)

I0 =

(
3

4
, 1

]
; I1 =

(
2

3
,
3

4

]
; I2 =

(
1

2
,
2

3

]
; I3 =

(
1

3
,
1

2

]
; I4 =

(
1

4
,
1

3

]
; I5 =

(
0,

1

4

]
.(6.2)

The definitions of Ik-element, Ik-bin, Ak-bin, “filled” bin, and gap are similar
to the ones given for Algorithm A1, while the definition of I5-group is similar to
the definition of I3-group given for Algorithm A1. Please note that an I5-group B is
“filled” if gap(B) < 1

4 . Thus, A2 considers I5-elements as “little” elements which can
be collected in groups gi and moved together. As pointed out in section 3.6, all the
grouping primitives are constant in time and space.

6.2. Packing strategy. The algorithm operates as reported in Algorithm A2,
where l denotes the level of the next input element, x. When the input element is
a “big” one (i.e., size(x) > 1

2), A2 inserts it in a new bin and tries to “fill” its gap
with smaller elements from some other bin(s). If the input element is a “small” one
(i.e., size(x) ≤ 1

2), the algorithm first tries to insert it in the gap of a filled bin which
already exists; only if there is no room for x in any other existing bin, the algorithm
inserts it in a new bin. During its execution, A2 refers to an unfilled bin for each
level.8 The guidelines of the algorithm are the following:

• A2 encourages the pairing of elements x, y, where (x ∈ I1, y ∈ I4) or (x ∈
I2, y ∈ I3).

• A2 tries to fill the gap of I1-, I2-, I3-filled bins with smaller elements (I4-
elements or I5-groups) since there are no more I5-groups or no bin B has
gap(B) > 1

4 .

Both of these guidelines may imply the move of a few elements from one bin to another.
Bins may be emptied as an effect of element moving: in this case, the emptied bins
are considered as automatically disregarded. Finally, please note that the algorithm
may return some of the used bins as output before the end of the input list.

8As for Algorithm A1, we do not explicitly consider the management of unfilled bins.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1542 A. POSTIGLIONE, M. TALAMO, AND G. GAMBOSI

6.3. Data structures. The algorithm requires the use of
• one stack S, containing all the I5-bins; the unfilled bin is the top one;
• three dictionaries, D2, D3, and D4, maintaining all the Ik-elements contained
exclusively in Ik-bins (not necessarily filled), for k = 2, 3, 4.

• three dictionaries (tournaments), G1, G2, and G3, maintaining the size of the
gap of all the I1-, I2-, I3-filled bins.

We will not give details of the operations involved in inserting and deleting el-
ements to and from the bins and the ones involved in the lists and in I5-groups
maintenance, since they can be easily performed in constant time. Moreover, we will
not give details of the operations regarding the tree data structures since they are
well known and they may be executed in O(log n) time. G1, G2, and G3 can be im-
plemented as binary trees of depth �log2 n� with n leaves corresponding to the n bins
in sequence from left to right. Each internal node is labeled with the largest label
among the labels of its sons and each leaf is labeled with the current gap of the bin
it represents. Please note that bins containing pairs x ∈ I1 and y ∈ I4 or x ∈ I2
and y ∈ I3 are immediately returned as output by the algorithm, hence they are not
represented in these directories. The tree representation chosen is similar to the one
Johnson used to implement the FIRST-FIT algorithm [23]. Last, we will not refer to
the possible output of any bin (e.g., either all the I0-bins or all the bins containing
an I2-element and an I3-element could be sent to the output).

6.4. Algorithm primitives.

6.4.1. Insert(b,A). This primitive inserts object b, which could be either an
item or a group, into bin A and updates, if necessary, one or two of the dictionaries.

Insert (b,A)
• “Insert b in A.”
• if b ∈ I5 then “Append b to an existing group or Create a new group with only b.”
• “Update, if necessary, D2, D3 or D4 and G1, G2 or G3”

The updating operation is an O(log n)-time operation and will be carried out only if
• both (b ∈ Ik) and (A ∈ Ik) (k = 2, 3, 4) (“enter b in Dk”);
• both (b ∈ Ik) and (A ∈ Ik) (k = 1, 2, 3) AND A is filled as a consequence of
this new element insertion (“enter A in Gk”);

• (A ∈ Ik) and (b /∈ Ik) (k = 1, 2, 3) (“Update the size of the gap of A in Gk”).
This case occurs only if A is filled and b has to be inserted in its gap.

