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Motivation

Customizable events

● “New questions on Stackoverflow”
○ “... about Angular...”
○ “... with over 50+ bounty points”

● “A stock market share price decreased by 5+%”

● “A change in the top 3 best-selling products”

added

modified
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Motivation

Fast integration of new service providers

● Rapidly support any RESTful web API
● Enable custom change detection strategies
● High-level abstraction of engineering concerns:

○ Data collection
○ Security, authentication
○ Maintenance, evolution

Customizable events

● “New questions on Stackoverflow”
○ “... about Angular...”
○ “... with over 50+ bounty points”

● “A stock market share price decreased by 5+%”

● “A change in the top 3 best-selling products”
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A simple composition

● Automatic photo backup
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How to implement such triggers?
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State construction

● Service providers only expose raw data (i.e. the state of a resource at a given time)
○ Example: Facebook only provides the following two API endpoints:
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State construction

● Service providers only expose raw data (i.e. the state of a resource at a given time)
○ Example: Facebook only provides the following two API endpoints:

GET /:albumId/photos

Retrieves the photos of an album on Facebook.
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State construction

● Service providers only expose raw data (i.e. the state of a resource at a given time)
○ Example: Facebook only provides the following two API endpoints:

GET /:albumId/photos

Retrieves the photos of an album on Facebook.

GET /:photoId/tags

Retrieves the users tagged in the photo.

Album ID

Photo ID

Photo IDs

Photo tags



{
  "data": [
    {
      "created_time": "2016-05-20T12:28:57",
      "updated_time": "2016-05-20T12:26:57",
      "id": "1106290499393017"
    }
  ],
  "paging": {
    "next": "https://graph.facebook.com/..."
  }
}
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State construction
GET /:albumId/photos

Album ID



{
  "data": [
    {
      "created_time": "2016-05-20T12:28:57",
      "updated_time": "2016-05-20T12:26:57",
      "id": "1106290499393017"
    }
  ],
  "paging": {
    "next": "https://graph.facebook.com/..."
  }
}
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{
  "data": [
    {
      "created_time": "2016-05-20T12:28:57",
      "updated_time": "2016-05-20T12:26:57",
      "id": "1106290499393017"
    }
  ],
  "paging": {
    "next": "https://graph.facebook.com/..."
  }
}
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{
  "data": [
    {
      "created_time": "2016-05-20T12:28:57",
      "updated_time": "2016-05-20T12:26:57",
      "id": "1106290499393017"
    }
  ],
  "paging": {
    "next": "https://graph.facebook.com/..."
  }
}

[
  {
    "created_time": "2016-05-20T12:26:57",
    "updated_time": "2016-05-20T12:28:57",
    "id": "1106290499393017",
    "data": [
      {
        "id": "10203528656797589",
        "name": "Bob",
        "x": 73.684210526316,
        "y": 74.865350089767
      }
    ]
  }
]
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State construction
GET /:albumId/photos GET /:photoId/tags

Album ID Photo IDs Photo tags
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Change detection
[
  {
    "created_time": "2016-05-20T12:26:57",
    "updated_time": "2016-05-20T12:28:57",
    "id": "1106290499393017",
    "data": [
      {
        "id": "10203528656797589",
        "name": "Bob",
        "x": 73.684210526316,
        "y": 74.865350089767
      }
    ]
  }
]

Initial state (t
0
)
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Change detection
[
  {
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]

[
  {
    "created_time": "2016-05-20T12:26:57",
    "updated_time": "2016-05-20T12:29:57",
    "id": "1106290499393017",
    "data": [
      {
        "id": "10203528656797589",
        "name": "Bob",
        "x": 76.684210526316,
        "y": 74.865350089767
      }
    ]
  },
  {
    "created_time": "2016-05-20T12:35:57",
    "id": "2206280499393006",
    "data": [
      {
        "id": "20406528656797578",
        "name": "Alice",
        "x": 63.684210526316,
        "y": 62.865350089767
      }
    ]
  }
]
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0
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Change detection
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Change detection

● Resulting JSON diff
[
  {
    "op": "replace",
    "path": "/0/data/0/x",
    "value": 76.684210526316
  },
  {
    "op": "replace",
    "path": "/0/updated_time",
    "value": "2016-05-20T12:29:57"
  },
  {
    "op": "add",
    "path": "/1",
    "value": {
      "created_time": "2016-05-20T12:35:57",
      "id": "2206280499393006",
      "data": [
        {
          "id": "0406528656797578",
          "name": "Alice",
          "x": 63.684210526316,
          "y": 62.865350089767
        }
      ]
    }
  }
]
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Change detection

