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Cost optimization for workflow applications described by Directed Acyclic Graph (DAG)
with deadline constraints is a fundamental and intractable problem on Grids. In this paper,
an effective and efficient heuristic called DET (Deadline Early Tree) is proposed. An early
feasible schedule for a workflow application is defined as an Early Tree. According to the
Early Tree, all tasks are grouped and the Critical Path is given. For critical activities, the
optimal cost solution under the deadline constraint can be obtained by a dynamic pro-
gramming strategy, and the whole deadline is segmented into time windows according
to the slack time float. For non-critical activities, an iterative procedure is proposed to max-
imize time windows while maintaining the precedence constraints among activities. In
terms of the time window allocations, a local optimization method is developed to mini-
mize execution costs. The two local cost optimization methods can lead to a global near-
optimal solution. Experimental results show that DET outperforms two other recent level-
ing algorithms. Moreover, the deadline division strategy adopted by DET can be applied to
all feasible deadlines.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Workflow applications are generally described as collections of tasks to be processed in a well-defined order to accom-
plish a specific goal [26]. Many complex applications in e-science and e-business can be modeled as workflows [12,29]. Be-
cause of the large amounts of computation and data involved, these workflows require the power of the Grid to run
efficiently. Grid computing [13] has emerged as the next generation computing platform for solving large-scale problems
in science, engineering, and commerce. It facilitates the sharing and aggregation of heterogeneous and distributed resources,
such as computing resources, data sources, instruments, and application services. Grid workflow can be defined as the com-
position of different Grid application services that run on heterogeneous and distributed resources in a well-defined order to
accomplish a specific goal [28]. Yu and Buyya [29] proposed a taxonomy that characterizes and classifies various approaches
for building and executing Grid workflows. A popular representation of workflow applications is Directed Acyclic Graph
(DAG), in which nodes represent individual tasks and directed arcs or edges represent inter-task data or control dependen-
cies. DAG-based workflow applications usually have different structures, such as pipeline, parallel and hybrid structures. A
pipeline application executes a number of tasks in a single sequential order. A parallel application requires multiple pipelines
to be executed in parallel. Fig. 1a shows a neuroscience workflow [33] where there are four pipelines (1–2, 3–4, 5–6 and 7–8)
before task 9. A hybrid structure application is a combination of both parallel and sequential applications. For example,
Fig. 1b shows a protein annotation workflow [25] developed by the London e-Science Centre.
. All rights reserved.
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Workflow scheduling is one of the key problems on Grids. It is meant to deal with the allocation of tasks to suitable re-
sources so that the objective function can be minimized or maximized while maintaining task-precedence constraints. A
number of Grid workflow management systems with scheduling algorithms have been developed by several projects, such
as Condor DAGMan [16], GrADS [8] and Pegasus [5,12]. They facilitate the execution of workflow applications and minimize
their execution time on Grids. However, Grid resources are normally heterogeneous in terms of their architectures, powers,
configurations, and availabilities. They are owned and managed by different organizations with different access policies and
cost models that vary with time and the users. The resource owners and end-users have different goals, objectives, and de-
mand patterns. Due to these unique characteristics, different and effective performance parameters (i.e., quality of service),
such as time, cost, and reliability [24], are applied to reflect the actual characteristics of Grids. QoS (quality of service) is a
determinant factor used to ensure customer satisfaction that can be expressed as the utility functions over QoS attributes or
the QoS constraints. Therefore, QoS-based workflow scheduling becomes a significant and challenging problem. This paper
aims to study the QoS optimization strategy for workflow scheduling on Grids.

The remainder of the paper is structured as follows. Section 2 introduces the related work. Section 3 formulates the work-
flow scheduling problem. An early feasible schedule and its related definitions are introduced in Section 4. Section 5 reviews
the leveling algorithms and describes the proposed algorithm, DET. In Section 6, experimental results are given, followed by
conclusions in Section 7.

2. Related work

Currently, QoS-based scheduling is an active research area on Grids. Foster et al. [15] described a general-purpose archi-
tecture for reservation and allocation (GARA) that supports flow-specific QoS specification. Al-Ali et al. [3,4] extended QoS
properties to the service abstraction of OGSA (Open Grid Service Architecture)[14]. The realization of QoS requires mecha-
nisms such as advance or on-demand reservation of resources. D̆ogan and Ozguner [9] considered the scheduling problem of
a set of independent tasks with multiple QoS requirements, including timeliness, reliability, and security. Golconda and
Ozguner [17] compared five QoS-based scheduling heuristics for independent tasks in terms of three parameters: the num-
ber of satisfied users, makespan, and total utility of the meta-task. Buyya et al. [7] proposed a distributed computational
economy-based framework called GRACE (Grid Architecture for Computational Economy). They also developed three heuris-
tic scheduling algorithms for cost, time, and time-variant optimization problems with deadline and budget constraints [1,6].
Li and Li [21,22] presented QoS optimization strategies for multi-criteria scheduling problems. As opposed to the indepen-
dent-tasks scheduling problem, this paper aims to schedule workflow applications described by a Directed Acyclic Graph.

QoS-based Service selection is also popular. Considering multi-dimensional QoS properties such as price, duration, reli-
ability, availability, and reputation, Zeng et al. [32] formulated the properties as weighted objective functions. For the service
composition model described by the statechart, they also presented an integer programming method that addresses the
issue of dynamic service selection based on user satisfaction. Gu and Nahrstedt [18] and Xu and Nahrstedt [27] proposed
global planning algorithms for dynamic QoS-aware service composition, but the underlying service composition model does
not support parallelism or branching. Jin et al. [19] considered service composition represented by DAG on Grids. A multi-
dimensional QoS model was presented, and heuristics based on simulated annealing were established to minimize the
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performance/price of service composition under deadline and budget constraints. As opposed to the previously mentioned
algorithms, this paper considers two primary factors (time and cost) that users are generally concerned with, and focuses on
the cost optimization for Grid workflow scheduling with deadline constraints.