In conclusion, the Insert operation is O(log n) worst case time.

6.4.2. Extract(b,A). This primitive extracts object b, which could be either an
item or a group, from bin A and updates, if necessary, one or two of the dictionaries.

Extract (b,A)
• “Pop b from A”
• “Update, if necessary, D2, D3 or D4 and G1, G2 or G3”

The updating operation is an O(log n)-time operation and will be carried out only if
• both (b ∈ Ik) and (A ∈ Ik) (k = 2, 3, 4) (“extract b from Dk”);
• both (b ∈ Ik) and (A ∈ Ik) (k = 1, 2, 3), AND A becomes “unfilled” as a
consequence of this element extraction (“extract A from Gk”);

• (A ∈ Ik) and (b /∈ Ik) (k = 1, 2, 3) (“Update the size of the gap of A in Gk).
This case occurs only if A is filled and b has to be extracted from its gap.

In conclusion, the Extract operation is O(log n) worst case time.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ALGORITHMS FOR THE RELAXED ONLINE BIN-PACKING MODEL 1543

6.4.3. Move(b,B,A). This primitive moves object b from bin B to bin A. It is
a composition of Extract(b,B) and Insert (b,A), so it is O(log n) worst case time.

6.4.4. Fill(C). This primitive fills the gap of the “filled” bin C ∈ Ik(1 ≤ k ≤ 3)
with smaller elements since there is no room in C (i.e., gap(C) < 1

4) or there are no
more of these little elements. This operation easily is O(log n) worst case time.

Fill (C)
if “there exists an I4-bin B containing an element b ∈ D4 such that size(b) ≤ gap(C)” then

Move(b,B,C)
if B
= A4 then Move(x,A4,B), “for whatever element x ∈ A4”

else while “there exists g ∈ A5 such that size(g) ≤ gap(C) AND gap(C) ≥ 1
4 ” do Move(g,A5, C)

6.4.5. MoveTheGap(C). This primitive moves all the objects (I5-groups and
eventually the only I4-element) from the gap of bin C and distributes them among
all the other bins. This operation easily is O(log n) worst case time.

MoveTheGap(C)
if “C contains an I4-element, b” then Move(b,C,A)(where A is, in the sequence of checks, an I1-bin,

an I2-bin, an I3-bin or the A4-bin)
for “every group g ∈ C” do if “there exists some I1, I2, I3-bin C

′ with size(g) ≤ gap(C′)” then
Move (g,C,C′) else Move(g,C,A5)

6.5. The algorithm.

Algorithm A2

For each element x:
if x ∈ I0 then

• Insert(x,A), where A is a new I0-bin;
if x ∈ I1 then

• Insert(x,A), where A is a new I1-bin;
• Fill(A);

if x ∈ I2 then
• Insert(x,A), where A is a new I2-bin;
• If there is a b ∈ I3 in some I3-bin B, so that size(b) + size(x) ≤ 1,
then ∗ Move (b,B,A); MoveTheGap (B);

∗ if B
= A3 then “Move(b,A3,B) for whatever element b ∈ A3; Fill(B)”
else ∗ Fill(A);

if x ∈ I3 then
• If there is a b ∈ I2 in some I2-bin B so that size(b) + size(x) ≤ 1
then ∗ If size(x) > gap(B) then MoveTheGap (B);

∗ Insert(x,B);
else ∗ Insert(x,A3); if A3 becomes filled, then Fill(A3);

if x ∈ I4 then
• If there is an I1-bin B so that size(x) ≤ gap(B), then Insert(x,B);
• else Insert (b,A) (where A is, in the sequence of checks, an I2-bin, an I3-bin or, at

last, the A4-bin).
if x ∈ I5 then• Create a group g containing only x;

• If there is an I1, I2, I3-bin B such that size(g) ≤ gap(B) then Insert(g,B) else
Insert(g,A5)

7. Performance analysis of A2. In order to analyze the performance of the
algorithm we must first consider the number of element movements caused by the
arrival of a new input element and then its asymptotic performance ratio.

7.1. Time, space, and movements.

Lemma 7.1. Each filled I1-bin may contain, in its gap, no more than two I5-
groups.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1544 A. POSTIGLIONE, M. TALAMO, AND G. GAMBOSI

Proof. If we assume there are more than two I5-groups in a filled I1-bin and let
x, y, z be three of them, by definition it follows that

x ≤ 1

4
, y ≤ 1

4
, z ≤ 1

4
; x+ y >

1

4
, x+ z >

1

4
, y + z >

1

4
.