● Resulting JSON diff
[
  {
    "op": "replace",
    "path": "/0/data/0/x",
    "value": 76.684210526316
  },
  {
    "op": "replace",
    "path": "/0/updated_time",
    "value": "2016-05-20T12:29:57"
  },
  {
    "op": "add",
    "path": "/1",
    "value": {
      "created_time": "2016-05-20T12:35:57",
      "id": "2206280499393006",
      "data": [
        {
          "id": "0406528656797578",
          "name": "Alice",
          "x": 63.684210526316,
          "y": 62.865350089767
        }
      ]
    }
  }
]

Irrelevant changes
(wrt. scenario)

Relevant changes
(wrt. scenario)

Developers need to:
● Post-process the diff output
● Identify relevant changes
● Extract and transform them into 

a usable format
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Challenges

● Challenges in polling for changes

State construction Change detection

Chaining multiple endpoints and navigating 
through responses to construct a state

Identifying relevant changes, 
and ignoring irrelevant ones



Enter  Polly
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Approach

● Polly, a declarative DSL for custom change detection in web service data
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Approach

● Polly, a declarative DSL for custom change detection in web service data

Language constructs for constructing a 
state from one or multiple API endpoints

Describing custom change detection 
strategies in JSON data from REST APIs

Compiles to efficient Node.js code Validated on several real use-cases
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Architecture

● Processing pipelines for defining custom change detectors
○ Expressed as a series of transformation operations on successive sets of data
○ Data and operations on it are independent from each other
○ Each operation produces a JSON document that is passed as input for the following operation

op
1

op
2

op
3

pipeline:

  - operation: op1

    definition: [...]

  - operation: op2

    definition: [...]

  - operation: op3

    definition: [...]



40

Language operators - fetch (1/2)

● Collecting data from a set of API endpoints

operation: fetch

definition: # [...]
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● Collecting data from a set of API endpoints

operation: fetch

definition:

  request:

    url: https://graph.facebook.com/v2.9/:albumId/photos

    params:

      albumId: 465607303461343

    query:

      access_token: XXXX

    headers:

      Accept: application/json

● Request object construction
○ URL parameters
○ Query parameters
○ HTTP headers

Language operators - fetch (1/2)
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● Collecting data from a set of API endpoints

operation: fetch

definition:

  request:

    url: https://graph.facebook.com/v2.9/:albumId/photos

    params:

      albumId: 465607303461343

    query:

      access_token: XXXX

    headers:

      Accept: application/json

    template: ~.data  # ~ denotes the response body

● Request object construction
○ URL parameters
○ Query parameters
○ HTTP headers

● Custom templating
○ Transform response data
○ Include only relevant fields

Language operators - fetch (1/2)
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● Collecting data from a set of API endpoints

operation: fetch

definition:

  request:

    url: https://graph.facebook.com/v2.9/:albumId/photos

    params:

      albumId: 465607303461343

    query:

      access_token: XXXX

    headers:

      Accept: application/json

    template: ~.data  # ~ denotes the response body

    pagination:

      next: ~.paging.next

● Request object construction
○ URL parameters
○ Query parameters
○ HTTP headers

● Custom templating
○ Transform response data
○ Include only relevant fields

● Automatic pagination handling
○ Recursively navigate to following 

pages

Language operators - fetch (1/2)
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Language operators - fetch (2/2)

● Fetching multiple resources in parallel

operation: fetch

definition:

  

  

  

   

  request:

    url: https://graph.facebook.com/v2.9/:photoId/tags

    query:

      access_token: XXXX

    headers:

      Accept: application/json

    pagination:

      next: ~.paging.next

    template:

      photoId: ^.id

      tags: ~.data
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Language operators - fetch (2/2)

● Fetching multiple resources in parallel

operation: fetch

definition:

  repeat:

    forEach: _         # _ denotes the input object

    placeholders:

      photoId: ^.id    # ^ denotes the iteration cursor

  request:

    url: https://graph.facebook.com/v2.9/:photoId/tags

    query:

      access_token: XXXX

    headers:

      Accept: application/json

    pagination:

      next: ~.paging.next

    template:

      photoId: ^.id

      tags: ~.data

● Multiple requests in parallel
○ Build a URL for each iteration cursor
○ Fetch resources asynchronously
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Language operators - filterArray

● Detecting custom changes in array structures

operation: filterArray

definition: # [...]
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Language operators - filterArray

● Detecting custom changes in array structures

operation: filterArray

definition:

  identifiers:

    - ^.photoId

● Item identification
○ Specify how to uniquely identify an 

item within a collection
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Language operators - filterArray

● Detecting custom changes in array structures

operation: filterArray

definition:

  identifiers:

    - ^.photoId

  find:

    - addedItems

  output: &.addedItems  # & denotes the output object

● Item identification
○ Specify how to uniquely identify an 

item within a collection

● Change detection strategy
○ Change types to watch for
○ Leverage predefined change types
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Language operators - filterCustom

● Custom filtering strategy

operation: filterCustom

definition:

  function: !!js/function >

    function (oldState, newState) {

      const result = [];

      # Filter the input, keeping only photos

      # where Alice was newly tagged.

      return result;

    }



50

Language operators - filterCustom

● Custom filtering strategy

operation: filterCustom

definition:

  function: !!js/function >

    function (oldState, newState) {

      const result = [];

      # Filter the input, keeping only photos

      # where Alice was newly tagged.

      return result;

    }

● User-defined logic
○ Javascript hook implementation
○ Runs in secure isolated sandbox



Evaluation
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●  Six use cases provided by our industrial partner
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Evaluation

●  Six use cases provided by our industrial partner

ElasticSearch

GitHub

Facebook

StackOverflow

Notify when the top 5 best-selling products change in ranking order

Notify when users X and Y are tagged together

Notify about new Go projects with over 2,000 stars

Notify about new JS questions with bounty > 100 reputation points
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Evaluation

●  Six use cases provided by our industrial partner

ElasticSearch

GitHub

Facebook

StackOverflow

Transport for London

Notify when the top 5 best-selling products change in ranking order

Notify when users X and Y are tagged together

Notify about new Go projects with over 2,000 stars

Notify about new JS questions with bounty > 100 reputation points

Notify when status of Victoria subway line changes
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Evaluation

●  Six use cases provided by our industrial partner

ElasticSearch

GitHub

Facebook

StackOverflow

Transport for London

Twitter

Notify when the top 5 best-selling products change in ranking order

Notify when users X and Y are tagged together

Notify about new Go projects with over 2,000 stars

Notify about new JS questions with bounty > 100 reputation points

Notify when status of Victoria subway line changes

Notify whenever the official Bordeaux account has new followers
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Evaluation

● Analysis of abstraction level
○ Verbosity measured by number of lexical tokens used to express a scenario
○ Comparison of handwritten Node.js implementation vs. Polly
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Evaluation

● Programs written in Polly 
5.5 to 8 times smaller than 
Node.js

● Requires a lot less 
boilerplate code

● Analysis of abstraction level
○ Verbosity measured by number of lexical tokens used to express a scenario
○ Comparison of handwritten Node.js implementation vs. Polly



● Performance analysis
○ Comparison against the top performing JSON differencing tool: JDR
○ Analyze differencing time and output size
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Evaluation



● Performance analysis
○ Comparison against the top performing JSON differencing tool: JDR
○ Analyze differencing time and output size

● Experimental setup
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Evaluation

Collect real data from services
(snapshot every 5 min for 48 hours = 576 snapshots)

Mock server
Serve collected data

Run scenarios and measure metrics
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Evaluation - Output size

JDR

Polly

● Median values of output 
sizes (in bytes) per case
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Evaluation - Output size

JDR

Polly

● Median values of output 
sizes (in bytes) per case

● Polly outperforms JDR
in all cases
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Evaluation - Output size

● Median values of output 
sizes (in bytes) per case

● Polly outperforms JDR
in all cases

JDR

Polly

● FB scenario: no changes 
during polling period
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Evaluation - Differencing time

● Median values of diff time 
(in milliseconds) per case

JDR

Polly
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● Polly outperforms JDR
in almost all cases
(0.15 ms slower for TL)

● Median values of diff time 
(in milliseconds) per case

JDR

Polly

Evaluation - Differencing time
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Statistical significance tests

● One-tailed paired Wilcoxon rank test
● Cohen’s d level reported on Cohen’s standard scale

