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Abstract—Burstiness is a common pattern of virtual ma-
chines (VMs)’s workload in production data centers, where
spikes usually occur aperiodically with low frequency and last
shortly. Since virtualization technology enables elastic resource
provisioning in a computing cloud, the bursty workloads could
be handled effectively through dynamically scaling up/down.
However, to cut back energy consumption, VMs are usually
highly consolidated with the minimum number of physical
machines (PMs) used. In this case, to meet the runtime
expanding demands of the resources (spikes), some VMs
have to be migrated to other idle PMs, which is costly and
causes performance degradation potentially. In this paper,
we investigate the elastic resource provisioning problem and
propose a novel VM consolidation mechanism with resource
reservation which takes burstiness into consideration as well
as energy consumption. We model the resource requirement
pattern as the popular ON-OFF Markov chain to represent
burstiness, based on which a reservation strategy via queuing
theory approach is given for each PM. Next we present a
complete VM consolidation scheme with resource reservation
within reasonable time complexity. The experiment result
show that our algorithms improve the consolidation ratio
by up to 45% with large spike size and around 30% with
normal spike size compared to those provisioning for peak
workload, and a better balance of performance and energy
consumption is achieved in comparison with other commonly
used consolidation algorithms.

Keywords-Virtual machine placement; Server consolidation;
Bursty workload; Stochastic Process; Queuing theory

I. INTRODUCTION

Virtualization is a crucial technique in modern data cen-

ters, which enables one server to host many performance-

isolated virtual machines (VMs). It greatly benefits a com-

puting cloud where VMs running various applications are

aggregated together to improve resource utilization. In a

computing cloud, the cost of energy consumption (for illu-

mination, power supply, cooling, etc.) occupies a significant

fraction of the total operating costs [1]. Therefore, making

optimal utilization of underlying resources to reduce the

energy consumption is becoming an important issue [2],

[3]. To cut back energy consumption, server consolidation

aims at packing VMs tightly to reduce the number of PMs

used, but performance may be seriously affected if VMs are

not appropriately placed especially in a highly consolidated

cloud.

It has been shown in previous work [2], [4], [5] that

variability and burstiness of VM workload widely exists

in modern data centers. For instance, burstiness may be

caused in a web server by flash crowed with bursty incoming

requests. VMs should be provisioned with resources com-

mensurate with their workload requirements [6], which is

a more complex issue considering workload variation. As

is shown in Figure 1 two kinds of provisioning strategies

are commonly used with workload burstiness – provisioning

for peak workload and provisioning for normal workload.

Provisioning for peak workload is a favor to guarantee VM

performance, but it undermines the benefits of elasticity and

leads to low resource utilization [7]. In contrast, provisioning

for normal workload takes advantage of elasticity in cloud

computing, but it is prone to cause performance degradation

in a highly consolidated cloud where resource contention

is generally prominent among VMs. In this case, reserving

extra resources on each PM is an effective way to improve

performance.

To meet the dynamic resource requirements of VMs, local

resizing and live migration are pervasively used methods.

Local resizing adaptively adjust VM configuration according

to the real-time requirement with neglectable time and

resource overheads [8]. On the other hand, live migration

moves a VM to a relatively idle PM with near-zero down-

time when local resizing is not capable to allocate enough

resources. However, in a nearly oversubscribed system sig-

nificant downtime is observed for live migration which also

incurs noticeable CPU usage on the host PM [9], which

further degrades the performance of collocated VMs. If

resources are reserved on the PM to accommodate bursty

workload, when a spike occurs the VM can be reconfigured

quickly to the new level of resource requirement via local

resizing with minimal overheads, instead of being migrated

to other PMs. Thus with resource reservation the number of

migrations can be reduced considerably leading to perfor-

mance improvement.
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In this paper, we address the problem of reserving

the minimal amount of resources on each PM during

consolidation to accommodate bursty workloads while

the overall performance is guaranteed. We denote the

capacity violation ratio (CVR) as the fraction of time

that the aggregated loads of a PM exceed its capacity. It

is assumed that if CVR exceeds a threshold ρ (capacity

overflow), one of the hosted VMs needs to be migrated to

an idle PM via live migration. Imposing such a threshold

ρ rather than conducting migration upon PM’s capacity

overflow is also a way to tolerate minor fluctuation of

resource usage (like the case of CPU usage). We introduce

the performance constraint as: CVRs of all the PMs

should be bounded by ρ (thus to expect no live migration

to occur). We use a two-state Markov chain to represent the

burstiness of workloads [5], and develop a novel algorithm

based on queuing theory techniques – resources reserved on

the PM are abstracted as blocks (serving windows in queuing

theory) to accommodate spikes. Our goal is to reduce the

number and size of blocks on each PM while satisfying the

performance constraint.

