
Polly: A Language-Based Approach for Change
Detection in Web Service Data

Elyas Ben Hadj Yahia
CProDirect

Jean-Rémy Falleri
University of Bordeaux

Laurent Réveillère
University of Bordeaux

16/11/17 - ICSOC - Málaga

2

Service composition

Orchestrating applications and services
together to automate a business process

S1

S2

S3

S4

S1

3

Service composition

Orchestrating applications and services
together to automate a business process

S2

S3

S4

New evente

S2

S3

S4

S1

4

Service composition

Orchestrating applications and services
together to automate a business process

New evente

5

Motivation

Customizable events

6

Motivation

Customizable events

● “New questions on Stackoverflow”

Q?+

7

Motivation

Customizable events

● “New questions on Stackoverflow”
○ “... about Angular...”

 angular

Q?+

 angular

8

Motivation

Customizable events

● “New questions on Stackoverflow”
○ “... about Angular...”
○ “... with over 50+ bounty points”

+50Q?+

9

Motivation

Customizable events

● “New questions on Stackoverflow”
○ “... about Angular...”
○ “... with over 50+ bounty points”

● “A stock market share price decreased by 5+%”

100$ 90$ (-10%)

10

Motivation

Customizable events

● “New questions on Stackoverflow”
○ “... about Angular...”
○ “... with over 50+ bounty points”

● “A stock market share price decreased by 5+%”

● “A change in the top 3 best-selling products”

added

modified

removed

11

Motivation

Fast integration of new service providersCustomizable events

● “New questions on Stackoverflow”
○ “... about Angular...”
○ “... with over 50+ bounty points”

● “A stock market share price decreased by 5+%”

● “A change in the top 3 best-selling products”

12

Motivation

Fast integration of new service providers

● Rapidly support any RESTful web API
● Enable custom change detection strategies
● High-level abstraction of engineering concerns:

○ Data collection
○ Security, authentication
○ Maintenance, evolution

Customizable events

● “New questions on Stackoverflow”
○ “... about Angular...”
○ “... with over 50+ bounty points”

● “A stock market share price decreased by 5+%”

● “A change in the top 3 best-selling products”

13

A simple composition

● Automatic photo backup

14

A simple composition

● Automatic photo backup

Alice is tagged
on an album photo

if

Trigger

15

A simple composition

● Automatic photo backup

Alice is tagged
on an album photo

Store photo
on Dropbox

if then

Trigger Action

16

A simple composition

● Automatic photo backup

Alice is tagged
on an album photo

Store photo
on Dropbox

if then

Trigger Action

How to implement such triggers?

17

18

State construction

● Service providers only expose raw data (i.e. the state of a resource at a given time)
○ Example: Facebook only provides the following two API endpoints:

19

State construction

● Service providers only expose raw data (i.e. the state of a resource at a given time)
○ Example: Facebook only provides the following two API endpoints:

GET /:albumId/photos

Retrieves the photos of an album on Facebook.

Album ID Photo IDs

20

State construction

● Service providers only expose raw data (i.e. the state of a resource at a given time)
○ Example: Facebook only provides the following two API endpoints:

GET /:albumId/photos

Retrieves the photos of an album on Facebook.

GET /:photoId/tags

Retrieves the users tagged in the photo.

Album ID

Photo ID

Photo IDs

Photo tags

{
 "data": [
 {
 "created_time": "2016-05-20T12:28:57",
 "updated_time": "2016-05-20T12:26:57",
 "id": "1106290499393017"
 }
],
 "paging": {
 "next": "https://graph.facebook.com/..."
 }
}

21

State construction
GET /:albumId/photos

Album ID

{
 "data": [
 {
 "created_time": "2016-05-20T12:28:57",
 "updated_time": "2016-05-20T12:26:57",
 "id": "1106290499393017"
 }
],
 "paging": {
 "next": "https://graph.facebook.com/..."
 }
}