Moreover, an I1-bin B, has gap(B) < 1
3 , thus x+ y + z <

1
3 . Hence

1

3
> x+ y + z >

1

4
+ z ⇒ z <

1

12
.

Therefore

x >
1

4
− z > 1

6
; y >

1

4
− z > 1

6
; x+ y + z >

1

3
,

which is a contradiction.
Lemma 7.2. Each filled I2-bin may contain no more than three I5-groups or one

I4-element plus one I5-group in its gap.
Proof. Let us assume there are more than three I5-groups in a filled I2-bin. Let

x, y, z, w be four of them. By definition of group we have that

x ≤ 1

4
, y ≤ 1

4
, z ≤ 1

4
, w ≤ 1

4
, x+ y >

1

4
, x+ z >

1

4
,

x+ w >
1

4
, y + z >

1

4
, y + w >

1

4
, z + w >

1

4
.

By construction, an I2-bin, B, has gap(B) < 1
2 , so x+ y + z + w <

1
2 .

Therefore

1

2
> x+ y + z + w >

1

4
+ z + w ⇒ z + w <

1

4
,

which is a contradiction.
Similarly, let us assume that the group contains one I4-element together with two

I5-groups. Let x be the I4-element and let y, z be the I5-groups. By definition, we
have that x ≥ 1

4 , y + z ≥ 1
4 .

By construction, an I2-bin, B, has gap(B) < 1
2 , so x+ y + z <

1
2 .

Therefore

1

2
> x+ y + z >

1

4
+ y + z ⇒ y + z <

1

4
,

which is a contradiction.
Lemma 7.3. Each filled I3-bin may contain no more than two I5-groups or one

I4-element plus one I5-group in its gap.
Proof. The first bound is proved as in Lemma 7.1.
To prove the second bound let us assume that the group contains one I4-element

and one I5-group. Let x be the I4-element and let y, z be the I5-groups. By definition,
we have that x ≥ 1

4 , y + z ≥ 1
4 .

By construction, an I3-bin, B, has gap(B) < 1
3 , so x+ y + z <

1
3 .

Therefore

1

3
> x+ y + z >

1

4
+ y + z ⇒ y + z <

1

12
,

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ALGORITHMS FOR THE RELAXED ONLINE BIN-PACKING MODEL 1545

which is a contradiction.
Lemma 7.4. Each I5-bin may contain no more than seven I5-groups.
Proof. It follows from the definition of I5-group.
The bound of the previous lemma is tight. The sequence matching this bound is

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 + ε, when no one of the these elements has to be fitted in any of the

Ik-bins (0 ≤ k ≤ 3) and there is no (unfilled) I5-bin at the arrival of the first element
of the subsequence.

Theorem 7.5. In every moment, Algorithm A2 maintains at most a constant
number of I5-groups and I4-elements, and no other different level element, in the gap
of each bin.

Proof. It derives from Lemmas 7.1, 7.2, 7.3, and 7.4 and by the fact that I0-bins
contain only I0-elements and I4-bins contain only I4-elements.

The remaining part of the theorem is proved by observing that no I3-element can
be fitted in the gap of any I0-, I1-, I4-, I5-bin while those fitted in the gap of I2-bins
are immediately returned as output. Note that, for the same reason, no I4-element is
maintained in the gap of any I1-bin.

Lemma 7.6. When procedure Fill is called to “fill” an Ik-bin (1 ≤ k ≤ 3) it
performs no more than two I4-element movements or three I5-group movements.

Proof. The first bound is simply inferred from the algorithm structure.
The second one is easily obtained by considering that, in every moment, there

is only one “unfilled” I5-bin, named A5. If SIZE(A5) >
1
4 procedure Fill moves no

more than two groups from it since, whatever is the I5-bin, any pair of groups has a
total size ≥ 1

4 , each filled bin has a gap < 1
2 , and the loop ends when gap(A) < 1

4 . If
SIZE(A5) ≤ 1

4 then it contains only one group. Let ε be its size. If SIZE(A)+ ε < 3
4

and there is another I5-bin (that is necessarily filled) the situation is the same as the
above. Thus, the total number of group movements is three.