The contributions of our paper are as follows.

- We propose the idea to reserve resources on each PM

to accommodate bursty workload and give a formulated

problem description based on the two-state Markov chain

model.

- We give an algorithm to quantify the amount of reserved

resources based on queuing theory techniques and present a

complete VM consolidation scheme.

- Extensive experiments are conducted to validate the

effectiveness of our proposed algorithms in comparison

with other commonly used consolidation schemes.

The remainder of this paper is organized as follows.

Section II is the related work. Section III presents the

workload model and problem formulation. Section IV de-

scribes our algorithms and complexity. Section V shows the

experimental result and Section VI concludes our paper.

II. RELATED WORK

In most of the research work VM consolidation [1], [10],

[11] is regarded as a bin-packing problem to map VMs

onto PMs with minimal number of PM used. Comprehensive

studies on VM packing problems are conducted in [12] and

[13]. In [14] and [15], a two-step mapping strategy is used

– step one, cluster VMs and map the clusters onto PM

aggregates, and step two, map each VM onto a specific PM,

and we use a similar idea in our placement scheme. Several

works [6], [10], [16]–[18] use stochastic bin-packing (SBP)

techniques to deal with variation of workload, where work-

load is modeled as random variable. In contrast, our two-

state Markov chain model takes the additional dimension of

time into consideration, and it describes the characteristics

of spikes more precisely as we will discuss in Section III.

Spike(Re)

Figure 1. Sample workload trace with burstiness characteristic. Two
levels of resource provisioning are presented – normal workload and peak
workload.

Figure 2. Two-state Markov chain. State ON represents traffic surge (Rp)
while state OFF represents the normal level of traffic (Rb). pon and poff
are the state switch probabilities.

Recently, [6], [10], [18] study the SBP problem assuming

the workload follows normal distribution. In comparison, in

our model a lower limit of provisioning is set at the normal

workload level which effectively prevents VM interference

caused by unpredictable malicious behavior from collocated

VMs. In the consolidation framework by Huang and Tsang

[19], a constant level of hardware resource is reserved on

the PM to tolerate workload fluctuation, but how much

resource should be reserved is not given. To the best of

our knowledge, no research work has tried to quantify the

amount of reserved resources with consideration of distinct

workload burstiness.

In a computing cloud, burstiness of workload widely

exists in real applications which becomes an inevitable

characteristic in server consolidation [2], [4], [5], [7], [20].

Mi et al. [5] models workload as two-state Markov chain to

inject burstiness into a traditional benchmark. Several works

[3], [21], [22] study modeling and dynamic provisioning of

bursty workload in cloud computing.

III. MODELING AND PROBLEM FORMULATION

In order to represent burstiness characteristics, we model

VM workload as a two-state Markov chain, where the

probability distribution of future states depends upon the

current state (see Figure 2 for illustration). In the rest of the

paper, we denote Rp, Rb and Re as the amount of resource

requirement by peak workload, normal workload, and the

size of spike respectively, where Re=Rp-Rb as demonstrated

in Figure 1. In this model, state ON represents traffic surge
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Figure 3. Evolution of the queuing system. (a)The original provisioning strategy for peak workload. (b)gathering all the Res together to form a queuing
system. (c)reducing the number of blocks in the queuing system.

where the amount of resource requirement is Rp, and state

OFF represents the normal level of traffic where the amount

of resource requirement is Rb. We use pon and poff to

denote the state switch probabilities. More specifically, if

a VM is in state ON, then the probability it switches to

OFF at the next time is poff , and remains ON is 1− poff .