22

State construction
GET /:albumId/photos

Album ID Photo IDs

{
 "data": [
 {
 "created_time": "2016-05-20T12:28:57",
 "updated_time": "2016-05-20T12:26:57",
 "id": "1106290499393017"
 }
],
 "paging": {
 "next": "https://graph.facebook.com/..."
 }
}

23

State construction
GET /:albumId/photos

Album ID Photo IDs

{
 "data": [
 {
 "created_time": "2016-05-20T12:28:57",
 "updated_time": "2016-05-20T12:26:57",
 "id": "1106290499393017"
 }
],
 "paging": {
 "next": "https://graph.facebook.com/..."
 }
}

[
 {
 "created_time": "2016-05-20T12:26:57",
 "updated_time": "2016-05-20T12:28:57",
 "id": "1106290499393017",
 "data": [
 {
 "id": "10203528656797589",
 "name": "Bob",
 "x": 73.684210526316,
 "y": 74.865350089767
 }
]
 }
]

24

State construction
GET /:albumId/photos GET /:photoId/tags

Album ID Photo IDs Photo tags

25

Change detection
[
 {
 "created_time": "2016-05-20T12:26:57",
 "updated_time": "2016-05-20T12:28:57",
 "id": "1106290499393017",
 "data": [
 {
 "id": "10203528656797589",
 "name": "Bob",
 "x": 73.684210526316,
 "y": 74.865350089767
 }
]
 }
]

Initial state (t
0
)

26

Change detection
[
 {
 "created_time": "2016-05-20T12:26:57",
 "updated_time": "2016-05-20T12:28:57",
 "id": "1106290499393017",
 "data": [
 {
 "id": "10203528656797589",
 "name": "Bob",
 "x": 73.684210526316,
 "y": 74.865350089767
 }
]
 }
]

[
 {
 "created_time": "2016-05-20T12:26:57",
 "updated_time": "2016-05-20T12:29:57",
 "id": "1106290499393017",
 "data": [
 {
 "id": "10203528656797589",
 "name": "Bob",
 "x": 76.684210526316,
 "y": 74.865350089767
 }
]
 },
 {
 "created_time": "2016-05-20T12:35:57",
 "id": "2206280499393006",
 "data": [
 {
 "id": "20406528656797578",
 "name": "Alice",
 "x": 63.684210526316,
 "y": 62.865350089767
 }
]
 }
]

Initial state (t
0
) Updated state (t

1
)

27

Change detection
[
 {
 "created_time": "2016-05-20T12:26:57",
 "updated_time": "2016-05-20T12:28:57",
 "id": "1106290499393017",
 "data": [
 {
 "id": "10203528656797589",
 "name": "Bob",
 "x": 73.684210526316,
 "y": 74.865350089767
 }
]
 }
]

[
 {
 "created_time": "2016-05-20T12:26:57",
 "updated_time": "2016-05-20T12:29:57",
 "id": "1106290499393017",
 "data": [
 {
 "id": "10203528656797589",
 "name": "Bob",
 "x": 76.684210526316,
 "y": 74.865350089767
 }
]
 },
 {
 "created_time": "2016-05-20T12:35:57",
 "id": "2206280499393006",
 "data": [
 {
 "id": "20406528656797578",
 "name": "Alice",
 "x": 63.684210526316,
 "y": 62.865350089767
 }
]
 }
]

Initial state (t
0
) Updated state (t

1
)

28

Change detection

● Resulting JSON diff
[
 {
 "op": "replace",
 "path": "/0/data/0/x",
 "value": 76.684210526316
 },
 {
 "op": "replace",
 "path": "/0/updated_time",
 "value": "2016-05-20T12:29:57"
 },
 {
 "op": "add",
 "path": "/1",
 "value": {
 "created_time": "2016-05-20T12:35:57",
 "id": "2206280499393006",
 "data": [
 {
 "id": "0406528656797578",
 "name": "Alice",
 "x": 63.684210526316,
 "y": 62.865350089767
 }
]
 }
 }
]