Scenarios Detection time
(effect size)

Output size
(effect size)

      ES Large Medium

      FB Large NA

      GH Large Large

      SO Large Medium

      TL Large Large

      TW Large Large
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Statistical significance tests

● One-tailed paired Wilcoxon rank test
● Cohen’s d level reported on Cohen’s standard scale

● Polly results in a 
significantly improved 
outcome compared to JDR
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Output size
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Statistical significance tests

● One-tailed paired Wilcoxon rank test
● Cohen’s d level reported on Cohen’s standard scale

● Polly results in a 
significantly improved 
outcome compared to JDR

● FB: output size is equal to 0 
for every polling step for 
both approaches.

Scenarios Detection time
(effect size)

Output size
(effect size)

      ES Large Medium

      FB Large NA

      GH Large Large

      SO Large Medium

      TL Large Large

      TW Large Large
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Conclusion

● Polly, a declarative DSL for custom change detection in web service data

Language constructs for state construction 
from multiple API endpoints

Fine-grained custom
change detection strategies

Efficient implementation, 
outperforming existing solutions

Validated on several real use-cases
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Demo

● A demo site is available at the following address:

https://demo.pollyapp.ml
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State differencing
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A

B

C

A

B

C’

D

...
C

B

A

D

removed

unmodified

modified

added

diff(s0, s1)

s1s0 Diff output



● Webhooks

78

Triggers - push mode



● Webhooks
○ Service providers exposes a set of predefined events
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Triggers - push mode

ev
1

ev
2

ev
3



● Webhooks
○ Service providers exposes a set of predefined events
○ Client subscribes to the event(s) by providing a callback URL
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Triggers - push mode

subscribe(ev
1
, url)

ev
1

ev
2

ev
3

✓



● Webhooks
○ Service providers exposes a set of predefined events
○ Client subscribes to the event(s) by providing a callback URL
○ Service provider calls the provided URL when the specified event occurs
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Triggers - push mode

subscribe(ev
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● Webhooks
○ Service providers exposes a set of predefined events
○ Client subscribes to the event(s) by providing a callback URL
○ Service provider calls the provided URL when the specified event occurs
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Triggers - push mode

subscribe(ev
1
, url)

notify(ev
1
, payload)

+ Realtime notification
+ No wasted network roundtrips
+ Easy to setup
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● Webhooks
○ Service providers exposes a set of predefined events
○ Client subscribes to the event(s) by providing a callback URL
○ Service provider calls the provided URL when the specified event occurs
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Triggers - push mode

subscribe(ev
1
, url)

notify(ev
1
, payload)

+ Realtime notification
+ No wasted network roundtrips
+ Easy to setup

- Provided by very few services in practice
- Limited to predefined events

ev
1

ev
2

ev
3

✓
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Triggers - push mode

● Example: GitHub repository webhooks
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Triggers - push mode

● Example: GitHub repository webhooks
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Triggers - push mode

● Example: GitHub repository webhooks



● Recurrent polling
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Triggers



● Recurrent polling
○ Client polls a web service for a given resource
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Triggers

req(id=1)



● Recurrent polling
○ Client polls a web service for a given resource
○ Service returns the current state of the requested resource
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● Recurrent polling
○ Client polls a web service for a given resource
○ Service returns the current state of the requested resource
○ Client polls again later for the same resource
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Triggers

req(id=1)

res(A’)

req(id=1)

res(A)



● Recurrent polling
○ Client polls a web service for a given resource
○ Service returns the current state of the requested resource
○ Client polls again later for the same resource
○ Client calculates the difference between both states to detect any changes
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Triggers

req(id=1)

req(id=1)

res(A)

res(A’)

diff(A, A’) = δ
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Triggers

+ Universal approach

req(id=1)

req(id=1)

res(A)

● Recurrent polling
○ Client polls a web service for a given resource
○ Service returns the current state of the requested resource
○ Client polls again later for the same resource
○ Client calculates the difference between both states to detect any changes

res(A’)

diff(A, A’) = δ
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Triggers

+ Universal approach - Relatively complex to implement
- Tedious to support all event types

req(id=1)

req(id=1)

res(A)

● Recurrent polling
○ Client polls a web service for a given resource
○ Service returns the current state of the requested resource
○ Client polls again later for the same resource
○ Client calculates the difference between both states to detect any changes

res(A’)

diff(A, A’) = δ