Similarly if a VM is in state OFF, then the probability it

switches to ON at next time is pon and remains ON is

1−pon. We emphasize that this model is able to describe the

characteristics of spikes precisely – intuitively Re denotes

the size of a spike, pon denotes the frequency of spike

occurrence and poff denotes the duration of a spike.
Thus each VM can be described by a four-tuple

Vi = (pion, p
i
off , R

i
b, R

i
e), 1 ≤ i ≤ n (1)

and each PM can be described by its capacity

Hj = (Cj), 1 ≤ j ≤ m (2)

where m and n are the number of PMs and VMs respec-

tively.
Hence a VM placement can be described by a binary

mapping X = [xij ]n×m, where xij = 1 if Vi is placed

on Hj , and 0 otherwise. We assume that the workloads of

VMs are mutually independent. Let Wi(t) be the amount

of resource requirement of Vi at time t. We impose Hj’s

capacity constraint as: the aggregated resource require-

ment of hosted VMs is no greater than the capacity of Hj .

n∑
i=1

xijWi(t) ≤ Cj (3)

This is the constraint that should be satisfied for the initial

VM placement where t = 0. The capacity constraint is said

to be violated at time t when Equation (3) is not satisfied.

Formally, we denote vio(j, t) = 1 if Hj’s capacity constraint

is violated at time t, and 0 otherwise. Next we define

our measurement of performance capacity violation ratio
(CVR) of Hj as the fraction of time that Hj is violated,

CV Rj =

∑
t
vio(j, t)

t
(4)

Obviously smaller CV Rj value implies better performance

of Hj .

Our goal is to guarantee the overall performance during

consolidation. This is formulated as bounding CVRs of all

PMs by a threshold ρ.

CV Rj ≤ ρ, ∀j (5)

In summation, the consolidation problem can be formulated

as follows:

Given m, n, {Vi} and {Hj}, find a VM-to-PM mapping

X to minimize the number of PMs used while satisfying

the capacity constraint in Equation (3) for t = 0 and the

performance constraint in Equation (5) for all t.

minimize |{j|1 ≤ j ≤ m,
n∑

i=1

xij > 0}| s.t.

Equation (3), t = 0

Equation (5), ∀t

(6)

IV. ALGORITHMS AND COMPLEXITY

A. Intuition

We propose a novel algorithm to solve the consolidation

problem based on queuing theory techniques. Reserving

certain amount of resources on each PM to accommodate

spikes is the key to bound CVR, and our intuition is to

abstract the reserved spaces as blocks (serving windows

in queuing theory). We give an informal illustration of the

evolution process of our queuing system in Figure 3. Initially

VMs are packed by Rp, and each VM has its own block

(denoted as Re in Figure 3). Normally a VM uses only its Rb

part, but when a spike occurs, the extra Re is put in use. Then

note that collocated Res altogether form a queuing system –

when a spike occurs the VM enters one of the blocks(Res)

for accommodation, and when the spike disappears it leaves

the block until another spike occurs in the future. We should

notice that no waiting space exists in the queuing system,

so the PM capacity constraint would be violated if a spike

occurs while all the blocks are busy, which never happens

when the number of blocks equals the number of hosted
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VMs. However, we may find a certain number of blocks are

idle for the majority of the time, so we can cut off some

blocks only incurring very few violations. Therefore, our

goal comes to reserving minimal number of blocks on the

PM while the performance constraint in Equation (5) is still

satisfied.

B. Resource reservation for a single PM

In this part, We focus on resource reservation for a

single PM. In order to satisfy the performance constraint in

Equation (5), we set the size of a single block uniformly to

the maximum of all Ri
es of collocated VMs. Thus the size

of reserved resources on a single PM can be determined

if hosted VMs and correspondingly the number of blocks

needed are known. For simplicity, we impose the constraint

that pion = pon and pioff = poff uniformly for all i
(pon, poff > 0), and the resource we concerned is one-

dimensional. The relaxation of these constraints is discussed

at the end of this section.

Suppose there are k VMs on the PM and each VM

occupies Ri
b resources initially. We initialize the number

of blocks on the PM as k, and our objective is to reduce

the number of blocks to K, K < k while the performance

constraint is still satisfied. Let θ(t) be the number of busy

blocks at time t, which suggests there are θ(t) VMs in state

ON and k − θ(t) VMs in state OFF. Let O(t) and I(t)
denote the number of VMs that switch state from ON to

OFF (leaving the queuing system) and from OFF to ON

(entering the queuing system) at time t, respectively. Since

the workload of each VM changes independently, O(t) and

I(t) are mutually independent and both follows the binomial

distribution: {
O(t) ∼ B(θ(t), poff )

I(t) ∼ B(k − θ(t), pon)

⇐⇒⎧⎪⎨
⎪⎩
Pr{O(t) = x} = (

x
θ(t)

)
pxoff (1− poff )

θ(t)−x

Pr{I(t) = x} = (
x

k−θ(t)

)
pxon(1− pon)

k−θ(t)−x

(7)

Assume that state switch of VMs happens at the end of a

time interval. Then we have the recursive relation of θ(t),

θ(t+ 1) = θ(t)−O(t) + I(t) (8)

Note that {θ(t), t = 0, 1, 2, ...} is a stochastic process from

which we can construct a Markov chain with k + 1 states

(see Figure 4 for illustration). The stochastic process is said

to be in state i when the number of busy blocks is i at time

t.
Let pij be the transition probability from state i to state j.