Many time-cost optimization methods have been proposed for scheduling DAG-based Grid workflow applications. Yu
et al. [30] proposed a deadline division strategy called Deadline Top Level (DTL) for scheduling scientific workflow applica-
tions with deadline constraints. Workflow tasks are first grouped based on their depths in the graph, and then the whole
deadline is divided into level deadlines. All tasks in the same level have the same start time and sub-deadline. DTL is a very
simple but efficient heuristic. Lin and Lin [23] conceptualized the Grid network into a prioritized CPM network when the
number of gird services is large enough to accommodate the number of tasks that need to be run simultaneously at any given
time. They identified the time-cost optimization problem for DAG-based Grid applications as the discrete time-cost tradeoff
problem (DTCTP) in project scheduling [11]. DTCTP has been investigated by numerous researchers in project management.
De et al. [11] presented an excellent review for DTCTP, and proved that the problem is a strongly NP-hard problem for gen-
eral project networks [10]. Currently, the best-known algorithms for solving the optimization problem rely on dynamic pro-
gramming and the branch and bound method, but they generally suffer from computational limitations. Heuristic
procedures for the DTCTP have been sparse. Akkan et al. [2] provided lower and upper bounds using column generation tech-
niques based on network decomposition. Efficient and effective heuristics are very suitable for dynamic Grid environments.
According to Yu and Lin, we have investigated a heuristic called Deadline Bottom Level (DBL) [31]. By analyzing the parallel
and synchronization properties of DAG, all tasks are partitioned into BL (Bottom Level) groups using a backward method. The
workflow deadline is segmented into the time intervals of all tasks. All tasks in each bottom level have the same sub-dead-
line, but the starting time of a task in each level is determined by the maximum finish time of its predecessors, rather than
the finish time of its parent group which is adopted by DTL. The DBL algorithm can considerably improve the average per-
formance of DTL. Although the leveling algorithms (DBL and DTL) are very simple and relatively effective, the temporal rela-
tionships may be partially changed, and workflow applications with shorter deadline constraints cannot be optimized
effectively. In addition, two leveling algorithms do not consider the sequential characteristics of DAG.

In this paper, a heuristic called Deadline Early Tree (DET) is proposed. The Early Tree (ET) is defined. According to the Early
Tree, the Critical Path is given and workflow tasks are grouped. For critical activities, the optimal cost solution can be ob-
tained by a dynamic programming method. The whole deadline is also segmented into time windows in terms of the slack
time float. For non-critical activities, an iterative procedure is proposed to maximize time windows while keeping the pre-
cedence constraints among activities. A local cost optimization method is applied to non-critical activities within the allo-
cated time windows. The performance and efficiency of the proposed approach are evaluated and compared to two
leveling algorithms.

3. Problem description

Many complex applications in e-science and e-business can be modeled as workflows, which can be described by Directed
Acyclic Graph (DAG). Let G = {V,E} denote the DAG, where the node set V = {1,2, . . .,n} denotes the set of tasks (or activities),
and the directed arc (edge) set E represents inter-task data or control dependencies. Assume these nodes are topologically
numbered such that an arc always leads from a smaller to a higher node number, i.e., i < j if task i is a predecessor of task j.
Task 1 and n are dummy single-start and single-terminal nodes (the processing time and execution cost of dummy node are
equal to 0). Each arc (i, j) 2 E represents the precedence constraint from i to j, i.e., task j cannot start before i has finished. The
DAG representation of the workflow example in Fig. 1b is shown in Fig. 2, where node 1 and node n are two dummy nodes.

Consider a Grid network with many computing services, including CPU, bandwidth, data access, software and other hard-
ware. Each computing service can provide many service levels with differentiated service qualities, i.e., multiple services pro-
vide similar functionality but with different non-functional properties, such as processing time, cost, and reliability. Quality
of Service (QoS) becomes a key factor to differentiate these services. Thus, for any activity i in graph G, there are many can-
didate services that can fulfill it. All candidate services for i are called the service pool (SP) of activity i, denoted as SP(i). Let
l(i) denote the service pool length, i.e., l(i) = jSP(i)j. Service pools of dummy activities are empty. In the same service pool,
different services have different processing times and costs. Generally, the faster a service is, the more a user pays [30].
Let Sij be the jth service name for conducting activity i, tij be the processing time on service Sij, and cij be the cost for executing
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Fig. 2. DAG representation of the workflow application sample in Fig. 1b.



Table 1
The service pool example for Fig. 2.

Service name Cost Time Service name Cost Time

S2,1 6 10 S9,2 18 5
S2,2 8 8 S10,1 100 30
S2,3 11 6 S10,2 150 20
S3,1 10 5 S10,3 200 15
S3,2 12 4 S11,1 50 10
S4,1 5 6 S11,2 80 6
S5,1 10 4 S12,1 18 9
S5,2 15 2 S13,1 40 25
S6,1 5 3 S13,2 50 20
S6,2 10 2 S14,1 80 30
S6,3 20 1 S14,2 120 20
S7,1 25 15 S14,3 150 15
S7,2 30 10 S15,1 50 13
S8,1 30 3 S15,2 60 10
S9,1 14 8

Y. Yuan et al. / Information Sciences 179 (2009) 2562–2575 2565
i on service sij. Thus, the 3-tuple (Sij, tij,cij) denotes the jth service that can fulfill activity i. The service pool of activity i can be
expressed as SP(i) = {(Sij, tij,cij)j1 6 j 6 l(i)}. If one lets SP(G) denote the service pool of graph G, then SP(G) = {SP(i)ji 2 V}. Table
1 shows a service pool example for Fig. 2.

Let dn be the given time constraint (deadline), which is also the latest completion time of task n. The objective of this prob-
lem is to select an appropriate service for each task in a workflow application so that the total cost can be minimized while
meeting the given deadline.

Assume that the number of gird services is large enough to accommodate the number of tasks that need to be run simul-
taneously at any given time, so that the waiting time for an available service is negligible. Thus, each service is able to pro-
vide the expected response time and execution cost. For each kind of service allocation to all workflow tasks, there exists a
corresponding critical path. The workflow completion time is the duration of the critical path, and the total cost is the sum of
the prices of all of the tasks.

Since the service selection is associated with the service cost and total completion time, the above problem is transformed
into the time-cost tradeoff problem [11]. Because each candidate service with a shorter responding time corresponds to a
higher price, the service selection is identical to the discrete time–cost tradeoff problem. Let fi (1 6 i 6 n) be the completion
time of task i, and let xik be a 0–1 variable that is 1 if service k is selected for executing activity i and 0 otherwise. The opti-
mization problem can be described by the following formulation
min
X
i2V

X
16k6lðiÞ

cikxik

s: t:
XlðiÞ
k¼1

xik ¼ 1; i 2 V

f i 6 fj �
X

16k6lðiÞ
tikxik; 8ði; jÞ 2 E

f n 6 dn

xik 2 f0;1g; i 2 V ; 1 6 k 6 lðiÞ

The objective function min

P
i2V

P
16k6lðiÞcikxik corresponds to minimizing the workflow total cost.