The bound of the previous lemma is tight. In fact let us suppose that the input
sequence starts with the following elements: 1

8 ,
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 + ε, ε,

1
2 + ε; in this case

the first seven elements will be fitted in one I5-bin, the eighth will be fitted in another
I5-bin and the last will be fitted in an I2-bin. The Fill procedure will move ε, then
1
8 + ε, and at last 1

8 to the gap of the I2-bin.
Theorem 7.7. In correspondence to each insertion, a constant number of element

or group movements is performed.
Proof. Let x be the current input element to be fitted in any bin. Then the

algorithm makes
x ∈ I0 • 0 movements
x ∈ I1 • no more than three movements (Lemma 7.6) as a consequence of

(two I4-element movements) OR (three I5-group movements)
x ∈ I2 • no more than seven movements9 as a consequence of

– one I3-element movement
– two movements (Lemma 7.3) as a consequence of

(one I4-element and one I5-group movement) OR (two I5-group
movements)

– one I3-element movement
– no more than three movements (Lemma 7.6) as a consequence of

(two I4-element movements) OR (three I5-group movements)
OR, alternatively,

• no more than three movements (Lemma 7.6) as a consequence of

9If there exists a b ∈ I3 such that size(x) + size(b) ≤ 1.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1546 A. POSTIGLIONE, M. TALAMO, AND G. GAMBOSI

(two I4-element movements) OR (3 I5-group movements)
x ∈ I3 • no more than three movements10 (Lemma 7.2) as a consequence of

(one I4-element and one I5-group movements) OR (three I5-group
movements)

OR, alternatively,
• no more than three movements (Lemma 7.6) as a consequence of

(two I4-element movements) OR (three I5-group movements)
x ∈ I4 • 0 movements.
x ∈ I5 • 0 movements.

Therefore, in each case, the total number of element (or group) movements is
constant.

Corollary 7.8. No more than seven element movements occur at the arrival of
a new input element when A2 is applied to a list of n elements.

Proof. The proof is easily derived from Theorem 7.7.

Theorem 7.9. Algorithm A2 has space complexity O(n).

Proof. The theorem is easily proved when observing that each element is repre-
sented no more than once in the list S or in the data structures involved and that the
maximum number of gaps is n.

Theorem 7.10. Algorithm A2 has time complexity O(n log n).

Proof. According to Theorem 7.7, the time complexity is bounded by n times the
cost of an element insertion or movement. Each insertion and each movement of an
element already in the structure is performed at most in O(log n) time, when the tree
data structures are involved. In fact the directory representation for the gaps of I1-,
I2-, I3-bins allows the finding of the right element in no more than �log2 n� binary
comparisons and the update operations may be performed by using no more than
�log2 n� comparisons [23]. This same principle is valid for the heaps maintaining the
I3-and I4-elements [33].

7.2. Performance ratio. In the following items we assume that

• Nj is the total number of Ij-elements in the input list L.
• H is the size of the best matching between I2-and I3-elements, that is, the
maximum number of pairs x2 ∈ I2, x3 ∈ I3 which can be coupled. Note
that this corresponds to the maximum matching in a bipartite graph G =
(N2 ∪N3, E) so that

– N2 = {x ∈ I2},
– N3 = {x ∈ I3},
– E = {(x, y)|x ∈ N2, y ∈ N3, size(x) + size(y) ≤ 1}.

• K is the size of the best matching between I1-and I4-elements, that is, the
maximum number of pairs x1 ∈ I1, x4 ∈ I4 which can be coupled. Please
note that this corresponds to the maximum matching in a bipartite graph
G = (N1 ∪N4, E) so that

– N1 = {x ∈ I1},
– N4 = {x ∈ I4},
– E = {(x, y)|x ∈ N1, y ∈ N4, size(x) + size(y) ≤ 1}.

Lemma 7.11. If S is not empty after all the elements have been considered, then
RA2 <

4
3 .

Proof. By hypothesis, since there is at least one group with size ≤ 1
4 which cannot

be moved to a different gap, all of the I0-, I1-, I2-, I3-bins have a gap < 1
4 .

10If there exists a b ∈ I2 such that size(x) + size(b) ≤ 1.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ALGORITHMS FOR THE RELAXED ONLINE BIN-PACKING MODEL 1547

Moreover, each Ik-bin (k ≥ 4) has a gap < 1
4 .

Consequently, the maximum gap in each bin is < 1
4 , and

RA2
<

4

3
.

