What the Fix? A Study of ASATs Rule Documentation

ICPC 2024

Corentin LATAPPY Thomas DEGUEULE Jean-Réemy FALLERI
Romain ROBBES Xavier BLANC Cédric TEYTON

Sophia de Mello Breyner Andresen Room
Tuesday, April 16, 2024

~<] packmind LC'BRI

What’s an ASAT, aka Linter

try A
var data :AllData = await fetchAllData();

\

ESLint: Unexpected var, use let or const instead.(no-var)

& Convert to const _{ More actions... L+

+ catch (err) A1

results.value = []:

L Finallv S

no-var rule from ESLint on a JS snippet

NO-var

Require 1let or const instead of var

ECMAScript 6 allows programmers to create variables with block scope instead of function scope
using the 1let and const keywords. Block scope is common in many other programming languages

and helps programmers avoid mistakes such as:

O 00 NN O Ol A & O =

=
(©

var count = people.length;
var enoughFood = count > sandwiches.length;

if (enoughFood) {
var count = sandwiches.length; // accidentally overriding the cot
+ count +

" "

console.log("We have sandwiches for everyone. Plent

// our count variable is no longer accurate
+ count + " people and " + sandwiches.length -

”

console.log("We have

Rule Details

This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.

Examples

Examples of incorrect code for this rule:

/*eslint no-var: "error"*/

” ”

var x = "y
var CONFIG

{}:

Open in Playground

Examples of correct code for this rule:

/[*eslint no-var: "error"*/
[*eslint-env esB%*/

let x = "y";
const CONFIG = {};

g A N BE=

Open in Playground

When Not To Use It

In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce
ES6 into their codebase may not want to apply this rule if the cost of migrating from var to let is

too costly.

\Version

This rule was introduced in ESLint v0.12.0.

Resources

e Rule source

o Tests source

Rule no-var from ESLint

PHP-CS-Fixer / doc [rules / cast_notation / no_short_bool_cast.rst

Q mvorisek docs: Show class with unit tests and BC promise info (#7667) v 70110ce - last month V) History

[Previewj Code Blame 35 lines (24 loc) - 881 Bytes Raw |'_Q Y, =

Rule no_short _bool cast

Short cast bool using double exclamation mark should not be used.

Examples

Example #1

——— Original
+++ New
<?php
-$a = !1%b;
+$a = (bool)$b;

Rule sets

The rule is part of the following rule sets:

e @PhpCsFixer
e @Symfony

References

» Fixer class: PhpCsFixer\Fixer\CastNotation\NoShortBoolCastFixer

e Test class: PhpCsFixer\Tests\Fixer\CastNotation\NoShortBoolCastFixerTest

The test class defines officially supported behaviour. Each test case is a part of our backward compatibility promise.

Rule no short bool cast from PHP CS Fixer

no-var SQL Injection

Require 1et or const instead of var Examples of correct code for this rule:
: Since Checkstyle 3.4

Injection is #1 on the 2010 OWASP Top Ten web security risks. SQL injection is wh
able to manipulate a value which is used unsafely inside a SQL query. This can leac

ECMAScript 6 allows programmers to create variables with block scope instead of function scope
using the 1let and const keywords. Block scope is common in many other programming languages

Description

/*eslint no-var: "error"*/

and helps programmers avoid mistakes such as: /*eslint-env esB*/

data loss, elevation of privilege, and other unpleasant outcomes.

let x = "y";
var count = people.length; const CONFIG = {}; : : : i .
var enoughFood = count > sandwiches.length; Brakeman focuses on ActiveRecord methods dealing with building SQL statements line/statement.

Open in Playg
if (enoughFood) { Examples
var count = sandwiches.length; // accidentally overriding the cot

console.log("We have " + count + "

A basic (Rails 2.x) example looks like this:
sandwiches for everyone. Pleni To configure the check:

}

When Not To Use It

In addition to non-ES6 environments, existing JavaScript projects that are beginning to intro

User.first(:conditions => "username = '#{params[:username]l}'")

<module name="Checker">
<module name="TreeWalker">

// our count variable is no longer accurate

console.log("We have " + count + " people and " + sandwiches.length -

. .) . o </module>
ES6 into their codebase may not want to apply this rule if the cost of migrating from var to . B . . 0
rakeman would produce a warning like this: </module>
too costly. p g
L]
RUIe Detalls V . Possible SQL injection near line 30: User.first(:conditions => ("username = '#{paranfiS iR