29

Change detection

● Resulting JSON diff
[
 {
 "op": "replace",
 "path": "/0/data/0/x",
 "value": 76.684210526316
 },
 {
 "op": "replace",
 "path": "/0/updated_time",
 "value": "2016-05-20T12:29:57"
 },
 {
 "op": "add",
 "path": "/1",
 "value": {
 "created_time": "2016-05-20T12:35:57",
 "id": "2206280499393006",
 "data": [
 {
 "id": "0406528656797578",
 "name": "Alice",
 "x": 63.684210526316,
 "y": 62.865350089767
 }
]
 }
 }
]

Irrelevant changes
(wrt. scenario)

30

Change detection

● Resulting JSON diff
[
 {
 "op": "replace",
 "path": "/0/data/0/x",
 "value": 76.684210526316
 },
 {
 "op": "replace",
 "path": "/0/updated_time",
 "value": "2016-05-20T12:29:57"
 },
 {
 "op": "add",
 "path": "/1",
 "value": {
 "created_time": "2016-05-20T12:35:57",
 "id": "2206280499393006",
 "data": [
 {
 "id": "0406528656797578",
 "name": "Alice",
 "x": 63.684210526316,
 "y": 62.865350089767
 }
]
 }
 }
]

Irrelevant changes
(wrt. scenario)

Relevant changes
(wrt. scenario)

31

Change detection

● Resulting JSON diff
[
 {
 "op": "replace",
 "path": "/0/data/0/x",
 "value": 76.684210526316
 },
 {
 "op": "replace",
 "path": "/0/updated_time",
 "value": "2016-05-20T12:29:57"
 },
 {
 "op": "add",
 "path": "/1",
 "value": {
 "created_time": "2016-05-20T12:35:57",
 "id": "2206280499393006",
 "data": [
 {
 "id": "0406528656797578",
 "name": "Alice",
 "x": 63.684210526316,
 "y": 62.865350089767
 }
]
 }
 }
]

Irrelevant changes
(wrt. scenario)

Relevant changes
(wrt. scenario)

Developers need to:
● Post-process the diff output
● Identify relevant changes
● Extract and transform them into

a usable format

32

Challenges

● Challenges in polling for changes

State construction Change detection

Chaining multiple endpoints and navigating
through responses to construct a state

Identifying relevant changes,
and ignoring irrelevant ones

Enter Polly

34

Approach

● Polly, a declarative DSL for custom change detection in web service data

35

Approach

● Polly, a declarative DSL for custom change detection in web service data

Language constructs for constructing a
state from one or multiple API endpoints

36

Approach

● Polly, a declarative DSL for custom change detection in web service data

Language constructs for constructing a
state from one or multiple API endpoints

Describing custom change detection
strategies in JSON data from REST APIs

37

Approach

● Polly, a declarative DSL for custom change detection in web service data

Language constructs for constructing a
state from one or multiple API endpoints

Describing custom change detection
strategies in JSON data from REST APIs

Compiles to efficient Node.js code

38

Approach

● Polly, a declarative DSL for custom change detection in web service data

Language constructs for constructing a
state from one or multiple API endpoints

Describing custom change detection
strategies in JSON data from REST APIs

Compiles to efficient Node.js code Validated on several real use-cases

39

Architecture

● Processing pipelines for defining custom change detectors
○ Expressed as a series of transformation operations on successive sets of data
○ Data and operations on it are independent from each other
○ Each operation produces a JSON document that is passed as input for the following operation

op
1

op
2

op
3

pipeline:

 - operation: op1

 definition: [...]

 - operation: op2

 definition: [...]

 - operation: op3

 definition: [...]

40

Language operators - fetch (1/2)

● Collecting data from a set of API endpoints

operation: fetch

definition: # [...]