PlðiÞ
k¼1xik ¼ 1; i 2 V ensures

that exactly one service should be chosen for each activity. The constraints fi 6 fj �
P

16k6lðiÞtikxik;8ði; jÞ 2 E maintain the pre-
cedence constraints among the activities. Constraint fn 6 dn guarantees that the workflow will be completed by its deadline.
Constraint xik 2 {0,1}, i 2 V, 1 6 k 6 l(i) guarantees that xik is a 0–1 variable.

The traditional time-cost tradeoff problem was proved to be strongly NP-hard in general project networks [10]. In addi-
tion, Grid is a highly dynamic, distributed environment. Therefore, it is essential to investigate effective and efficient algo-
rithms for workflow instances, which are common in practice.

4. An early feasible schedule

For "i 2 V, let the 3-tuple ðS�i ; t�i ; c�i Þ denote the fastest service in service pool SP(i); then t�i should hold such that
t�i ¼ min
16j6lðiÞ

ftijg; for 8ðSij; tij; cijÞ 2 SPðiÞ
In Fig. 2, the number above each node denotes the minimum processing time of the activity. The earliest start time and finish
time of each activity can be computed based on traditional forward pass calculations. Let si be the earliest start time and fi be
the earliest finish time of activity i. The statement sj � si P t�i is true for "(i, j) 2 E. An early feasible schedule can be obtained
if all of the activities start with the earliest time.
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Definition 1. A spanning tree T is the sub-graph of G with n � 1 arcs and no loops. A tree is called an Early Tree (ET) if it is
associated with an early feasible schedule, which can be formulated as follows
s1 ¼ 0
sj � si ¼ t�i ; 8ði; jÞ 2 ET

sj � si P t�i ; 8ði; jÞ 2 E n ET

8><
>:
where ET denotes the edges of the Early Tree, and EnET is the edge subset of E obtained by deleting ET.
If one lets pred(i) denote the immediate predecessors of activity i, then the construction procedure of the Early Tree can be

written as follows.

Early Tree Generation Algorithm (ETGA)

1. ET NULL, s1 0, f1 0
2. for i = 2 to n
2.1. fk max{fjjj 2 pred(i)};
2.2. si fk;
2.3. fi  si þ t�i ;
2.4. ET ET [ (k,i).

3. Output ET, si, fi(1 6 i 6 n);

The Early Tree contains all activities. For the graph in Fig. 2, the Early Tree constructed by ETGA is shown in Fig. 3, in
which entry node 1 is the root of the ET. All nodes with no successors are called leaves, such as 3, 5, 8, 11, 14 and 16. For
any activity i(1 6 i 6 n), its time interval can be determined by its earliest start time si and its earliest finish time fi, i.e., [si, fi].

Definition 2. A path of the Early Tree is composed of all activities from the root node to some leaf. The path length is the sum
of the processing time of all activities on the path.

The number of paths is actually the number of leaves of the ET. Let LET be the set of leaves and p(j) be the node set
including all activities from the root to leaf j. The path set of the ET, denoted as PET, can be given by
PET ¼ fpðjÞjj 2 LETg
If one lets Cp(j) denote the path length of p(j), then its path length is also equal to the earliest completion time of leaf j. For
example, the path set of the ET in Fig. 3 is PET = {p(8) = {1,4,8}, p(11) = {1,2,6,7,11}, p(14) = {1,2,6,7,10,14}, p(3) = {1,3},
p(5) = {1,5}, p(16) = {1,2,6,7,9,12,13,15,16}}, and the path lengths of all these paths are 9, 23, 47, 4, 2 and 61, respectively.

Definition 3. The path with the longest path length in PET is called the Critical Path. All activities on the Critical Path are
called critical activities.

Since exit node n of the Early Tree has the maximum finish time, p(n) is the Critical Path of the ET. For the example in
Fig. 3, the Critical Path is p(16), and both dummy activity 1 and dummy activity 16 are on the Critical Path.

The Early Tree corresponds to an early feasible schedule solution with the minimum completion time.

Definition 4. The difference between the deadline and the Critical Path length is the workflow total float.
The workflow total float (denoted as WTF) is the maximum delay for workflow execution. It can be calculated by
WTF ¼ dn � CpðnÞ
Obviously, the workflow total float should satisfy WTF P 0, i.e., a feasible deadline dn should be greater than or equal to the
workflow earliest completion time Cp(n).

In terms of the above statements, the workflow cost may be decreased by forcing its completion time to the given
deadline.
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5. Proposed heuristic based on the Early Tree

As described previously, the cost optimization problem for workflow scheduling with a deadline constraint is generally
NP-hard. A sub-optimal solution can be obtained by local optimization strategies. Two leveling algorithms (DBL and DTL) are
able to partition the tasks into different levels in terms of the parallel and synchronization properties. All tasks in the same
level have the same sub-deadline. As opposed to leveling-based deadline division strategies, the DET algorithm partitions all
tasks into different paths based on the Early Tree. The whole deadline is divided into time windows of critical activities,
which can be applied to all feasible deadlines. An iterative algorithm is proposed to determine the time windows of non-crit-
ical activities while keeping the precedence constraints among tasks. For critical activities and a set of sequential tasks, the
execution costs are locally optimized based on a dynamic programming strategy, which can improve the performance. Be-
fore introducing the details of the DET algorithm, we first review the two leveling algorithms.

5.1. Leveling algorithms

DTL [30] and DBL [31] are two heuristics that optimize the workflow total cost using the deadline division strategy, and
they consist of three same phases: task leveling, deadline assignment, and service selection. The difference between DTL and
DBL is that all tasks are grouped by different leveling methods. In the following, the main steps of DBL are shown.

5.1.1. Task leveling
The Bottom Depth (BD) of a node is defined as the maximum number of edges along any path from the node to the exit

node in graph G. Let BD(i) denote the bottom depth of task i; it is computed recursively by traversing the graph upward start-
ing from the exit node. The exit node has a bottom depth of zero. Then
BDðiÞ ¼
0; i ¼ n

max
j2succðiÞ

fBDðjÞg þ 1; otherwise

(

where succ(i) is the set of immediate successors of task i. All tasks with the same bottom depth can be grouped into a bottom
level. Let BLk be the kth bottom level. It can be calculated by
BLk ¼ fijBDðiÞ ¼ k; i 2 Vg
All levels are sorted by their bottom depths. Then, the list length (denoted as GL) is BD(1) + 1, where the first line is BLBD(1) and
the last line is BLBD(n). For any BLk (BD(n) < k < BD(1)), its predecessor level is BLk+1 and its successor level is BLk�1.