This rule is aimed at discouraging the use of var and encouraging the use of const or let instead. public class Test {

public void myTest() {

This rule was introduced in ESLint v0.12.0. The safe way to do this query is to use a parameterized query: int mid:
int high;
Examples 2
Resources User.first(:conditions => ["username = ?", params[:usernamell) int lower, higher; // violation
’ ’
Examples of incorrect code for this rule: /] e
X « Rule source int value
’
/*eslint no-var: "error"/ . Tests source Brakeman also understands the new Rails 3.x way of doing things (and local variat index; // violation
R /] ees
concatentation):
var x = "y"; int place = mid, number = high;
var CONFIG = {}; }

username = params[:user][:name].downcase
password = params[:user] [:password]

postfixOperator - CWE 398

User.first.where("username = '" + username + "' AND password = '" + password + "'")

NFEBALERKR, FHENSE+/--BF, EHEEXEN CompareW|thEmptyStr|ng Example Of Usage®™

¢ Google Style =
e Sun Style ©
o Checkstyle Style ®

This rule will fire if a string is corr
possibility (with .NET 2.0) is to us

Type

id = "postfixOperator"
severity = "performance"

This results in this kind of warning:

Violation Messages
. Possible SQL injection near line 37:
cwe = "CWE-398" Bad example:

cwe-type = "Variant"

User.first.where((((("username = '" + params[:user] [:name].downcase) + "' AND passwq

o multiple.variable.declarations =

public void SimpleMethod

<error id="postfixOperator" severity="performance" msg="Prefer prefix ++/-— operators for non-primitive types." See the Ruby Security Guide for more information and Rails—SQLi.org for many ex: how to.

injection in Rails.

if (myString.Equals

S Pack
Description } ackage

Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-
increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little

code.
Good example:

Example cpp file

) {0 public void SimpleMethod (string myString)
for(vector<int>::iterator iter=vector_database.begin(); vector_database!=veci.end(); iter++) {

if(*iter == 10) .
vector_database.erase(iter); Ll (

& Function is too complex (C901)

Functions that are deemed too complex are functions that have too much branching logic. Branching logic includes

Massage output in cppcheck if / elif / else and for /while loops.

[test.cpp:2]: (performance) Prefer prefix ++/—— operators for non-primitive types.

Anti-pattern

XML output cppcheck The following example has a complexity score of 5, because there are five potential branches.
<?xml version="1.0* encoding="UTF-8*7> def post_comment())E
<results ver31on="?"> if .SUCCess:
<cppcheck version="1.83"/> 4
<errors> comment = 'Build succeeded'
<error id="postfixOperator" severity="performance” msg="Prefer prefix ++/—— operators for non-primitive t elif .warning:
<location file="test.cpp" line="2"/> -1 : ; '
s . comment = Build had issues
</errors> elif . failed:
</results> comment = 'Build failed'
if .success:

.post(comment, type='success')
else:
.post(comment, type='error')

Best practice

o multiple.variable.declarations.comma =

MultipleVariableDeclarations

Checks that each variable declaration is in its own statement and on its own line.

<module name="MultipleVariableDeclarations"/>

// violation

com.puppycrawl.tools.checkstyle.checks.coding

Preview ‘ Code
— {

consider-using-generator [R1728

Message emitted:
Consider using a generator instead '%s(%s)'

Description:

If your container can be large using a generator will bring better performance.

Rationale: the Java code conventions chapter 6.1 recommends that declarations should be one per

Problematic code:

[consider-using-generator]
[consider-using—-generator]
[consider-using—-generator]
[consider-using—generator]
[consider-using—-generator]

list([@ for y in list(range(10))])

tuple([0 for y in list(range(10))])
sum([y*x2 for y in list(range(10))])
max([y*x*2 for y in list(range(10))])
min([yx*+2 for y in list(range(10))])

Correct code:

list(0 for y in list(range(10)))

tuple(@ for y in list(range(10)))
sum(yxx2 for y in list(range(10)))
max(yxx2 for y in list(range(10)))
min(y*x2 for y in list(range(10)))

Additional details:

Removing [] inside calls that can use containers or generators should be considered for performance
reasons since a generator will have an upfront cost to pay. The performance will be better if you are
working with long lists or sets.