That is to say, if θ(t) = i then the probability that θ(t+1) =
j is pij . If we define

(
x
y

)
= 0 when x > y or x < 0, then

pij can be derived as follows.

p12

p21

p01

p10

p02

p20

k

p2k

pk2

p1k

pk1

p0k

pk0

p00 pkk

p11 p22

Figure 4. Illustration of constructed Markov chain from θ(t) with k + 1
states .

pij=Pr{θ(t+ 1) = j|θ(t) = i} (9)

=
i∑

r=0

Pr{O(t) = r, I(t) = j − i+ r|θ(t) = i} (10)

=

i∑
r=0

Pr{O(t) = r|θ(t) = i} ×

Pr{I(t) = j − i+ r|θ(t) = i} (11)

=

i∑
r=0

(
r

i

)
proff (1− poff )

i−r ×
(
j − i+ r

k − i

)
pj−i+r
on (1− pon)

k−j−r (12)

From the definition of pij we have Equation (9). Then

we get Equation (10) from the recursive relation of θ(t)
in Equation (8). Using the fact that O(t) and I(t) are

mutually independent we have Equation (11), and from

the distribution of O(t) and I(t) in Equation (7) we have

Equation (12).

Let P = [pij ] denote the matrix of one-step transition

probabilities which can be calculated by Equation (12) with

given pon and poff values. Let k-tuple Π0 = (1, 0, 0, ..., 0)
denote the initial state, which indicates that at time t =
0, Pr[θ(0) = 0] = 100%. Then we introduce Π =
(π0, π1, π2, ..., πk) and let

Π = lim
t→∞Π0P

t (13)

Then πi is the limiting probability that the stochastic process

is in state i, and Π is the probability distribution of θ(t)
when t reaches infinity. P t is the matrix of t-step transition

probabilities.

Specifically, πi also equates the long-run proportion of

time that stochastic process is in state i [23]. In our case it

means πi equates the proportion of time at which the number

of busy blocks is i.
Next we prove the existence of Π:

Proposition 1: Π defined as above does exist in the

context that the Markov chain is constructed from θ(t).
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Proof: Since k is a finite number, the Markov chain

constructed from θ(t) is irreducible. From Equation (13)

we know all pij > 0, so all the states are aperiodic. For

any state i, if starting in state i it is able to reenter state

i within finite time since pij > 0, so all the states are

recurrent. In a finite Markov chain all the recurrent states are

positive recurrent, and for an irreducible, positive recurrent

and aperiodic Markov chain, limt→∞ P t exists [23]. Hence

Π exists.

Here we use an equivalent equation to get Π instead of

solving Equation (13).

ΠP = Π

⇐⇒
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑
l=0

πlpl0 − π0 = 0

k∑
l=1

πlpl1 − π1 = 0

......
k∑

l=k

πlplk − πk = 0

(14)

Equation (14) is a typical homogeneous system of linear

equations that can be solved by Gaussian elimination.

Finally, we can derive the number of blocks needed from

Π. Let K be the minimum number that K < k and satisfies

K∑
m=0

πm ≥ 1− ρ (15)

If the number of blocks on Hj is reduced from k to K, then

the queuing system being in state i, i ≥ k at time t indicates

vio(j, t) = 1, and vice versa. Thus we have

CV Rj = lim
t→∞

∑
t
vio(j, t)

t
=

k∑
m=K+1

πm

= 1−
K∑

m=0

πm ≤ ρ

(16)

Therefore, K is the minimum number of blocks needed on

a single PM after reduction to satisfy performance constraint.

This algorithm is described in Algorithm 1.

In queuing theory, our model is formalized as a dis-

crete time, finite source, k-window queuing system with

geometric service time and no waiting space (finite-source

Geom/Geom/k). Relevant queuing theory basics can be

found in [23] and detailed analysis on this model is presented

in [24].