5.1.2. Deadline assignment
Those tasks in the same bottom level have parallel and synchronization characteristics. Therefore, all tasks in each level

are assigned the same sub-deadline so that they still preserve the synchronization finish characteristics. On the other hand,
the start execution time of each task in the same level can be computed according to its parent tasks. Thus, the time intervals
of each task can be determined. When each task selects the fastest service for execution, the Level deadline dBLi

, the start time
bj, and the finish time dj of task j can be computed by
bj ¼ 0; j ¼ 1

dBLi
¼max bj þ min

16k6lðjÞ
ftjkg

� �
; j 2 BLi

dj ¼ dBLi
; j 2 BLi

bj ¼maxfdig; i 2 predðjÞ

8>>>>>><
>>>>>>:

ð1Þ
Eq. (1) may change the Critical Path because it may delay the partial tasks’ start times and finish times. Therefore, the earliest
completion time of the workflow may also be delayed. Thus, the earliest completion time determined by Eq. (1) is called the
Bottom Level completion time, which is denoted as BLmin. It is also equal to the level deadline of level BL0, i.e., BLmin ¼ dBL0 .

For a given deadline dn, if dn P BLmin, then the whole deadline can be divided into level deadlines by Eq. (1). The division
strategy not only meets the deadline constraint, but the time interval for each task can also be further enlarged by allocating
the leveling time float to each level equally. Let aLS denote the level float. Then aLS = (dn � BLmin)/(GL � 2)(except for two dum-
my levels consisting of dummy activities). Thus, Eq. (1) can be transformed into the following equation:
bj ¼ 0; j ¼ 1

dBLi
¼max

j2BLi

bj þ min
16k6lðjÞ

ftjkg
� �

þ aLS; i–0; i–BDð1Þ

dj ¼ dBLi
; j 2 BLi

bj ¼maxfdig; i 2 predðjÞ

8>>>>>><
>>>>>>:

ð2Þ
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According to Eq. (2), each task can select the cheaper service resource within its time windows. However, the strategy is
not suitable for shorter deadlines, i.e., Cp(n) 6 dn < BLmin, which can be solved by the Minimum Critical Path Method
(MCP)[31].

5.1.3. Service selection
After deadline distribution, each activity can be mapped to the most appropriate service by
min
16k6lðiÞ

cikjsi 6 tik 6 fi; ðSik; tik; cikÞ 2 SPðiÞf g; for 8i 2 V ð3Þ
If each service selection guarantees that the task execution can be completed within its time windows, the whole workflow
execution can be completed within the whole deadline. Similarly, the cost minimization solution for each task leads to an
optimized cost solution for the entire workflow. Therefore, an optimized workflow schedule can be constructed by all local
optimal schedules.

The DTL algorithm has almost the same strategy as DBL, in which all tasks are grouped by their Top Levels. The Top Level
(TL) of a node is defined as the maximum number of edges along any path from the entry node to the node in graph G. In
addition, it mandates that all tasks in same top-level have the same start time and finish time.

5.2. Deadline Early Tree (DET) algorithm

For the deadline division strategy, it is crucial to divide the whole deadline into task deadlines while maintaining the pre-
cedence constraints among activities and meeting the given deadline. At the same time, the time window for each activity
should be enlarged such that each task can select a cheaper service to decrease the total cost. In addition, local cost optimi-
zation strategies should be applied to critical activities as well as those sequential non-critical activities. Thus, the perfor-
mance of the deadline division strategy can be effectively improved. This section introduces a new deadline division
strategy based on Early Tree. It consists of two phases: cost optimization for critical activities, and cost optimization for
non-critical activities.

5.2.1. Cost optimization for critical activities
In the Early Tree, the time interval [sj, fj] for task j implies an initial time window in which the task j has to be processed.

As described previously, the given deadline is generally greater than the workflow earliest completion time, Cp(n). By facil-
itating the total float, the total cost can be decreased. The time window of each activity can be extended so that one can se-
lect a cheaper service to decrease the workflow total cost.

It is known that the given deadline constraint is also the latest completion time of the Critical Path. Therefore, the time-
cost optimization problem for the Critical Path is a special optimization problem for purely serial cases, which can be trans-
formed into a multi-phase decision-problem based on dynamic programming.

Let the critical activity set denote CP, and p be the number of critical activities, then CP = {1,2, . . .,p}. Let f(i,s), i 2 CP be the
minimum cost of performing task i such that task i starts at time s. Without generality, s 2 [ESi,LSi] is restricted to be an inte-
ger. The earliest starting time ESi for task i can be computed based on traditional forward critical path calculations. Subse-
quently, for the given deadline dn, its latest starting time LSi is computed by a backward pass (at this time, each task has been
allocated the fastest service). Then, the service selection method for critical activities is listed below.

Service selection for critical activities (SSCA)

1. In the first phase, the minimum cost of the last activity is computed by
f ðp; sÞ ¼ min
16j6lðpÞ

fcpjg; ESp 6 s 6 LSp; sþ tpj < dn
2. At phase k, the minimum cost associated with task i that starts at time s can be computed by
f ði; sÞ ¼ min ff ðiþ 1; sþ tijÞ þ cijg; ESi 6 s 6 LSi; i < p

16j6lðiÞ

In the last phase, the minimum cost at any valid time for critical activities can be computed. Those service selections with
the minimum cost correspond to the optimal cost solution.

The dynamic programming method indicates the best services for executing critical activities. Its earliest completion time
is also the workflow earliest completion time. Then the workflow earliest completion time, denoted as Cmax, is the sum of the
processing times of all selected services. It must be less than or equal to the deadline, i.e., Cmax 6 dn.

After determining the service selections for critical activities, the whole deadline can be transformed into the time win-
dows for critical activities. If Cmax < dn, the slack time float (dn � Cmax) can be equally allocated to critical activities. Let as de-
note the critical activity float, which is defined as the maximum delay in the activity finish time. Then as = (dn � Cmax)/
(jp(n)j � 2)(except for two dummy activities). Let Sij0 be the selected service for activity i. The time windows of critical activ-
ities can be computed by
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s1 ¼ f1 ¼ 0
fi ¼ si þ tij0 þ as

sj ¼ fi

sn ¼ fn ¼ dn

8>>><
>>>:

; 8i; j 2 pðnÞ; ði; jÞ 2 ET ð4Þ
At the same time, the time windows for non-critical activities should be adjusted to preserve the feasible schedule of the
Early Tree. Therefore, a post-processing method is investigated to accomplish the above operations. Let pred(i) and succ(i)
be the set of immediate predecessors and the set of immediate successors of activity i, respectively. The post-processing
method is described as follows.