For max, min and sum using a generator is also recommended by pep289.

Related links:

ForLoopShouIdB_eWh'iIe'Loo'p |

Since: 0.6
Name: for loop should be while loop

Under certain circumstances, some for loops can be simplified to while loops to make code more concise.

All messages can be customized if the default message doesn't suit you. Pl

This rule is defined by the following class: oclint-rules/rules/basic/ForLoopShouldBeWhileLoopRule.cpp

Example:

void example(int a)
for (; a < 100;)
RUIG foo(a);

Short cat }

Examples

Example #1

——- Original i
+++ New
<?php
-$a = 11%b;
+$a = (bool)$b;

Rule sets

The rule is part of the following rule sets:

e @PhpCsFixer
e @Symfony

References

» Fixer class: PhpCsFixer\Fixer\CastNotation\NoShortBoolCastFixer
* Test class: PhpCsFixer\Tests\Fixer\CastNotation\NoShortBoolCastFixerTest

The test class defines officially supported behaviour. Each test case is a part of our backward compatibility promise.

No-var

Require let or const instead of var

ECMAScript 6 allows programmers to create variables with block scope instead of function scope
using the 1let and const keywords. Block scope is common in many other programming languages

and helps programmers avoid mistakes such as:

var count = people.length;
var enoughFood = count > sandwiches.length;

if (enoughFood) {

var count = sandwiches.length; // accidentally overriding the cot
console.log("We have " + count + " sandwiches for everyone.

}

// our count variable is no longer accurate

console.log("We have " + count + " people and " + sandwiches.length -

Rule Details

This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.

Examples

Examples of incorrect code for this rule:

/*eslint no-var: "error"*/

e 53 o Sy
var CONFIG = {};

postfixOperator - CWE 398

HFFBARLRRR, ERMSE+/--BYF, SHEBMENEN

Type

id = "postfixOperator"
severity = "performance"

cwe = "CWE-398"
cwe-type = "Variant"

<error id="postfixOperator" severity="performance" msg="Prefer prefix ++/-— operators for non-primitive types."

Description

SOL Injection

Examples of correct code for this rule:

Injection is #1 on the 2010 OWASP Top Ten web security risks. SQL injection is wh
able to manipulate a value which is used unsafely inside a SQL query. This can leac

/*eslint no-var: "error"*/

[*eslint-env es6*/ . o
data loss, elevation of privilege, and other unpleasant outcomes.

let x = "y";

t CONFIG = : e g o o519
eone o Brakeman focuses on ActiveRecord methods dealing with building SQL statements

Openin Playg!

A basic (Rails 2.x) example looks like this:

When Not To Use It

In addition to non-ES6 environments, existing JavaScript projects that are beginning to intro
ES6 into their codebase may not want to apply this rule if the cost of migrating from var to .

User.first(:conditions => "username = '#{params[:username]l}'")

Brakeman would produce a warning like this:

too costly.

Possible SQL injection near line 30: User.first(:conditions => ("username = '#{para

Version

This rule was introduced in ESLint v0.12.0.

The safe way to do this query is to use a parameterized query:

User.first(:conditions => ["username = ?", params[:usernamel])

Resources

« Rule source
Brakeman also understands the new Rails 3.x way of doing things (and local variat

concatentation):

« Tests source

username = params[:user][:name].downcase
password = params[:user] [:password]

User.first.where("username = '" + username + "' AND password = '" + password + "'")

CompareWithEmptyString

e g PRI DI LI (N e SRR e

if (myString.Equals injection in Rails.

}

Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-
increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little

code.
Example cpp file

void main(){

Good example:

public void SimpleMethod (string myString)

for(vector<int>::iterator iter=vector_database.begin(); vector_database!=veci.end(); iter++) {

if(*iter == 10)
vector_database.erase(iter);

Massage output in cppcheck

[test.cpp:2]: (performance) Prefer prefix ++/—— operators for non-primitive types.

Sl Function is too complex (C901)

Functions that are deemed too complex are functions that have too much branching logic. Branching logic includes
if / elif / else and for /while loops.