Algorithm 1 MapCal

Require: input:

The number of VMs on a specific PM, k;

The probability that VM state switches from ON to OFF,

poff ;

The probability that VM state switches from OFF to

ON, pon;

Ensure: The number of blocks needed, K;

1: Calculate P , the matrix of one-step transition probabil-

ity according to Equation (12);

2: Get the coefficient matrix of the homogeneous system

of linear equations described in Equation (14);

3: Solve the equation system via Gaussian elimination to

get Π;

4: Calculate K from Π according to Equation (15);

5: return K;

Algorithm 2 QueuingFFD

Require: input:

The number of VMs, n;

The number of PMs, m;

The maximum VMs allowed on a single PM, d;

VM specifications, {Vi};
PM specifications, {Hi};

Ensure: A VM-to-PM placement mapping, X;

1: Initialize array mapping of size d + 1. Let

mapping[0]← 0;

2: Get pon and poff from Vi;

3: for each k ∈ [1, d] do
4: Invoke Algorithm 1 with arguments k, poff , pon, and

get the return value K;

5: Let mapping[k]← K;

6: end for
7: Cluster VMs so that VMs with similar Re are in the

same cluster;

8: Sort the clusters according to Re in descending order;

9: Sort VMs in each cluster according to Rb in descending

order;

10: for each Vi (by sorted order) do
11: place Vi on the first PM Hj that satisfies the constraint

in Equation (17), and set xij ← 1;

12: end for
13: return X;

C. VM consolidation with resource reservation

In this part, we present the complete VM consolidation

scheme of n VMs onto m PMs. We tend to locate VMs

with similar Re onto the same PM to reduce the averaged

size of a single block, so VMs are consolidated in a two-

step manner – first VMs are clustered and sorted, and then

each VM is mapped onto a specific PM. We introduce

mapping(k), which denotes if there are k VMs on a
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PM, then mapping(k) blocks are needed to satisfy the

performance constraint on the PM. mapping(k) can be

calculated by Algorithm 1 with given k, pon and poff .

We assume that a single PM can host up to d VMs, so

mapping(k) can be calculated for all possible k from 1 to d
preliminarily, followed by a two-step consolidation scheme

analogous to the First Fit Decrease (FFD) heuristics with

resource reservation based on mapping(k). It is reminded

that the size of reserved resources is block size multiplying

block number, where block size is conservatively set to the

maximum Re of the hosted VMs. Thus the constraint to

judge whether Vi can be placed on Hj is

max{Ri
e,max{Rs

e|s ∈ Tj}} ×mapping(|Tj |+ 1)

+Ri
b +

∑
s∈Tj

Rs
b ≤ Cj

(17)

Tj denotes the set of indices of VMs that have been already

placed on Hj , and Cj is the capacity of Hj . Equation (17)

indicates that a VM can be placed on Hj if and only if the

sum of the new size of the queuing system and the new total

size of Rbs does not exceed the capacity of Hj .

The consolidation scheme is presented in Algorithm 2.

As is shown, mapping(k) is calculated in Line 1-6 for each

k ∈ [1, d]. In Line 7-8 VMs are clustered so that VMs with

similar Re are in the same cluster, and clusters are sorted

in descending order according to Re. This is a cluster-level

heuristics to let collocated VMs have similar Re thus to

minimize the averaged size of blocks on all PMs. Next, in

Line 9-12 VMs within each cluster are sorted in descending

order according to Rb, and each VM is mapped onto a PM

by sorted order with First Fit heuristics. At last the VM-to-

PM mapping X is returned.

D. Algorithm Complexity

For Algorithm 1, calculating the matrix of one-step

transition probability costs roughly O(k3) if we assume

all constants have been calculated preliminarily. Gaussian

elimination costs O(k3), and calculating K costs O(k). Thus

the time complexity of Algorithm 1 is O(k3). For Algorithm

2, to calculate mapping(k) Algorithm 1 is invoked for

each k ∈ [1, d], so this process costs roughly O(d4). The

following FFD heuristics costs O(nlogn) for the process of

sorting and O(mn) for the process of placement. Specific

clustering techniques is out of the scope of this paper which

is not discussed here, and we use a simple O(n) clustering

method in our algorithm. Therefore, the time complexity of

the complete consolidation algorithm is O(d4+nlogn+mn).