Post processing for critical activities (PPCA)

1. Determine the time windows for critical activities via Eq. (4);
2. Build the new spanning tree by delaying the start time and finish time of non-critical tasks, denoted as CT (Current Tree).

Let ECT be the arc set of Current Tree CT, then
2.1. ET NULL, s1 0, f1 0;
2.2. for i = 2 to n � 1

If i 2 p(n), then
Find its predecessor in p(n), denoted as k, ECT ECT [ (k,i);

Else
fk  maxffjjj 2 predðiÞg; si  fk; f i  si þ t�i ; ECT  ECT [ ðk; iÞ;

3. Computing path set of Current Tree CT, denoted as PCT;
3.1. Find all leaves in CT, denoted as LCT

3.2. For ("j 2 LCT)
Search the path from leaf j to the root 1 in reverse order;
All nodes from the root node to leaf j consist of path p(j);
Add path p(j) to set PCT;

4. For ("p(j) 2 PCT)/* Update set PCT such that each path only includes non-critical activities.*/
Remove path p(j) from PCT;
Delete critical activities from p(j);
If p(j) is not empty, then add it to PCT;

5. Stop.

In PPCA, the time complexity of Step 2 is O(n2), whereas the time complexities of Step 3 and Step 4 are less than
O(jPCTj � n2). Therefore, the time complexity of PPCA is less than O(jPCT j � n2).

In Eq. (4), the fact that the start time of an activity is the finish time of its parent (including p(n)) indicates that critical
activities can be executed serially. They also meet the deadline constraints because the latest completion time of activity n is
equal to the deadline dn. For non-critical activities, the early start times and finish times are delayed according to precedence
relationships. The Current Tree CT is still a feasible schedule because the precedence relationships among activities are still
preserved, and the workflow completion time satisfies the given deadline. The updated path set only includes those activities
that are unassigned activity floats. In the next section, the float allocation and service selection for non-critical activities can
be solved according to the Current Tree CT and the path set PCT.

5.2.2. Cost optimization for non-critical activities
It is more complex to compute the activity floats and determine the time windows for non-critical activities than for crit-

ical activities. To maximize the time intervals of non-critical activities while preserving the precedence relationships, an iter-
ative procedure is presented. Let U denote non-critical activities that are not assigned activity floats. The main steps include:

(i) Find those activities from set U whose activity floats can be calculated. All activities with the same immediate successor
are called synchronization activities. They can be set to the same finish time without affecting the possible start time
of the successors. Thus, once one of them has been assigned an activity float, the allowable finish time for other syn-
chronization activities can be determined. Let rr be the activity float of activity, and let W denote the set in which all
activities can compute their activity floats. Then set W can be given by
W ¼ rjrr ¼ min
ðr;qÞ2E

fsq � frg; r 2 U; q 2 V n U
� �

ð5Þ
(ii) Select the activity with the minimum activity float. Activity float rr is the maximum delay of activity r. The activity with
the minimum activity float should be first allocated to satisfy the precedence relations. Let r* be the activity with the
minimum activity float; then the activity r* holds for
rr� ¼ minfrr jr 2Wg ¼ sq� � fr� ; for r� 2W ; q� 2 U n V ð6Þ
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(iii) Find the path (or sub-path) that includes activity r* from PCT. Let p(r*) be the path (or sub-path) in PCT, which consists of r*

and its parents. Activity float rr� is also the maximum delay of path p(r*), and it is assigned equally to each activity on
p(r*). Let r0r� be an activity float. Then r0r� can be computed as follows:
r0r� ¼
rr�

jpðr�Þj

� �
ð7Þ
(iv) Allocate an activity float to activity r* and determining its time intervals. The finish time and start time of r* can be cal-
culated as follows:
fr� ¼ sq�

sr� ¼ fr� � t�r� � r0r�

�
ð8Þ
(v) Build the new Current Tree. For the successors of activity r* in the Current Tree, they must delay their start times and
finish times with regard to meeting the precedence relations, Add arc (r*,q*) to ECT, and delete arc (i,r*) from ECT (where i
is parent of r* in ECT).

(vi) Compute the path set PCT of the new Current Tree. Delete activity r* from those paths including it. If the path is empty,
then it should be removed. If the path is divided into two new paths, they are added to PCT.

(vii) Delete r* from U, i.e., U = Un{r*}.
When the set U is empty, the time windows for non-activities are accomplished. However, by analyzing Eqs. (7) and
(8), some activity floats may not be assigned fully to those activities on the same path due to complex precedence rela-
tionships. In order to take advantage of activity floats, the time windows of non-critical activities can be further
adjusted. Thus, the float allocation procedure is described as follows.

Float allocation non-critical activities (FANCA)

1. U Vnp(n)
2. While (U–U)
2.1. Find those activities whose floats can be calculated in set U by Eq. (5), denoted as W;
2.2. Select the activity with the minimum activity float from W by Eq. (6), denoted as r*;
2.3. Find the path (or sub-path), including activity r* from PCT, and compute its activity float by Eq. (7), denoted as r0r� ;
2.4. Allocate an activity float to activity r* and determine its time intervals by Eq. (8);
2.5. Build the new Current Tree CT;
2.6. Update the path set PCT;
2.7. U = Un{r*};
3. For i 2 (Vnp(n)) /*Further adjust the time windows of non-critical activities*/

3.1. fmax max{fjjj 2 pred(i)};
3.2. If si > fmax then si fmax;
3.3. smin min{sjjj 2 succ(i)};
3.4. If fi < smin then fi smin;

4. Stop.

For FANCA, the computation time is mainly determined by Step 2. The time complexity of Step 2.1 is O(jUj � jVnUj). The
time complexity of Step 2.2 depends on the length of set W, i.e., O(jWj). The set lengths are less than the number of activities.
The time complexities of Step 2.3, Step 2.5 and Step 2.7 are less than O(n). It is known that the time complexity of Step 2.7 is
less than O(n2). Therefore, the time complexity of FANCA is less than O(jUj � n2).