Anti-pattern

XML output cppcheck The following example has a complexity score of 5, because there are five potential branches.
<?xml version="1.0* encoding="UTF-8*7> def post_comment())E
<results versxon:"?"> if .SUCCess:
<cppcheck version="1.83"/> - - ,
<errors> comment = 'Build succeeded
<error id="postfixOperator" severity="performance" msg="Prefer prefix ++/—— operators for non-primitive t elif .warning:
<location file="test.cpp" line="2"/> -1 : n '
S . comment = Build had issues
</errors> elif . failed:
</results> comment = 'Build failed'
if .success:

.post(comment, type='success')
else:
.post(comment, type='error')

Best practice

MultipleVariableDeclarations
Since Checkstyle 3.4

Description

Checks that each variable declaration is in its own statement and on its own line.

consider-using-generator [R1728

Message emitted:
Consider using a generator instead '%s(%s)'
Description:

If your container can be large using a generator will bring better performance.

Rationale: the Java code conventions chapter 6.1 recommends that declarations should be one per

line/statement.
Examples
To configure the check:

<module name="Checker">
<module name="TreeWalker">
<module name="MultipleVariableDeclarations"/>
</module>
</module>

Example:

public class Test {
public void myTest() {
int mid;
int high;
V7T

int lower, higher; // violation
V7T

int value,
index; // violation
7T

int place = mid, number = high; // violation

Example Of Usage®™

¢ Gooale Stvle =

What makes a good rule documentation®

Problematic code:

list([@ for y in list(range(10))]) # [consider-using-generator]

tuple([0 for y in list(range(10))]) # [consider-using-generator]
sum([y*xx2 for y in list(range(10))]) # [consider-using-generator]
max([yx*2 for y in list(range(10))]) # [consider-using-generator]
min([y**2 for y in list(range(10))]) # [consider-using-generator]

Correct code:

list(0 for y in list(range(10)))

tuple(@ for y in list(range(10)))
sum(yxx2 for y in list(range(10)))
max(y*+2 for y in list(range(10)))
min(y*x2 for y in list(range(10)))

Additional details:

Removing [] inside calls that can use containers or generators should be considered for performance
reasons since a generator will have an upfront cost to pay. The performance will be better if you are
working with long lists or sets.

For max, min and sum using a generator is also recommended by pep289.

Related links:

e PEP 289

ForLoonShouldBeWhilelLoon

lified to while loops to make code more concise.

Al IMESSAyUES Carln DE CUSLOIMmIZEU IT UE Ueidult Imessaye uuesin L SUIt you. Fit

See the Ruby Security Guide for more information and Rails-SQLi.org for many ex: how to.

Package

com.puppycrawl.tools.checkstyle.checks.coding

Preview ‘ Code
| come

This rule is defined by the following class: oclint-rules/rules/basic/ForLoopShouldBeWhileLoopRule.cpp

Example:

void example(int a)

for (; a < 100;)
Rule ' foo(a);
Shortca: }

Examples

Example #1

——— Original (o
+++ New
<?php
-$a = 11%b;
+$a = (bool)$b;

Rule sets

The rule is part of the following rule sets:

e @PhpCsFixer
e @Symfony

References

» Fixer class: PhpCsFixer\Fixer\CastNotation\NoShortBoolCastFixer
* Test class: PhpCsFixer\Tests\Fixer\CastNotation\NoShortBoolCastFixerTest 3

The test class defines officially supported behaviour. Each test case is a part of our backward compatibility promise.

Documentation Analysis

Documentation Analysis

/ languages

Documentation Analysis

/ languages 14 tools + 2 multi-language

Documentation Analysis

/ languages 14 tools + 2 multi-language

Pick 1 rule from tool documentation

Documentation Analysis

no-var

Require let or const instead of var

ECMAScript 6 allows programmers to create variables with block scope instead of function scope
using the let and const keywords. Block scope is common in many other programming languages

and helps programmers avoid mistakes such as:

var count = people.length;
var enoughFood = count > sandwiches.length;

if (enoughFood) {
var count = sandwiches.length; // accidentally overriding the cot
console.log("We have " + count + " sandwiches for everyone. Pleni

/! our count variable is no longer accurate
console.log("We have " + count + " people and " + sandwiches.length +

Rule Details

This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.