Lemma 7.12. If H = 0 and S is empty after all the elements have been considered,
then RA2

≤ 4
3 .

Proof. We can observe two different situations:
• In the input list there is no I4-element.
In this case A2 uses no more than N0+N1+N2+

N3

2 bins, since no I2-element
or I3-element could be inserted in any bin already containing an I1-element
or an I0-element and no more than two I3-elements may be inserted in any
other bin. OPT cannot use fewer bins, since H = 0 implies that no bin can
contain both an I2-element and an I3-element. Therefore

RA2 = 1.

• In the input list there were some I4-elements.
Let α = N1 +N2 +

N3

2 . In this case we can still obtain two situations:
N4 ≤ α then

– OPT uses at least α+N0 bins.
– A2 uses no more than N0+α+

N4

3 bins, in case it does not insert any
I4-element into some other bin. Then A2 ≤ N0 + α+ α

3 = N0 +
4
3α

and so

RA2
≤

4
3α+N0

α+N0
<

4

3
.

N4 > α then let β = N4 − α.
– OPT cannot use fewer than N0 + α + β

3 bins, since no more than
one I4-element can fit into an I1-, I2-, or I3-bin.

– A2 uses no more than N0+α+
N4

3 bins. Then A2 ≤ N0+α+
α+β
3 =

N0 +
4
3α+ β

3 . Therefore we have

A2

OPT
≤

4
3α+ β

3 +N0

α+ β
3 +N0

<
4

3
.

Lemma 7.13. If H �= 0 and in the input sequence L = {a1, a2, . . . , an} there are
no Ik-elements (k ≥ 4), then RA2

< 5
4 .

Proof. OPT uses at least
N0 bins to pack all the I0-elements;
N1 bins to pack all the I1-elements;
N2 bins to pack all the I2-elements;
N3−H

2 bins to pack all the I3-elements, since H of them are inserted in the gap
of the H I2-elements.

Hence,

OPT ≥ N0 +N1 +N2 +
N3

2
− H

2
.

A2 uses no more than

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1548 A. POSTIGLIONE, M. TALAMO, AND G. GAMBOSI

N0 bins to pack all the I0-elements;
N1 bins to pack all the I1-elements;
N2 bins to pack all the I2-elements;
N3−H

2

2 bins to pack all the I3-elements, since H2 of them are necessarily packed
with a corresponding I2-element [22].

Hence

A2 ≤ N0 +N1 +N2 +
N3

2
− H

4
.

In conclusion, since H ≤ N3 and H ≤ N2, it follows that

A2

OPT
≤ 4N0 + 4N1 + 4N2 + 2N3 −H

4N0 + 4N1 + 4N2 + 2N3 − 2H
≤ 4N0 + 4N1 + 5N2 + 2N3 − 2H

4N0 + 4N1 + 4N2 + 2N3 − 2H
<

5

4
.

Lemma 7.14. If H �= 0 and in the input sequence L = {a1, a2, . . . , an} there are
some Ik-elements (k ≥ 4), and S is empty after all elements have been considered,
then RA2 ≤ 4

3 .

Proof. Let Bi be the number of bins of level i used by OPT and let B′
i be the

number of bins of level i used by A2. We calculate the maximum number of bins used
by A2 as a function of the Bi’s.

We can obtain two different situations:

• In the case that no I4-bins are returned as output, since in such a case there
are no I5- and I4-bins, we can say that OPT = B0 +B1 +B2 +B3:
B′
0 = B0;

B′
1 = B1;

B′
2 = B2;

B′
3 ≤ B3 +

H
2

2 ;
Therefore, since H ≤ B2,

A2 ≤ B0 +B1 +
5

4
B2 +

5

4
B3 ≤ 5

4
OPT.

• In the case that some I4-bins are returned as output, since in such a case
there are no I5-bins, we can say that OPT = B0 +B1 +B2 +B3 +B4:
B′
0 = B0;

B′
1 = B1;

B′
2 = B2;

B′
3 ≤ B3 +

H
2

2 ;

B′
4 = B4 + [K + (B2 −H) +B3]

1
3 = B2

3 + B3

3 +B4 +
K
3 − H

3 .
Therefore, since K ≤ B1 and H ≥ 0,

A2 ≤ B0 +B1 +
4
3B2 +

4
3B3 +B4 +

k
3 − H

12≤ B0 +
4
3B1 +

4
3B2 +

4
3B3 +B4 ≤ 4

3 OPT.

Theorem 7.15. Algorithm A2 has a ratio of RA2 ≤ 4
3 .