After determining the time intervals of non-critical activities, each activity can be mapped to the appropriate service
within its time window. However, for any one group of sequential tasks, the time intervals can be merged into a single time
window, in which its start time is the beginning of the first task, and its finish time is the end of the last task. Thus, the opti-
mal cost solution can also be solved by the dynamic programming method in Section 5.2.1. The service selection for non-
critical activities is described by

Service selection for non-critical activities (SSNCA)

1. Search for sequential branches that include non-critical activities, denoted as SB.
2. For "sbi 2 SB

2.1. Merge the time windows;
2.2. Select the appropriate services for sbi by the dynamic programming method in Section 5.2.1;

3. For other individual non-activity, select the service with the minimum execution cost under its time window by Eq. (3).
4. Stop.
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5.3. An illustrative example

The proposed procedure can be illustrated through the example of the workflow application in Fig. 2. The service pool for
the example is shown in Table 1. Let the deadline be 90, i.e., dn = 90.

For critical activities, the service selections can be determined by the SSCA procedure. The results are listed at the left of
Table 2. The earliest completion time for the Critical Path is equal to 83, i.e., the critical activity float is 7. The activity float for
critical activities is as = (90 � 83)/(9 � 2) = 1. The whole deadline is divided into the time windows of critical activities by Eq.
(4), which are also listed at the left of Table 2. By the PPCA procedure, Current Tree CT is generated and the path set PCT of CT
is updated. The generated Current Tree is the same as the Early Tree in Fig. 3. The path set PCT = {p(3) = {3}, p(5) = {5},
p(8) = {4,8}, p(11) = {11}, p(14) = {10,14}}.

For non-critical activities, the time windows are computed step by step. Let parameter U = {3,4,5,8,10,11,14}; then
VnU = {1,2,6,7,9,12,13,15,16}.

Step 1. Compute the activity floats for activity 3 and 14 using Eq. (4), i.e.W = {{3,4}jr3 = 15, r14 = 15}. They have the same
activity float. Select the activity 3 from set W, and it includes path p(3). According to Eq. (7), r03 ¼ 15. Allocate an
activity float 15 to activity 3 by Eq. (8); this gives values of f3 = 15 and s3 = 0. Update the Current Tree CT: Delete arc
(1,3) from ECT and add arc (3,7) to ECT. Update path set PCT: path p(3) is deleted, i.e., PCT = {p(5) = {5}, p(8) = {4,8},
p(11) = {11}, p(14) = {10,14}}. Delete activity 3 from set U, then U = Un{3} = {4,5,8,10,11,14}.

Step 2. Compute the activity float for activity 14 using Eq. (4), i.e., W = {{14}jr14 = 15}. Only activity 14 includes set W, and
it also includes path p(14). According to Eq. (7), r014 ¼ 15=2 ¼ 7:5. Allocate an activity float of 7.5 to it via Eq. (8),
i.e.f14 = 76 and s14 = 53.5. Update the Current Tree CT: Delete arc (10,14) from ECT and add arc (14,15) to ECT. Update
path set PCT: Delete path p(14) from it, i.e. PCT = {p(5) = {5}, p(8) = {4,8}, p(11) = {11},p(10) = {10}}. Delete activity 14
from set U, then U = Un{14} = {4,5,8,10,11}.

Step 3. Compute the activity floats for activity 5, 8, 10 and 11 via Eq. (4); then, W = {{5,8,10,11}jr5 = 53.5, r8 = 44.5,
r10 = 7.5, r11 = 16.5}. Activity 10 has the minimum activity float, and it includes path p(10). According to Eq. (7),
r010 ¼ 7:5. Allocate an activity float of 7.5 to it by Eq. (8), i.e., f10= 53.5 and s10 = 31. Update the Current Tree CT:
Delete arc (7,10) from ECT and add arc (10,14) to ECT. Update path set PCT: Delete path p(10) from it; then, PCT

= {p(5) = {5},p(8) = {4,8},p(11) = {11}}. Delete activity 10 from set U, i.e., U = Un{10} = {4,5,8,11}.
Step 4. Compute the activity floats for activity 5, 8 and 11 via Eq. (4), i.e., W = {{5,8,11}jr5 = 53.5, r8 = 44.5, r11 = 16.5}.

Activity 11, including path p(11), has the minimum activity float; then, r011 ¼ 16:5 from Eq. (7). Allocate an activity
float of 16.5 to it via Eq. (8), giving f11 = 53.5 and s11 = 31. Delete arc (7,11) from ECT and add arc (11,14) to ECT; then,
the Current Tree CT is updated. Update path set PCT: Delete path p(11) from it, i.e., PCT = {p(5) = {5},p(8) = {4,8}}.
Update set U: U = Un{11} = {4,5,8}.

Step 5. Compute the activity floats for activity 5, 8 using Eq. (4), i.e., W = {{5,8}jr5 = 53.5, r8 = 44.5}. Activity 8, including
path p(8), has the minimum activity float, giving r08 ¼ 44:5=2 ¼ 22:25. Allocate the activity float of 22.25 to it via
Eq. (8), i.e. f8 = 53.5 and s8 = 28.25. Update the Current Tree CT: Delete arc (4,8) from ECT and add arc (8,14) to
ECT. Compute path set PCT: Delete sub-path p(8) from it and add sub-path p(4) to it, giving PCT = {p(5) = {5},
p(4) = {4}}. Update set U: U = Un{8} = {5,4}.

Step 6. Compute the activity floats for activity 5, 4 using Eq. (4), i.e., W = {{5,4}jr5 = 53.5, r4 = 22.25}. Activity 4 has the
minimum activity float, which includes path p(4). r04 ¼ 22:25 by Eq. (7). Allocate an activity float of 22.25 to it
via Eq. (8), i.e. f4 = 28.25 and s4 = 0. Update the Current Tree CT: Delete arc (1,4) from ECT and add arc (4,8) to
ECT. Compute the path set PCT: Delete path p(4) from it, then PCT = {p(5) = {5}}. Delete activity 4 from set U, i.e.,
U = {5}.

Step 7. Compute an activity float for activity 5 by Eq. (4), i.e., W = {{5}jr5 = 53.5}. Only activity 5 includes Set W. Allocate an
activity float of 53.5 to it by Eq. (8), i.e., f5 = 53.5 and s2 = 0. Update the Current Tree ECT: Delete arc (1,5) from ECT

and add arc (5,14) to ECT. Compute the path set PCT: Delete path p(5) from it, then PCT = U. Delete activity 5 from set
U, i.e., U = U.
Table 2
Time windows and service selections for all activities in G.