Examples

Examples of incorrect code for this rule:

/*eslint no-var: "error"#/

var x = "y";
var CONFIG = {};

Open in Playground

/ languages

Examples of correct code for this rule:

/*eslint no-var: "error"#/

/*eslint-env esBx/

let x = "y";
const CONFIG = {};

Open in Playground

When Not To Use It

In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce
ES6 into their codebase may not want to apply this rule if the cost of migrating from var to 1let is
too costly.

Version

This rule was introduced in ESLint v0.12.0.

Resources

* Rule source

« Tests source

14 tools + 2 multi-language

Pick 1 rule from tool documentation

(®) EsLint

No-var

Documentation Analysis

/ languages 14 tools + 2 multi-language

Pick 1 rule from tool documentation

ESLint no-var

v

Extract concepts from rule documentation

no-var

Require let or const instead of var Examples of correct code for this rule:
ECMAScript 6 allows programmers to create variables with block scope instead of function scope v
using the let and const keywords. Block scope is common in many other programming languages /*eslint no-var: "error"%/
and helps programmers avoid mistakes such as: /*eslint-env esB*/
let x = "y";
var count = people.length; const CONFIG = {};

var enoughFood = count > sandwiches.length;
Open in Playground

if (enoughFood) {]] =
Name escription | Example | Link

console.log("We have " + count + " sandwiches for everyone. Pleni

} When Not To Use It

/! our count variable is no longer accurate

Sonscle co(gieghave © G ¢ Recpleyand gecncaichesil Snathly In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce

ES6 into their codebase may not want to apply this rule if the cost of migrating from var to 1let is
—
too costly. "B]

Version

Rule Details

This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.

This rule was introduced in ESLint v0.12.0.
LB B

Examples
Resources
Examples of incorrect code for this rule:

X « Rule source

/*eslint no-var: "error"#/ « Tests source

var x = "y";
var CONFIG = {};

Open in Playground

Documentation Analysis

no-var

Require let or const instead of var
ECMAScript 6 allows programmers to create variables with block scope instead of function scope

using the let and const keywords. Block scope is common in many other programming languages
and helps programmers avoid mistakes such as:

var count = people.length;
var enoughFood = count > sandwiches.length;
if (enoughFood) {

var count = sandwiches.length; // accidentally overriding the cot
console.log("We have " + count + " sandwiches for everyone. Pleni

/! our count variable is no longer accurate
console.log("We have " + count + " people and " + sandwiches.length +

Rule Details

This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.

Examples

Examples of incorrect code for this rule:

/*eslint no-var: "error"#/

var x = "y";
var CONFIG = {};

Open in Playground

/ languages 14 tools + 2 multi-language

Pick 1 rule from tool documentation «-------oeeevvvvnnnnn.

ESLint no-var

v

Extract concepts from rule documentation Repeat until
: saturation of 5

/*eslint-env esBx/

let x = "y";

Name escription | Example | Link rules is reached

When Not To Use It

In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce

ES6 into their codebase may not want to apply this rule if the cost of migrating from var to 1let is
—
too costly. "B]

Version

This rule was introduced in ESLint v0.12.0.

Resources °

* Rule source)

« Tests source

Documentation Analysis

/ languages 14 tools + 2 multi-language

Pick 1 rule from tool documentation «-------oeeevvvvnnnnn.

(@) ESLint | no-var

v

Extract concepts from rule documentation Repeat until

Require let or const instead of var

Examples of correct code for this rule:

u
ECMAScript 6 allows programmers to create variables with block scope instead of function scope v
using the let and const keywords. Block scope is common in many other programming languages /*eslint no-var: "error"%/
and helps programmers avoid mistakes such as: /*eslint-env esB*/

let x = "y
var count = people.length; const CONFIG = {};

u
var enoughFood = count > sandwiches.length; ru I es I s re a c h e d
Open in Playground
if (enoughFood) {]] =
var count = sandwiches.length; // accidentally overriding the cou N a m e Desc rl tl o n Exa m Ie LI n k
console.log("We have " + count + " sandwiches for everyone. Pleni

When Not To Use It °
// our count variable is no longer accurate
ConsolSiico QR e © Gami © pecpIsicnd pecudnachosuIonathy In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce [
ES6 into their codebase may not want to apply this rule if the cost of migrating from var to 1let is
—
too costly. "B] [J
Rule Details .
Versi
e s o ot , . ersion °
This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.
This rule was introduced in ESLint v0.12.0. []
[I B]
Examples R °
Examples of incorrect code for this rule: L] L]
X « Rule source))
/*eslint no-var: "error"*/ « Tests source
00 6 6 o6 o & o & o ©o OO o o o o o o o °o o °o °o ° o °o o o
var x = "y

var CONFIG = {};