E. Discussion

We emphasize that our algorithm can easily adapt to the

online situation: when a new VM arrives, we place it on

the first PM that satisfies the constraint in Equation (17),

and recalculate the size of the queue; when a VM quits, we

simply recalculate the size of the queue on the PM; when

a batch of new VMs arrives, we use the same scheme as

Algorithm 2 to place them. Additionally, if pon and poff
varies among VMs, we need to round them to uniform

values. In this situation, VM arrival and VM exit may affect

the accuracy of the rounded pon and poff values, which

requires periodical recalculation of the rounded pon and

poff .

The resource type in the original algorithm is one-

dimensional, and here we outline how to transform it into a

multi-dimensional version: if each dimension of resources is

correlated we can map them to one dimension and apply the

original algorithms; otherwise our queuing algorithm should

be applied to each dimension and to quantify the amount of

reserved resources for each dimension of resource type in-

dependently. In this case the original two-step consolidation

scheme in Algorithm 2 is not applicable, so we need to

use a simpler heuristic such as First Fit and performance

constraints should be satisfied on all dimensions. The multi-

dimension consolidation issue with bursty workload is in-

cluded in our future work.

V. EXPERIMENT

A. Overview

In this section, we first evaluate the computation cost of

our algorithm briefly, and then quantify the reduction of

the number of used PMs, as well as compare the runtime

performance with commonly used packing strategies. Two

commonly used packing strategies are considered here which

both use the First Fit Decrease heuristic for placement, but

the first strategy is to provision VMs for peak workload

(FFD by Rp) while the second provision VMs for normal

workload (FFD by Rb). Provisioning for peak workload

is usually applied for the initial VM placement [7] where

cloud users choose the peak workload as the fixed capacity

of the VM to guarantee performance. On the other hand

provisioning for normal workload is usually applied in the

consolidation process, since at runtime the majority of VMs

are in state OFF.

We use Xen Cloud Platform (XCP) 1.3 as our testbed to

enable live migration in our system. XCP is an open-source

cloud platform of its commercial counterpart XenServer. Our

proposed scheme can be easily integrated into an existing

enterprise-level computing cloud since it simply compute

an amount of reserved resources on each PM. Both the

controller node (the master) and the compute nodes (the

slaves) are machines with Intel Core i5 Processor with

four 2.8GHz cores and 4 GB memory. Ubuntu 12.04 LTS

Server Edition is installed both on the PMs and VMs. The

resource we mentioned in the theoretical part can be any

one-dimensional resource type such as CPU, memory, disk

I/O, network bandwidth, or any combination of them that

is mapped to one dimension. For simplicity, memory is

designated as the resource type concerned in this section.
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Figure 5. Packing result. Experiment settings are as follows: ρ = 0.01, d = 16, pon = 0.01, poff = 0.09. Ri
b, Ri

e, and PM capacity Cj is randomly
generated from a certain range. Cj ∈ [80, 100]. For (a)Rb = Re, Rb, Re ∈ [2, 20]. For (b)Rb > Re, Rb ∈ [12, 20] and Rb ∈ [2, 10]. For (c)Rb < Re,
Rb ∈ [2, 10] and Re ∈ [12, 20].
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Figure 6. Performance result for each placement. The performance measurement capacity violation ratio (CVR) is the fraction of time that the capacity
constraint is violated.

We consider both the situations without and with live

migration, in which different measurements are used to

evaluate the runtime performance. For experiments without

live migration, only local resizing is allowed to dynamically

provision resources, and CV R defined in Section III is

adopted as the performance measurement. Next we add live

migration to our system to simulate a more realistic comput-

ing cluster, in which the number of migrations reflects the

level of performance and the number of PM used reflects

the level of energy consumption.

For variety’s sake, three workload patterns are distin-

guished for each experiment: Rb = Re, Rb > Re and

Rb < Re, which denotes workload with normal spike

size, small spike size and large spike size respectively. It

is observed that VM’s workload pattern do influence the

packing result and the performance.

B. Computation cost

As mentioned earlier, the time complexity of our consoli-

dation algorithm is O(d4+nlogn+mn). For completeness,

we present the experimental computation cost here with

reasonable d and n values. The result (see Figure 7) shows

that our algorithm incurs very few overheads with moderate

n and d values. The cost variation with respect to n is not

even distinguishable in millisecond-level.
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Figure 7. The computation cost of Algorithm 2 with various d and n
values to get the placement matrix X . The cost of the actual placement
process varies with hardware and software configuration and thus is not
included.