CP si fi Sik NCP si fi Sik

1 0 0 – 3 0 15 S31

2 0 11 S21 14 53.5 76 S14,2

6 11 15 S61 10 31 53.5 S10,2

7 15 31 S71 11 31 53.5 S11,1

9 31 40 S91 8 28.25 53.5 S81

12 40 50 S12,1 4 0 28.25 S41

13 50 76 S13,1 5 0 53.5 S5,1

15 76 90 S15,1

16 90 90 –
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Fig. 4. New spanning tree of G in Fig. 2.
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Since set U is empty, the float allocation procedure stops. The new generated Current Tree is shown in Fig. 4. It is still a
feasible schedule. The time windows for non-critical activities are listed on the right of Table 2. By running the SSNCA pro-
cedure, the appropriate service selections for non-critical activities can be found, which are shown on the right of Table 2.

6. Experimental results

The proposed algorithm is compared with DTL and DBL. The local optimization strategy for serial tasks based on dynamic
programming can also be adopted by DBL and DTL. We modified the two leveling algorithms according to SSCA to improve
their performance. All these algorithms are coded in Java and performed on a Pentium IV with a 2.93 GHz processor and
512 MB RAM using the operating system Window XP.

Since no standard test instances are available to test the presented heuristics, a DAG graph random generator is developed
to generate application DAG with different scales and different structures. The number of activities varies between 20 and
200 with an increment of 20, i.e., V 2 {20,40,60,80,100,120,140,160,180,200}. The maximum out-degree of the DAG ranges
from 1 to 3, i.e., out_degree 2 {1,2,3}. Each workflow instance is given 12 different deadlines, i.e., dn = Tmin + h � (Tmax � Tmin),
where Tmin is the minimum completion time of a workflow instance, and Tmax is the maximum completion time of a work-
flow instance when all tasks select the slowest service for execution. Let h 2 {0.05,0.10,0.15,0.20,0.25,0.30,0.35,
0.40,0.45,0.50,0.55,0.60}. For each task in DAG, its service pool length is randomly generated from the interval [10,15].
For those services in the same service pool, their execution costs are inversely proportional to their processing times. Each
problem class comprises 15 random instances and, in total, 7200 instances are tested.

To compare the effectiveness and efficiency of these heuristics, the experimental results are compared with respect to
some measures. Let H denote the heuristic name, and UBi(H) be the objective function value obtained by algorithm H running
on instance i. Assume N is the number of group instances, and C(H) denotes the number of instances for which heuristic H
finds the best solutions on the group instances. Let besti be the best solution that all heuristics can obtain at instance i, and let
ti(H) be the run time that heuristic H runs on instance i. The following measures are given below [20]:
avdev

Pn

i¼1ððUBiðHÞ � bestiÞ=bestiÞ=N
 Average relative deviation from the best solutions on a group of instances
maxdev
 MAX
16i6N

fðUBiðHÞ � bestiÞ=bestig
 Maximum relative deviation from the best solutions on a group of instances
OPT (%)
 100 * C(H)/N
 The percent of the number of instances for which a heuristic finds the best
solutions on a group of instances
ART
(ms)
PN
i�1tiðHÞ=N
 The average computation time for which a heuristic runs on a group of instances
6.1. Computational results of different instance sizes

The comparison results for the three algorithms running on different instance sizes are depicted in Table 3. With respect
to the measures avdev and maxdev, we can see that DET always yields much smaller values than the other two leveling algo-
rithms for any given instance size. Furthermore, it can obtain the best solutions for more than 92% of the instances at any
given size, whereas DTL has the same value (equal to 0) and DBL can obtain only a few best solutions. This is because the
proposed approach partitions all tasks into different paths based on the Early Tree. Under the given deadline constraint, crit-
ical activities can obtain the optimal cost solution based on dynamic programming. For non-critical activities, the activity
floats are calculated step by step such that their time intervals are maximized without destroying precedence constraints.
The service selection strategy for non-critical activities also implements the local cost optimization. However, the other
two leveling algorithms partition the workflow tasks into levels based on their top (bottom) depths, which take into account



Table 3
Computational results depending on different instance sizes.

Tasks DTL DBL DET

avdev maxdev OPT ART avdev maxdev OPT ART avdev maxdev OPT ART

20 0.385 0.937 0.00 1 0.126 0.376 7.22 2 0.004 0.254 92.78 25
40 0.433 1.050 0.00 2 0.115 0.399 5.42 7 0.003 0.202 94.58 139
60 0.477 1.133 0.00 3 0.122 0.300 2.08 18 0.001 0.079 97.92 411
80 0.488 0.931 0.00 4 0.125 0.301 0.97 45 0.001 0.142 99.03 938
100 0.478 0.960 0.00 6 0.126 0.273 1.25 79 0.000 0.046 98.75 1688
120 0.505 1.139 0.00 8 0.129 0.281 1.25 138 0.000 0.073 98.75 2750
140 0.501 1.045 0.00 9 0.127 0.314 1.81 215 0.000 0.074 98.33 4268
160 0.508 1.076 0.00 11 0.129 0.256 2.50 312 0.000 0.091 97.50 6285
180 0.522 1.203 0.00 14 0.133 0.246 0.69 433 0.000 0.036 99.31 8680
200 0.513 1.065 0.00 16 0.127 0.283 0.97 572 0.000 0.061 99.03 11644

Aver. 0.481 1.203 0.00 7 0.126 0.399 2.42 182 0.001 0.254 97.60 3683
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only the parallel and synchronization characteristics of tasks. Some activities cannot obtain more appropriate time intervals.
In addition, the dynamic programming method is only applied to groups of serial tasks. Therefore, the deadline division strat-
egy based on the Early Tree is more appropriate than the leveling division policies.

From Table 3, it is also shown that DET decreases the values of the measures avdev and maxdev when the instance size
increases, whereas the two leveling heuristics have higher values at any given instance size. For the measure OPT, DTL finds
none of the best solutions at any given size. DBL decreases the value, but the proposed approach can find more and more of
the best solutions as the size increases. The three algorithms partition tasks into groups according to workflow structure
characteristics. When the instance size increases, its structure is more complex. Because the DET algorithm considers not
only the serial and parallel properties but also the Critical Path properties of DAG, its advantage is more distinctive than
the leveling algorithms as the instance size increases.

As for the average computation time, three heuristics take more computation time when the instance sizes increase. This
is because the time complexity of the dynamic programming strategy is dependent on the number of activities. The two lev-
eling algorithms need only a little computation time at any given size. Their average computation time is still less than 1 s
when the instance size increases to 200, i.e., they run efficiently, whereas DET requires more computation time as the in-
stance size increases. This is because the dynamic programming strategy for the Critical Path and the iterative procedure
for non-critical activities requires considerable computation effort. The average computation time increases to 11.6 s when
the instance size is increased to 200, but this time is still acceptable.