Open in Playground

119 rules analyzed

State of Rules Documentation

Concepts % of appearance
Description 92 1 5 COnCGptS
Code Example 87
Severity 34
Further Information 30
Since 29
Rule Definition 25
Configuration 22
Error Output 19
Auto Fix 15
Rule Set 11
Related Rules 8
When Not To Use It 6
Usage Example 5
Compatibility 3
IDE Fix 2

State of Rules Documentation

Themes Concepts % of appearance
Description 92
| Code Example 87
Comprehension _
Further Information 30
When Not To Use It 6
Since 29
Configuration 22
Error Output 19
Usage Auto Fix 15
Usage Example 5
Compatibility 3
IDE Fix 2
Severity 34
Metadata Rule Definition 25

Rule Set

11

Related Rules

3

15 concepts

3 themes

State of Rules Documentation

Themes Concepts % of appearance
Description 92
| Code Example 87
Comprehension _
Further Information 30
When Not To Use It 6
Since 29
Configuration 22
Error Output 19
Usage Auto Fix 15
Usage Example 5
Compatibility 3
IDE Fix 2
Severity 34
Metadata Rule Definition 25

Rule Set

11

Related Rules

15 concepts 3 themes

Explore the comprehension

State of Rules Documentation

Themes Concepts % of appearance
Description 92
| Code Example 87
Comprehension _
Further Information 30
When Not To Use It 6
Since 29
Configuration 22
Error Output 19
Usage Auto Fix 15
Usage Example 5
Compatibility
IDE Fix 2
Severity 34
Metadata Rule Definition 25

Rule Set

11

Related Rules

3

15 concepts 3 themes

Explore the comprehension

v

“\ Taxonomy
s~ Developers expectations

Taxonomy

Taxonomy

Open card-sorting

Taxonomy

Types of Content

Open card-sorting > Text
Code

Link

Taxonomy

Types of Content

Open card-sorting > Text
Code

Link

NO-var

Require 1let or const instead of var Text

Examples of correct code for this rule:

ECMAScript 6 allows programmers to create variables with block scope instead of function scope

using the 1let and const keywords. Block scope is common in many other programming languages /#eslint no-var: "error"*/

and helps programmers avoid mistakes such as:

[*eslint-env esB*/

let X = ngn;

var count = people.length; const CONFIG = {};

var enoughFood = count > sandwiches.length;

Open in Playground
if (enoughFood) {

var count = sandwiches.length; // accidentally overriding the cot

console.log("We have " + count +

"

sandwiches for everyone. Pleni

Resources

© 00O N O G A AN MO =

// our count variaoble is no longer accurate
console.log("We have

 Rule source

" ”

=
©

+ count + people and " + sandwiches.length -

o Tests source

Taxonomy

Types of Content Purposes

Open card-sorting

NO-var

Require 1let or const instead of var

What Text

ECMAScript 6 allows programmers to create variables with block scope instead of function scope

using the 1let and const keywords. Block scope is common in many other programming IGHWS

and helps programmers avoid mistakes such as:

var count = people.length;
var enoughFood = count > sandwiches.length;

if (enoughFood) {
var count = sandwiches.length;

” "

console.log("We have + count +

sandwiches for everyone. Pleni

” ” "

console.log("We have + count + people and + sandwiches.length -+

> Jext
Code
Link

What (100%)
Why (50%)
Fix (77 %)

Examples of correct code for this rule:

/[*eslint no-var: "error"*/

[*eslint-env esB*/

" "

let x = "y";
const CONFIG = {};

Open in Playground

Resources

« Rule source

e« Jests source

3 steps:

Survey

3 steps:

 [axonomy evaluation

Linter taxonomy

We analyzed the documentation of multiple linters (ESLint, Checkstyle, Flake8, etc.) to gather and categorize the patterns of information that
appear in the documentation of their rules.

We ended up with the new following taxonomy on the purpose of the content available in linter documentation:

e What triggers the rule (What): details the reasons for a specific rule to be triggered or not. It helps developers understand the context
and conditions under which the linter detects non-compliant code.