41

● Collecting data from a set of API endpoints

operation: fetch

definition:

 request:

 url: https://graph.facebook.com/v2.9/:albumId/photos

 params:

 albumId: 465607303461343

 query:

 access_token: XXXX

 headers:

 Accept: application/json

● Request object construction
○ URL parameters
○ Query parameters
○ HTTP headers

Language operators - fetch (1/2)

42

● Collecting data from a set of API endpoints

operation: fetch

definition:

 request:

 url: https://graph.facebook.com/v2.9/:albumId/photos

 params:

 albumId: 465607303461343

 query:

 access_token: XXXX

 headers:

 Accept: application/json

 template: ~.data # ~ denotes the response body

● Request object construction
○ URL parameters
○ Query parameters
○ HTTP headers

● Custom templating
○ Transform response data
○ Include only relevant fields

Language operators - fetch (1/2)

43

● Collecting data from a set of API endpoints

operation: fetch

definition:

 request:

 url: https://graph.facebook.com/v2.9/:albumId/photos

 params:

 albumId: 465607303461343

 query:

 access_token: XXXX

 headers:

 Accept: application/json

 template: ~.data # ~ denotes the response body

 pagination:

 next: ~.paging.next

● Request object construction
○ URL parameters
○ Query parameters
○ HTTP headers

● Custom templating
○ Transform response data
○ Include only relevant fields

● Automatic pagination handling
○ Recursively navigate to following

pages

Language operators - fetch (1/2)

44

Language operators - fetch (2/2)

● Fetching multiple resources in parallel

operation: fetch

definition:

 request:

 url: https://graph.facebook.com/v2.9/:photoId/tags

 query:

 access_token: XXXX

 headers:

 Accept: application/json

 pagination:

 next: ~.paging.next

 template:

 photoId: ^.id

 tags: ~.data

45

Language operators - fetch (2/2)

● Fetching multiple resources in parallel

operation: fetch

definition:

 repeat:

 forEach: _ # _ denotes the input object

 placeholders:

 photoId: ^.id # ^ denotes the iteration cursor

 request:

 url: https://graph.facebook.com/v2.9/:photoId/tags

 query:

 access_token: XXXX

 headers:

 Accept: application/json

 pagination:

 next: ~.paging.next

 template:

 photoId: ^.id

 tags: ~.data

● Multiple requests in parallel
○ Build a URL for each iteration cursor
○ Fetch resources asynchronously

46

Language operators - filterArray

● Detecting custom changes in array structures

operation: filterArray

definition: # [...]

47

Language operators - filterArray

● Detecting custom changes in array structures

operation: filterArray

definition:

 identifiers:

 - ^.photoId

● Item identification
○ Specify how to uniquely identify an

item within a collection

48

Language operators - filterArray

● Detecting custom changes in array structures

operation: filterArray

definition:

 identifiers:

 - ^.photoId

 find:

 - addedItems

 output: &.addedItems # & denotes the output object

● Item identification
○ Specify how to uniquely identify an

item within a collection

● Change detection strategy
○ Change types to watch for
○ Leverage predefined change types

49

Language operators - filterCustom

● Custom filtering strategy

operation: filterCustom

definition:

 function: !!js/function >

 function (oldState, newState) {

 const result = [];

 # Filter the input, keeping only photos

 # where Alice was newly tagged.

 return result;

 }

50

Language operators - filterCustom

● Custom filtering strategy

operation: filterCustom

definition:

 function: !!js/function >

 function (oldState, newState) {

 const result = [];

 # Filter the input, keeping only photos

 # where Alice was newly tagged.

 return result;

 }

● User-defined logic
○ Javascript hook implementation
○ Runs in secure isolated sandbox

Evaluation

51

52

Evaluation

● Six use cases provided by our industrial partner

53

Evaluation

● Six use cases provided by our industrial partner

ElasticSearch Notify when the top 5 best-selling products change in ranking order