6.2. Computational results of different deadlines

Deadline dn is the expected latest completion time, which should be greater than or equal to the workflow earliest com-
pletion time Cp(n). Generally, the longer the deadline, the less cost the workflow expends. In this section, the performance at
different deadlines is tested. Table 4 shows the computation results when the parameter h ranges from 0.05 to 0.6 in an
increment of 0.05.

From Table 4, we can see that DET still performs the best on different deadlines. With respect to the measures avdev and
maxdev, DET always yields much smaller values than the other two leveling algorithms. Moreover, in all tested instances,
Table 4
Computational results depending on different deadlines.

h DTL DBL DET

avdev maxdev OPT ART avdev maxdev OPT ART avdev maxdev OPT ART

0.05 0.459 1.079 0.00 4 0.195 0.206 0.33 32 0.000 0.013 99.67 165
0.10 0.448 1.090 0.00 4 0.122 0.252 0.50 48 0.000 0.026 99.50 418
0.15 0.501 1.181 0.00 5 0.140 0.275 0.83 68 0.000 0.084 99.17 813
0.20 0.498 1.166 0.00 5 0.127 0.268 0.67 91 0.000 0.070 99.33 1320
0.25 0.494 1.128 0.00 6 0.139 0.326 0.33 117 0.000 0.021 99.67 1940
0.30 0.534 1.203 0.00 7 0.134 0.337 1.17 147 0.000 0.088 98.83 2663
0.35 0.475 1.078 0.00 8 0.123 0.277 1.00 180 0.000 0.045 99.00 3488
0.40 0.531 1.118 0.00 8 0.162 0.376 1.17 216 0.000 0.051 98.83 4412
0.45 0.525 1.136 0.00 9 0.125 0.364 2.17 256 0.001 0.112 97.83 5440
0.50 0.473 1.019 0.00 10 0.126 0.309 2.83 297 0.001 0.107 97.17 6577
0.55 0.442 0.928 0.00 11 0.115 0.311 4.50 343 0.002 0.164 95.50 7805
0.60 0.441 0.873 0.00 12 0.102 0.399 13.50 391 0.006 0.254 86.67 9153

Aver. 0.481 1.203 0.00 7 0.126 0.399 2.42 182 0.001 0.254 97.60 3683
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DET also finds the best solutions for more than 95% of the instances at different deadlines, i.e., the number of the best
solutions achieved by DET is greater than the other two leveling algorithms at any given deadline. On one hand, DET seg-
ments the whole deadline into the time windows of tasks based on their dependencies and synchronous constraints, which
is adapted for all feasible deadlines. Therefore, the cost curve is smoothly decreasing during the whole valid interval of the
deadline. On the other hand, the optimal cost solution for critical activities can be achieved by the dynamic programming
method, and the dynamic programming method performs better with longer deadlines. In addition, the iterative procedure
manages to maximize the time intervals of all tasks according to the activity float. However, the DTL algorithm divides the
deadline by considering the parallel and synchronous starting properties among activities, and the DBL algorithm divides the
deadline according to the parallel and synchronous finish characteristics. Some activities cannot obtain more proper time
intervals. Furthermore, the whole deadline is segmented into level deadlines that may partially destroy the precedence rela-
tionships among tasks. The changed precedence relationships may increase the workflow earliest completion time such that
the leveling policies cannot be applied to shorter deadlines. Therefore, DET can achieve better performance than the leveling
algorithms within the valid range of the deadline.

From Table 4, it is also shown that both avdev and maxdev increase for the DET heuristic as the deadline extends, but the
two leveling algorithms decrease the two measures. As for OPT, DTL cannot find the best solutions (equal to 0). DBL increases
the value, whereas the proposed DET heuristic decreases its value as the deadline increases. As described previously, the
deadline division strategies based on leveling may change the partial precedence relationships among activities such that
the earliest workflow completion time may be longer. In other words, these leveling optimization strategies cannot optimize
effectively the total cost for the shorter deadlines. DET considers temporal dependencies, and the deadline division is based
on the Critical Path of the Early Tree, which can be applied to all feasible deadlines. When the deadline is shorter, the dead-
line division is strongly dependent on these temporal constraints such that DET considerably improves the performance of
the two leveling algorithms. When the deadline is longer, each task can obtain a larger time window due to the longer total
float. All of the tasks can select the appropriate services that optimize the total cost. Therefore, leveling algorithms can obtain
a slightly better performance for longer deadlines.

With respect to ART, the computation time for the 3 heuristics increases when the deadline increases. The time complex-
ity for the dynamic programming strategy is also dependent on the time window length allocated to each activity. When the
deadline increases, the time windows for the serial tasks and critical activities also become larger. So, the computation time
increases. For the two leveling algorithms, they still need a little computation time at any given deadline. The average com-
putation time is still less than 1 s when h increases to 0.6, i.e., they run efficiently at different deadlines. For the DET algo-
rithm, its average computation time increases to 9.1 s when the deadline parameter is increases to 0.6 and it is still
acceptable.

7. Conclusions

This paper tackles the cost optimization for workflow scheduling represented by DAG with a deadline constraint. It is for-
mulated as the discrete time-cost tradeoff problem in project scheduling. Since the optimization problem is generally NP-
hard and the Grid environment is highly dynamic, an effective and efficient heuristic should be developed to solve the larger
and hard instances. The deadline division strategy is applied to solve the workflow scheduling described by DAG. The heu-
ristic DET is proposed. An early feasible schedule, defined as an Early Tree (ET), is constructed, in which the Critical Path is
defined and workflow tasks are grouped. For critical activities, the optimal cost solution under the given deadline constraint
can be obtained by the dynamic programming method. The whole deadline is also segmented into time windows in terms of
the slack time float. For non-critical activities, an iterative procedure is proposed to maximize the time windows while keep-
ing the precedence constraints among activities. According to the time window allocation, a local cost optimization method
is applied to non-critical activities. Extensive computational testing indicates that the proposed approach can achieve better
results than the other two leveling algorithms. Moreover, the deadline division strategy adopted by DET can be applied to all
feasible deadlines. In terms of the computation time, DET requires a little more computation effort than the other leveling
algorithms, but its average run time is less than 12 s when the instance size increases to 200, which is acceptable in practice.

In addition, resource consumption is one of the important evaluation criteria for workflow scheduling. Only two criteria
(i.e., cost and the completion time) are considered in this paper. The objective of our future work involves incorporating re-
source consumption criterion into the objective function.
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