* Why the rule is important (Why): highlights the potential issues or pitfalls when violating the rule. It provides reasons and explanations
for why avoiding the non-compliant code identified by the linter is beneficial or necessary.

* How to fix non-compliant code violating the rule (Fix): provides guidance and recommendations on improving the code to avoid violat-
ing the rule. It helps developers understand how to address the reported non-compliant code effectively.

Overall, this taxonomy allows developers to navigate linter documentation more efficiently, understand why specific rules exist, and apply ap-
propriate fixes to improve the quality of their code.

Further, we have identified that this information can appear in three types of content that are commonly present in rule documentation:

e Text
e Code
e Link

Note that a single link might document several purposes.

*Rate the usefulness of each purpose in the documentation of a linter?

Idon't under-
Essential Worthwhile Unimportant Unwise stand

What

Fix

Do you think that there are other purposes that a linter documentation should have?

Survey

3 steps:
 [axonomy evaluation

* Rules analysis

JWT should be signed and verified with strong cipher algorithms

If a JSON Web Token (JWT) is not signed with a strong cipher algorithm (or not signed at all) an attacker can forge it and impersonate user identities

o Don't use none algorithm to sign or verify the validity of a token

Noncompliant Code Example

jsonwebtoken library:

const jwt = require('jsonwebtoken');
let token = jwt.sign({ foo: 'bar' }, key, { algorithm: 'none' }); // Noncompliant: 'none' cipher doesn't sign the JWT (no signature will be included)
jwt.verify(token, key, { expiresIn: 360000 * 5, algorithms: ['RS256', 'mone'] }, callbackcheck); // Noncompliant: 'none' cipher should not be used when verifying JWT signature

Compliant Solution

jsonwebtoken library:

const jwt = require('jsonwebtoken');
{ let token = jwt.sign({ foo: 'bar' }, key, { algorithm: 'HS256' }); // Compliant
jwt.verify(token, key, { expiresIn: 360000 * 5, algorithms: ['HS256'] }, callbackcheck); // Compliant
See

L

o OWASP Top' 10 2021 Category A2
« OWASP Top 10 2017 Category A3 - Sensitive Data Exposure
o MITRE, CWE-347 - Improper Verification of Cryptographic Signature

Cryptographic Failures

Rule - JWT should be signed and verified with strong cipher algorithms - SonarLint

We want now to evaluate the relevance of each purpose for each type of content on existing rules.

We are going to look at the rule JWT should be signed and verified with strong cipher algorithms from SonarLint.
You could browse its documentation here: https://rules.sonarsource.com/javascript/type/Vulnerability/RSPEC-5659/

*Have you ever seen this rule?

Yes No

*For the rule and taxonomy provided, evaluate for each type of content its importance to explain the What purpose:

© What: details the reasons for a specific rule to be triggered or not. It helps developers understand the context and conditions under which
the linter detects non-compliant code.

Essential Worthwhile Unimportant Unwise Not present
Text
Code

Link

Survey

3 steps:
 [axonomy evaluation
* Rules analysis

e (General feedback

Survey Participants

80
70
60
50
40
30
20
10

What is your experience as a developer?

0-4 years

5-9 years 10-19 years

Do you know what a linter is?

Which of the following languages do you use regularly?
110

100
80

60

40

20

0

Gl Cxx C¥ yaNe “peso(-\p\ pel o\ W,«\o(\ auoy
20 years or more aso('\\)‘ |

85 Participants

Which of the following linters were used in those projects?
70

60
50
40
30
20
10
0
@%\}0\ Q\c’\/\(\\ c)‘*%d. 6?’\96 0’8)\99 ?‘\\\& <<\‘3“ & O\’\(\\ c‘ﬁ\ed\ S ’ \A°&O‘ 00009 N© y <<‘Q@Q 0’3"\;\&
e R T o o X o F P

Quantitative Results

Usefulness of each purpose in the documentation

| don't understand Unwise Unimportant
Worthwhile Essential
What
Why
FIX
/\QQO o %QQ o Q)QO o D(Qo o Q,Q& [c QQ o (2/60 o &00 o 6@3 o %QO [c »\QQO

Quantitative Results

Usefulness of each purpose in the documentation

| don't understand Unwise Unimportant
Worthwhile Essential
What
Why
F1X
Qo/o oo 0o ofo ofo 0[0 ofo ofo ofo ofo
A0 2O O 7O 0O N\ 00 7O O AN ,\QQ