54

Evaluation

● Six use cases provided by our industrial partner

ElasticSearch

Facebook

Notify when the top 5 best-selling products change in ranking order

Notify when users X and Y are tagged together

55

Evaluation

● Six use cases provided by our industrial partner

ElasticSearch

GitHub

Facebook

Notify when the top 5 best-selling products change in ranking order

Notify when users X and Y are tagged together

Notify about new Go projects with over 2,000 stars

56

Evaluation

● Six use cases provided by our industrial partner

ElasticSearch

GitHub

Facebook

StackOverflow

Notify when the top 5 best-selling products change in ranking order

Notify when users X and Y are tagged together

Notify about new Go projects with over 2,000 stars

Notify about new JS questions with bounty > 100 reputation points

57

Evaluation

● Six use cases provided by our industrial partner

ElasticSearch

GitHub

Facebook

StackOverflow

Transport for London

Notify when the top 5 best-selling products change in ranking order

Notify when users X and Y are tagged together

Notify about new Go projects with over 2,000 stars

Notify about new JS questions with bounty > 100 reputation points

Notify when status of Victoria subway line changes

58

Evaluation

● Six use cases provided by our industrial partner

ElasticSearch

GitHub

Facebook

StackOverflow

Transport for London

Twitter

Notify when the top 5 best-selling products change in ranking order

Notify when users X and Y are tagged together

Notify about new Go projects with over 2,000 stars

Notify about new JS questions with bounty > 100 reputation points

Notify when status of Victoria subway line changes

Notify whenever the official Bordeaux account has new followers

59

Evaluation

● Analysis of abstraction level
○ Verbosity measured by number of lexical tokens used to express a scenario
○ Comparison of handwritten Node.js implementation vs. Polly

60

Evaluation

● Analysis of abstraction level
○ Verbosity measured by number of lexical tokens used to express a scenario
○ Comparison of handwritten Node.js implementation vs. Polly

61

Evaluation

● Programs written in Polly
5.5 to 8 times smaller than
Node.js

● Analysis of abstraction level
○ Verbosity measured by number of lexical tokens used to express a scenario
○ Comparison of handwritten Node.js implementation vs. Polly

62

Evaluation

● Programs written in Polly
5.5 to 8 times smaller than
Node.js

● Requires a lot less
boilerplate code

● Analysis of abstraction level
○ Verbosity measured by number of lexical tokens used to express a scenario
○ Comparison of handwritten Node.js implementation vs. Polly

● Performance analysis
○ Comparison against the top performing JSON differencing tool: JDR
○ Analyze differencing time and output size

63

Evaluation

● Performance analysis
○ Comparison against the top performing JSON differencing tool: JDR
○ Analyze differencing time and output size

● Experimental setup

64

Evaluation

Collect real data from services
(snapshot every 5 min for 48 hours = 576 snapshots)

Mock server
Serve collected data

Run scenarios and measure metrics

65

Evaluation - Output size

JDR

Polly

● Median values of output
sizes (in bytes) per case

66

Evaluation - Output size

JDR

Polly

● Median values of output
sizes (in bytes) per case

● Polly outperforms JDR
in all cases

67

Evaluation - Output size

● Median values of output
sizes (in bytes) per case

● Polly outperforms JDR
in all cases

JDR

Polly

● FB scenario: no changes
during polling period

68

Evaluation - Differencing time

● Median values of diff time
(in milliseconds) per case

JDR

Polly

69

● Polly outperforms JDR
in almost all cases
(0.15 ms slower for TL)

● Median values of diff time
(in milliseconds) per case

JDR

Polly

Evaluation - Differencing time

70

Statistical significance tests

● One-tailed paired Wilcoxon rank test
● Cohen’s d level reported on Cohen’s standard scale

Scenarios Detection time
(effect size)

Output size
(effect size)

 ES Large Medium

 FB Large NA

 GH Large Large

 SO Large Medium

 TL Large Large

 TW Large Large

71

Statistical significance tests

● One-tailed paired Wilcoxon rank test
● Cohen’s d level reported on Cohen’s standard scale

● Polly results in a
significantly improved
outcome compared to JDR

Scenarios Detection time
(effect size)

Output size
(effect size)

 ES Large Medium

 FB Large NA

 GH Large Large

 SO Large Medium

 TL Large Large

 TW Large Large

72

Statistical significance tests

● One-tailed paired Wilcoxon rank test
● Cohen’s d level reported on Cohen’s standard scale

● Polly results in a
significantly improved
outcome compared to JDR

● FB: output size is equal to 0
for every polling step for
both approaches.