Proof. The proof is easily given by the previous lemmas.

Theorem 7.16. Algorithm A2 is A (7, 1.33).

Proof. The proof is given by Corollary 7.8 and Theorem 7.15.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ALGORITHMS FOR THE RELAXED ONLINE BIN-PACKING MODEL 1549

8. Conclusions and open problems. This paper focuses its attention on the
possibility of maintaining a guaranteed approximation of the optimal solution for the
online bin-packing problem in terms of time computation and element movements and
with a limited reorganization of the previous solutions.

The problem is equivalent to the one considered in the more general bin-packing
model where the elements can move (for a limited number of times) from the bin they
are currently assigned to. Please note that this model still fits the general definition
of online algorithms.

It would be interesting to see if these algorithms frequently touch any particular
element and move it many times: it is also possible to demonstrate that the first
algorithm (A1) moves an element no more than once.

Contrarily to the offline model, the requests arriving to this model reach it online
and the bins are always ready to be closed with no additional effort. This model is
suitable in many different fields (for example in multiprocessor storage management
and in packing trucks).

In the environment of this less restricted model, we have presented two new
algorithms with the best approximation ratio available at this time, respectively, for
linear and O(n log n) algorithms.

These algorithms are also “more” online than all the other linear space online
bin-packing algorithms, because they allow the return of a fraction of the bins before
the end of the execution.

There are still a lot of problems which remain to be solved in this area. First, it
would be interesting to check if algorithms more efficient than A2 can be found (as far
as approximation ratio and/or time complexity are concerned). Generally speaking,
it would also be interesting to define the lower bounds of the approximation ratio of
the O(n log n) algorithms that allow the element to freely move between the bins.

It would also be interesting to verify if there is some kind of relation between the
(amortized) number of movements allowed at the arrival of each input element and
the asymptotic performance ratio. In other words: is there an algorithm that for each
ε constant is A(1ε , f(ε))?

It would also be useful to gain more knowledge about whether the approxima-
tion ratio can be maintained and if it is possible to send output the bins containing
“enough” of the elements contained therein (e.g., what happens when all the bins
with gap less than k

3 (k ≤ 1) are send output?).
Other interesting questions concern the capacity of deleting elements from the

bins maintaining the guaranteed algorithm performance (the target is to minimize the
space wasted considering the actual element involved) and the analytical evaluation
of the average performance of this algorithm compared to the ones characterized in
[27], [30], [29], [32]. It would be very interesting to study the performances of the
algorithm as a function of the number of movements admitted.

Acknowledgments. We are grateful to two anonymous referees for their useful
remarks and to Giuseppe Alesio and Gennaro Gravina for useful discussions.

We also wish to thank Lucio Bianco of CNR IASI, Rome, for suggesting the
transportation applications.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1550 A. POSTIGLIONE, M. TALAMO, AND G. GAMBOSI

[2] J. L. Bentley, D. S. Johnson, F. T. Leighton, and C. C. McGeoch, An experimental study
of bin packing, in Proceedings of the 21st Annual Allerton Conference on Communication,
Control, and Computing, University of Illinois, Urbana, IL, 1983, pp. 51–60.

[3] J. L. Bentley, D. S. Johnson, F. T. Leighton, C. C. McGeoch, and L. A. McGeoch,
Some unexpected expected behavior results for bin-packing, in Proceedings of the 16th
ACM Symposium on the Theory of Computing, Washington, DC, 1984, pp. 279–288.

[4] A. Borodin, N. Linial, and M. Saks, An optimal online algorithm for metrical task systems,
in Proceedings of the 19th ACM Symposium on the Theory of Computing, New York,
1987, pp. 373–382.

[5] D. J. Brown, An improved BL lower bound, Inform. Process Lett., 11 (1980), pp. 37–39.
[6] D. J. Brown and P. Ramanan, Online bin packing in linear time, in Proceedings of the 1984

Conference on Information Sciences and Systems, Princeton University, Princeton, NJ,
1984, pp. 328–332.

[7] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation algorithms for bin-
packing—An updated survey, in Algorithm Design for Computer System Design, G. Ausiello
and M. Lucertini, eds., Springer-Verlag, New York, 1984, pp. 49–106.