Each purpose has to be documented

Quantitative Results

Quality of the documentation for each purpose
Very dissatisfied Dissatisfied

Neither satisfied nor dissatisfied Satisfied

Very satisfied

What
Why
Fix
0/0 0.{0 0/0 0[0 Ofo 0[0 0/0 0[0 o/o 0/0 0.[0
/ ,\QQ /%Q /Q)Q) AO /Q/Q Q Q/Q 7O QO N ,\QQ

Quantitative Results

Quality of the documentation for each purpose
Very dissatisfied Dissatisfied

Neither satisfied nor dissatisfied Satisfied

Very satisfied

What
Why
FiX
Qo/o Ji ofo 0[0 Ji 0[0 JB 0[0 Ji 0[o Ji
A0 Lo foX O 20 O 0O pO O QO ,\QQ

Why needs to be improved

10

Quantitative Results

Importance of content types to document purposes
Unwise Unimportant Worthwhile Essential

Text

What Code

Link

Text
Why Code
LiNnk

Text

Fix Code
Link

[o 00 0[0 00 0[0 0[0 0[0 0[0 0[0 Ji 00

0
A N 11

Quantitative Results

Importance of content types to document purposes
Unwise Unimportant Worthwhile -sentd To document
Text * What: Iext & Code
What Code
* Why: Text
* Fix: Text & Code

Link

Text
Why Code
Link

Text

Fix Code
Link

/0 Q[0 0|0 0/0

Quantitative Results

Importance of content types to document purposes

Unwise Unimportant Worthwhile Essential TO dOCument
- » What: Text & Code
What Code
" * Why: Text
e Fix: Text & Code
Text
Why Code
Link
Use Link sparingly
Text
Fix Code
Link
/)\ngjo /%00[0 ,Q)QO/O /&QOIO /@QOIO Qo/o (?/ono &0010 Q)QOIO %00[0 \QQQ[Q y

Qualitative Results

12

Qualitative Results

Learning vs Saving time

12

Qualitative Results

Learning vs Saving time

Use of a structured template, with
* summary

* code examples

12

Qualitative Results

Learning vs Saving time

Use of a structured template, with
* summary

* code examples

Use external links sparingly

12

State of Rules Documentation

Themes Concepts % of appearance

no-var SQL Injection i St it Description 92 15 concepts 3 themes

o S e Code Exampl 87

‘ Comprehension dmiheatiald - Taxonomy

= Further Information 30

3 R When Not To Use It 5 . Types of Content Purposes
op ‘ Since 29 Open card-sorting Text What (100%)

Verio Configuration 22 Code Why (50%)
Sxamples Resources Error Output 19 : Link Fix (77 %)
; . ¥ Explore the comprehension
= el s no-var
KRR PR + Goodle stve FurLoonShouIdB.eWhlleLuon Compatlblllty 3
What makes a good rule documentation? IDE Fix < What I
{ = ::""‘:!‘5 defined by the following class: oclint-rules/rules/basic/For.oopShouldBeWhileLoopRule.cpp Severity 34 ®
eeeeeeeeeee S Rule Definition 25 %) : Why Code
Mot &~ Developers expectations o
} Rule Set 11 Code let x = "y";
g ooy | e Related Rules g sl RSN, St AT = 0
Anti-pattern 5 f (enoughFood) { ... @@ W
ir count = sandwiches.length;
N ; console.log("We hav: + count + sandwiches or I € Plen Resources
console.log("We have + count + " people and " + sandwiches.length + i What Link
Tests source
3 6

Best practice

Quantitative Results Qualitative Results

Importance of content types to document purposes

Unwise Unimportant Worthwhile Essential TO document Learr“ng VS SaV|ng t|me

Tt e What: Text & Code

What chk « Why: Text Use of a structured template, with
* Fix: Text & Code

- e summary
Why Code

Link e COde exampleS

Use Link sparingly
Text Use external links sparingly
Fix Code
Link

0 https://icpc2024-asats.github.io/ .

Sophia de Mello Breyner Andresen Room

Corentin LATAPPY - corentin.latappy®@Ilabri.fr ~<] packmind LGBRI
Tuesday, April 16, 2024

mailto:corentin.latappy@labri.fr