Scenarios Detection time
(effect size)

Output size
(effect size)

 ES Large Medium

 FB Large NA

 GH Large Large

 SO Large Medium

 TL Large Large

 TW Large Large

73

Conclusion

● Polly, a declarative DSL for custom change detection in web service data

Language constructs for state construction
from multiple API endpoints

Fine-grained custom
change detection strategies

Efficient implementation,
outperforming existing solutions

Validated on several real use-cases

74

Demo

● A demo site is available at the following address:

https://demo.pollyapp.ml

Elyas Ben Hadj Yahia
elyas.bhy@cprodirect.fr

Polly: A Language-Based Approach for Change
Detection in Web Service Data

16/11/17 - ICSOC - Málaga

State differencing

77

A

B

C

A

B

C’

D

...
C

B

A

D

removed

unmodified

modified

added

diff(s0, s1)

s1s0 Diff output

● Webhooks

78

Triggers - push mode

● Webhooks
○ Service providers exposes a set of predefined events

79

Triggers - push mode

ev
1

ev
2

ev
3

● Webhooks
○ Service providers exposes a set of predefined events
○ Client subscribes to the event(s) by providing a callback URL

80

Triggers - push mode

subscribe(ev
1
, url)

ev
1

ev
2

ev
3

✓

● Webhooks
○ Service providers exposes a set of predefined events
○ Client subscribes to the event(s) by providing a callback URL
○ Service provider calls the provided URL when the specified event occurs

81

Triggers - push mode

subscribe(ev
1
, url)

notify(ev
1
, payload)

ev
1

ev
2

ev
3

✓

● Webhooks
○ Service providers exposes a set of predefined events
○ Client subscribes to the event(s) by providing a callback URL
○ Service provider calls the provided URL when the specified event occurs

82

Triggers - push mode

subscribe(ev
1
, url)

notify(ev
1
, payload)

+ Realtime notification
+ No wasted network roundtrips
+ Easy to setup

ev
1

ev
2

ev
3

✓

● Webhooks
○ Service providers exposes a set of predefined events
○ Client subscribes to the event(s) by providing a callback URL
○ Service provider calls the provided URL when the specified event occurs

83

Triggers - push mode

subscribe(ev
1
, url)

notify(ev
1
, payload)

+ Realtime notification
+ No wasted network roundtrips
+ Easy to setup

- Provided by very few services in practice
- Limited to predefined events

ev
1

ev
2

ev
3

✓

84

Triggers - push mode

● Example: GitHub repository webhooks

85

Triggers - push mode

● Example: GitHub repository webhooks

86

Triggers - push mode

● Example: GitHub repository webhooks

● Recurrent polling

87

Triggers

● Recurrent polling
○ Client polls a web service for a given resource

88

Triggers

req(id=1)

● Recurrent polling
○ Client polls a web service for a given resource
○ Service returns the current state of the requested resource

89

Triggers

req(id=1)

res(A)

● Recurrent polling
○ Client polls a web service for a given resource
○ Service returns the current state of the requested resource
○ Client polls again later for the same resource

90

Triggers

req(id=1)

res(A’)

req(id=1)

res(A)

● Recurrent polling
○ Client polls a web service for a given resource
○ Service returns the current state of the requested resource
○ Client polls again later for the same resource
○ Client calculates the difference between both states to detect any changes

91

Triggers

req(id=1)

req(id=1)

res(A)

res(A’)

diff(A, A’) = δ

92

Triggers

+ Universal approach

req(id=1)

req(id=1)

res(A)

● Recurrent polling
○ Client polls a web service for a given resource
○ Service returns the current state of the requested resource
○ Client polls again later for the same resource
○ Client calculates the difference between both states to detect any changes

res(A’)

diff(A, A’) = δ

93

Triggers

+ Universal approach - Relatively complex to implement
- Tedious to support all event types

req(id=1)

req(id=1)

res(A)

● Recurrent polling
○ Client polls a web service for a given resource
○ Service returns the current state of the requested resource
○ Client polls again later for the same resource
○ Client calculates the difference between both states to detect any changes

res(A’)

diff(A, A’) = δ