[8] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation algorithms for bin-
packing: A survey, in Approximation Algorithms of NP-Hard Problems, D. S. Hochbaum
ed., PWS Publishing Company, Boston, 1996, pp. 46–93.

[9] E. G. Coffman, Jr., M. Hofri, K. So, and A. C. Yao, A stochastic model of bin packing,
Informat. Control, 44 (1980), pp. 105–115.

[10] J. Csirik and D. S. Johnson, Bounded space online bin-packing: Best is better than First,
in Proceedings of the Second ACM–SIAM Symposium on Discrete Algorithms, San Fran-
cisco,1991, pp. 309–319.

[11] G. Gambosi, A. Postiglione, and M. Talamo, On the Online Bin-Packing Problem, IASI
Technical Report R.263, Roma, 1989.

[12] G. Gambosi, A. Postiglione, and M. Talamo, New algorithms for online bin-packing, in
Algorithms and Complexity, G. Ausiello, D. Bovet, and R. Petreschi, eds., World Scientific
Publishing, Roma, 1990, pp. 44–59.

[13] G. Gambosi, A. Postiglione, and M. Talamo, Online maintenance of an approximate bin-
packing solution, Nordic J. Comput., 4 (1997), pp. 151–166.

[14] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. Yao, Resource constrained scheduling
as generalized bin-packing, J. Combin. Theory Ser. A, 21 (1976), pp. 257–298.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, Freeman, San Francisco, CA, 1979.

[16] P. C. Gilmore and R. E. Gomory, A linear programming approach to the cutting stock
problem, Oper. Res., 9 (1961), pp. 849–859.

[17] P. C. Gilmore and R. E. Gomory, A linear programming approach to the cutting stock
problem—Part II, Oper. Res., 11 (1963), pp. 863–888.

[18] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Tech. J., 45 (1966),
pp. 1563–1581.

[19] R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969),
pp. 416–429.

[20] N. Karmarkar and R. M. Karp, An efficient approximation scheme for the one-dimensional
bin-packing problem, in Proceedings of the 23th IEEE Symposium on Foundation of Com-
puter Science, Chicago, 1982, pp. 312–320.

[21] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Com-
putations, R. E. Miller and J. M. Thatcher, eds., Plenum Press, New York, 1972, pp.
85–105.

[22] B. Korte and D. Hausmann, Matroids and independence systems, in Modern Applied Mathe-
matics: Optimization and Operations Research, B. Korte, ed., North-Holland, Amsterdam,
1982, pp. 517–553.

[23] D. S. Johnson, Fast algorithms for bin-packing, J. Comput. System Sci., 8 (1974), pp. 272–314.
[24] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, Worst-case

performance bounds for simple one-dimensional packing algorithms, SIAM J. Comput., 3
(1974), pp. 299–325.

[25] C. C. Lee and D. T. Lee, A simple online bin-packing algorithm, J. ACM, 3 (1985), pp. 562–
572.

[26] F. M. Liang, A lower bound for on-line bin packing, Inform. Process. Lett., 10 (1980), pp. 76–
79.

[27] R. Loulou, Probabilistic behavior of optimal bin-packing solutions, Oper. Res. Lett., 3 (1984),
pp. 129–135.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ALGORITHMS FOR THE RELAXED ONLINE BIN-PACKING MODEL 1551

[28] M. S. Manasse, L. A. McGeoch, and D. D. Sleator, Competitive algorithms for server
problems, J. Algorithms, 11 (1990), pp. 208–230.

[29] P. Ramanan and K. Tsuga, K., Average-case of the modified harmonic algorithm, Algorith-
mica, 4 (1989), pp. 519–533.

[30] P. Ramanan, Average-case analysis of the SMART-NEXT-FIT algorithm, Inform. Process.
Lett., 31 (1989), pp. 221–225.

[31] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee, On-line bin-packing in linear time,
J. Algorithms, 10 (1989), pp. 305–326.

[32] P. W. Shor, The average-case of some on-line algorithms for bin-packing, Combinatorica, 6
(1986), pp. 179–200.

[33] R. E. Tarjan, Data Structures and Network Algorithms, CMBS-NSF Regional Conf. Ser. in
Appl. Math. 44, SIAM, Philadelphia, 1983.

[34] A. C. Yao, New algorithms for bin-packing, J. ACM, 27 (1980), pp. 207–227.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

47
.2

10
.2

1.
23

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