C. Dynamic scheduling without live migration

In this part we choose Rb and Re randomly from a

certain range for each VM, packing VMs and running them

simulatively to assess the performance. Then we repeat the

experiment to gather statistical data. The capacity violation
ratio (CVR) is used here as the measurement of runtime

performance. Since FFD by Rp never incurs capacity vi-

olations, it is not included in the performance assessment.

As we discussed in Section III, pon indicates the frequency

of spike occurrence and poff indicates the duration of a

spike. For a bursty workload spikes usually occur with low
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Figure 8. Sample of generated workload used in the experiment

frequency and last shortly, so we choose pon = 0.01 and

poff = 0.09. Workload patterns are distinguished via setting

different range of Rb and Re. (see comments of Figure 5

for detailed experiment settings).

As shown in Figure 5, the packing result of our proposed

algorithm (denoted as QUEUE) reduce the number of PMs

used significantly compared with FFD by Rp (denoted as

RP). For Rb > Re, the number of PMs used is reduced

by 45% compared with FFD by Rp, where the ratios for

Rb = Re and Rb < Re are 30% and 18% respectively. FFD

by Rb (denoted as RB) uses even less PMs but the runtime

performance is disastrous according to Figure 6 – the CVR

is unacceptably high. With larger spike size (Rb < Re), the

packing result of QUEUE is better because more PMs are

saved compared with RP and less additional PMs are used

compared with RB (see Figure 5(c)). Simultaneously, with

larger spike size the averaged CVR is slightly higher but still

bounded by ρ (see Figure 6(c)). The case of smaller spike

size (Rb > Re) shows opposite result. As well we mention

the existence of very few PMs with CVRs slightly higher

than ρ in each experiment.

D. Adding live migration to the system

In this part we add live migration to our system to simulate

a more realistic computing cluster. Since burstiness may be

caused in a web server by flash crowed with bursty incoming

requests, we develop programs in VMs to simulate web

servers dealing with computation-intensive user requests.

When a spike occurs, more users than usual are visiting the

server. Users are sending requests to the server periodically,

and the period for a user to send request (think time) follows

negative exponential distribution with mean=1. Since in

reality the user think time cannot be infinitely small, we

set a lower limit=0.1. The workload is quantified by request

number and each VM generate the workload dynamically

with its specific Rb and Re. Figure 8 shows a sample of the

generated workload.

Dynamic scheduling features are integrated into our

testbed, thus to automatically scale up/down the resource

allocation in a on-demand manner, as well as to conduct

Pattern Rb Re
Range of users accommodated

normal capability peak capability

Rb = Re

small small 400 800

medium medium 800 1600

large large 1600 3200

Rb > Re
medium small 800 1200

large medium 1600 2400

Rb < Re
small medium 400 1200

medium large 800 2400

Table I
EXPERIMENT SETTINGS ON WORKLOAD PATTERNS

live migration when local resizing is not capable to allocate

enough resources. To distinguish different workload patterns

in this part, Rb and Re are classified as small, medium and

large, and certain number of customers can be accommo-

dated for each specification – 400 users for small, 800 users

for medium and 1600 users for large. Finally, combinations

of Rb and Re specifications are selected for each workload

pattern (see Table I).

The packing result is consistent with that in Figure 5 so

it is not presented here. Adding migration to the system,

the number of PMs used varies at runtime, so we record

the real-time number of PMs used and migration events

during the evaluation period. Generally a web server runs

for very long time and do not quit usually, so we tend

to simulate the process that the system stabilizes after

consolidation and assume the number of PMs used and

migration events remain stable after the evaluation period.

Hence more PMs used at the end of the evaluation period

lead to more overall energy consumption during VM life

cycle. In the meantime, two measurements are proposed for

evaluation – the total number of migrations and the number

of PMs used at the end of the evaluation period, which

reflect the level of performance and the level of energy

consumption respectively. We choose time interval σ=30s as

the information update period, and the length of evaluation

period is 100σ. Actually, it is observed that the system have

stabilized merely within 10σ or so.

Three workload patterns Rb = Re, Rb > Re, Rb < Re

are distinguished, and for each pattern we compare the

runtime performance of three packing strategies – packing

by our proposed scheme (denoted as QUEUE), FFD by Rb

(denoted as RB), and a simple burstiness-aware algorithm

(denoted as RB-EX). RB-EX is simply to reserve at least

δ-percentile resources on each PM, which is an applicable

consolidation strategy in reality when nothing about the

workload pattern is known except the existence of burstiness.

