An Empirical Assessment of Bellon's Clone Benchmark

Alan Charpentier¹, Jean-Rémy Falleri¹, David Lo² and Laurent Réveillère¹

 $^{1}\mbox{University}$ of Bordeaux, France 2 Singapore Management University, Singapore

EASE'15 - Nanjing, China

All Starts with Clones

Clones

- A clone refers to fragments of code that are similar or identical.
- ▶ Cloning can complicate code maintenance and evolution.

Clone detectors

- Scan code base for potential clones.
- Find incorrect clones (false positives).
- Miss true clones (false negatives).

Clone detectors enhancement

Clone benchmarks are used to compare and assess clone detectors' results.

Bellon Benchmark¹

The construction

- Six researchers provided clones to Bellon.
- ▶ Bellon examined 2 percent of all 325, 935 submitted clones.
- Bellon built a reference corpus by retaining only clones he judged as true positives.
- Clone definition used by Bellon:
 - ▶ A clone is a triple (f_1, f_2, t) where f_1 and f_2 are two similar code fragments and t is the associated type of similarity.
 - Clones are pairs of code fragments that could be replaced by function calls.
 - Code fragments of a clone must contain at least six lines of code.

¹S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo. Comparison and evaluation of clone detection tools. *Software Engineering, IEEE Transactions on*, 33(9):577-591, Sept 2007.

Bellon Benchmark

The use

Two-step process

- Computation of a mapping between candidate clones and reference clones.
- Computation of the recall and precision effectiveness measures.

$$\textit{Recall}(P, T, \tau) = \frac{|\textit{DetectedRefs}(P, T, \tau)|}{|\textit{Refs}(P, \tau)|}$$

$$Precision(P, T, \tau) = \frac{|DetectedRefs(P, T, \tau)|}{|Cands(P, \tau)|}$$

Agreement on the Reference Clones

- Clones are very subjective.
- Bellon built alone the reference corpus.
- Bellon was not an expert of the projects containing the clones.
- Can we trust the references clones?
- ► To what extent other persons would agree that the reference clones are indeed true clones?

Research Questions

- ▶ **RQ1:** Can researchers trust the clones from Bellon's reference corpus?
- ▶ **RQ2:** Are the effectiveness measures computed using Bellon's benchmark reliable?
- ▶ **RQ3:** Are there some characteristics of reference clones that make them more trustable?

Overview

A reference clone can be trusted if anyone that is presented the clone won't doubt that it is a true clone.

- Selection of a subset of the reference clones.
- Presentation of these clones to additional persons.
- Gathering their opinions on the clones.

Participants

18 students participate to the experiment.

- Four are graduate.
 - ► Three from Singapore.
 - One from France.
- Fourteen undergraduate.
 - All in the last year of their degree in France.
- ▶ All have been trained in Java and C programming language.

Clone selection

Requirements

- ▶ 120 clones per participant.
- 2 participants per clone.

Selection

▶ 1,080 clones randomly selected from the 4,096 clones of the reference corpus.

Distribution

- ► The 1,080 clones are randomly split in nine groups of 120 clones.
- Each group is examined by a pair of two randomly drawn students.

Opinion collection

Preparation

- ▶ Clone definition used by Bellon was presented to participants.
- Participants do not know that the clones they are rating were judged as true clones.

Collection

- Participants had a time slot of 3 hours to make the experiment.
- ▶ The answers are collected through a web site.
- ▶ Participants are asked to rate *yes* for clones they deem as true clones, and *no* for false clones.

Results

- ▶ We obtain 1,080 clones with 3 opinions each.
- We affect a trust level to each clone.
 - ► Thee positive opinions: good trust level
 - ► Two positive opinions: fair trust level
 - ▶ One positive opinion: *small* trust level
- ▶ We define the following ordinal scale: *small* < *fair* < *good*

Trust Level of Reference Clones

Our sample of 1,080 clones

- About half of the clones have less than a good trust level.
- ▶ Between ten to fifteen percent of the clones have only a *small* trust level.

Trust Level of Reference Clones

Estimation in the reference corpus

- ▶ We use bootstrapping on our sample of 1,080 clones.
- ▶ We compute 95% intervals for these ratios.

	Confidence interval		
Trust level	Lower bound	Higher bound	
Small	0.10	0.14	
Fair	0.34	0.40	
Good	0.48	0.54	

► There is a significant number of reference clones that are debatable.

Trust Level and Effectiveness Measures

Two scenarios

- Clones having at least a fair trust level.
- Clones having a good trust level.

Two new reference corpora

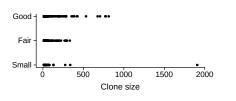
- ► *F* containing 954 clones
- ▶ *G* containing 553 clones

Trust Level and Effectiveness Measures

Worst-case approach to assess if the trust level of Bellon's reference corpus can modify precision and recall values.

t detects exactly clones of		Precision and recall derived from	
	В	F	G
В		p = 0.88	p = 0.51
F	r = 0.88		
G	r = 0.51		

- ▶ When requiring a *good* trust level, a precision and recall decrease of up to 0.49 is possible.
- ▶ When requiring only a *fair* trust level, a precision and recall decrease of up to 0.12 is possible.

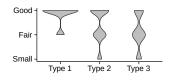

Three clone characteristics:

- Type
- Size
- Language

Clone size

 H_0 : there is no correlation between a clone size and its trust level.

 H_a : the larger a clone is, the greater its trust level is.

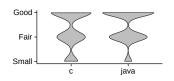


- Spearman's $\rho = 0.06$ (p-value = 0.03)
- ▶ 95% confidence interval: $0 \le \rho \le 0.12$
- ▶ Weak effect size

Clone type

 H_0 : there is no correlation between a clone type and its trust level.

 H_a : the bigger the type of a clone is, the lesser its trust level is.



- Spearman's $\rho = -0.26$ (p-value = 0)
- ▶ 95% confidence interval: $-0.31 \le \rho \le -0.21$
- Moderate and negative effect size

Programming language

 H_0 : the programming language has no impact on the trust level.

 H_a : the programming language has an impact on the trust level.

- ▶ Mann-Whitney U test = 133672.5 (p-value = 0.01)
- ▶ Cliff's delta d = -0.08.
- Confidence interval: $-0.14 \le d \le -0.02$
- Negligible effect size

Conclusions and Future Work

Conclusions

- A significant number of reference clones are debatable.
- Precision and recall can be significantly modified by the trust level of reference clones.
- ► The type of a clone is the only characteristic having a significant effect size.

Future Work

- Experts to help construction of clone benchmarks.
- More precise definition to ease clone categorization.