Specifically we choose δ = 0.3(30%). We run each experi-

ment setting for 10 times and gather the statistical result.

Average values, as well as the maximum and minimum

values of measurements are presented in Figure 9.
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Figure 9. Performance result. ρ=0.01, pon=0.01, poff=0.09, σ = 30s, evaluation period=100σ, δ = 0.3 for RB-EX, and VM specifications are selected
according to Table I. Bars show the average values and extended whiskers show the maximum and minimum values..

As is shown in Figure 9(a), RB incurs unacceptably

more migrations than QUEUE, while RB-EX alleviates this

problem to some extent. This trend attenuates in Rb > Re

and enlarges in Rb < Re. Figure 9(b) shows at the end

of the evaluation period RB commonly uses less PMs than

QUEUE. We introduce the term idle deception to refer

to the situation that a PM is falsely reckoned idle by

the system unaware of workload burstiness. In a highly

consolidated cloud, idle deception is likely to happen so

that a busy PM is selected as the migration target. In turn,

this over-provisioned PM tends to become the source PM

of migration later, which causes a vicious feedback circle

where migrations occur constantly inside the system while

the number of PMs used keeps at a low level. We call this

phenomenon cycle migration.
The experimental result of RB-EX show more subtle

phenomenon. As we have observed, two kinds of result

are possible for RB-EX depending on different experiment

settings – (i) slightly more PMs than RB are used, while

cycle migration still exists like in RB or (ii) cycle migration

disappears but more PMs than QUEUE are used. Hence

we conclude that RB-EX performs not as well as our

consolidation scheme.
Next we investigate in the time-order patterns of migration

events. As illustrated in Figure 10, QUEUE incurs very

few migrations throughout the evaluation period. At the

beginning of an evaluation period RB and RB-EX incurs

excessive migrations due to the over-tight initial packing,

and the number of PMs used increases rapidly during this

period. RB incurs unacceptably large number of migrations

throughout the evaluation period, while RB-EX either incurs

considerable number of migrations constantly and use only

slightly more PMs than RB, or incurs very few migrations

as QUEUE but larger (sometimes equal) number of PMs are

used than QUEUE.
Finally, we conclude our experimental observations as

follows: (i) QUEUE reduce the number of PMs used by

45% with large spike size and 30% with normal spike size
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Figure 10. Comparison of time-order patterns of migration events. This
sample is selected from one of the experiments for Rb = Re. Similar
pattern is also observed for Rb > Re and Rb < Re.

compared with RP (ii) QUEUE incurs very few migrations

throughout the experiment (iii) Both RB and RB-EX incur

excessive migrations at the beginning of an experiment

due to the over-tight initial packing, and the number of

PMs used increases rapidly during this period. (iv) RB

incurs unacceptably large number of migrations constantly

throughout the experiment, and the overall performance is

seriously degraded. (v) As the cause of excessive number of

migrations, the phenomenon of cycle migration is observed

in RB due to falsely picking migration target. (vi) RB-

EX performs not as well as QUEUE, while either cycle

migration still exists or cycle migration disappears but more

PMs are used than QUEUE. (vii) For larger spike size

(Rb < Re), the packing result of QUEUE is better while

the performance is slightly worse than those of normal spike

size (Rb = Re), whereas Rb < Re shows opposite result.

VI. CONCLUSION

Burstiness is a common pattern of VM workload in

production data centers, and server consolidation also plays

an important role in cloud computing. Both topics have been

studied extensively for years, but no work explicitly takes
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workload burstiness into consideration during the consoli-

dation process. On the other hand, in a highly consolidated

cloud VM performance is prone to degradation without

appropriate VM placement if distinct burstiness exists. To

alleviate this problem we have to use more PMs than needed

which leads to more energy consumption. To balance the

performance and energy consumption with respect to bursty

workload, certain amount of resources need to be reserved

on the PM to accommodate burstiness, and to quantify

the amount of reserved resources is not a trivial work. In

this paper we propose a burstiness-aware VM consolidation

scheme based on the two-state Markov chain. We formulate

the performance constraint and show that our proposed

algorithm is able to guarantee this performance constraint.

The experiment result show that our algorithms improve

the consolidation ratio by up to 45% with large spike size

and around 30% with normal spike size compared to those

provisioning for peak workload, and a better balance of per-

formance and energy consumption is achieved in comparison

with other commonly used consolidation schemes.
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