WCRE 2013
Koblenz, Germany

Find Your Library Experts

Ceédric Teyton, Jean-Rémy Falleri,
Floréal Morandat, Xavier Blanc

;' ‘ Software Engineering (http://se.labri.fr)
2 LaBRI, Université de Bordeaux, France D | aBR]

3
BORDEAUX 1
eeeeeeeeeeeeeeeeeee

Libraries & Expertise

e Libraries are heavily used by modern software
— Dozens of libraries, large range of applications

e Libraries experts are needed to :
— Assist developers when using a library
— Ensure maintenance of libraries (update or migrate ?)
— Resolve bugs related to a library

How to find library experts ?

Find Library Experts : Problem

e Self-evaluation ? Peers reviews ? Ok, but :
- Time-consuming

— Subjective, based on people opinion
- evaluations are not consistent between each other

— Hard to keep up-to-date and to automatize
- what Iif | now tame a new library ?

Find Library Experts : Challenge

 \We want a solution :

— Automatic : experts are identiflied and ranked
from source code analysis

— Objective : experts are identified from “what
they really do”

Find Library Experts : Road Map

* How to extract library expertise ?
 How to measure library expertise ?

* How to define “more expert than ?” and
compare expertise ?

Libraries

* Alibrary :
- Aname (ex: JUnit)
- Aversion (ex : 3.8.1)
— Alist of symbols (ex : org.junit.AssertTrue(boolean))

» Symbols are public functions, fields accessible
through a well-defined API

» Developers < Library ?

A developers knows a symbol once she used it

(1) Expertise Extraction : Problem

* Libraries usage :
— |s scattered [1], minor part source files contents
- EX : Google Guava in Apache HBase* project
- used in 228 Java files
- usage : 492 LOC out of 113,000 LOC (0.004 %)

* Can not rely on coarse-grained analysis

e Touch file # “know” Its content !

[1] Bauer et al, Understanding API Usage to Support Informed Decision Making in Software
Maintenance. CSMR 2012
* https://github.com/apache/hbase

(1) Expertise extraction

* Fine-grained analysis of source code contributions

— Detection of added parts of the code using diff
— Search symbols in a pre-built symbols index

* Exemple : commit from Alice

import java.util.logging.logger;

import org.slt4j.Logger;
import org.slf47.LoggerFactory;

public class StudyScheduler {

private fipal static Logger LOGGER = Logger.getLogger("”fr.labri.harmony.scheduler”);

private static Logger LOGGER;
public StudyScheduler(SchedulerConfiguration schedulerConfiguration) { /

LOGGER = LoggerFactory.getlogger (getClass());
this.schedulerConfiguration = schedulerConfiguration;

t
Developer Library Version (opt.) Symbol

Alice sIf4] ? LoggerFactory.getLogger(Class)

(2) Measure Library expertise

* Library expertise targets a library and optionally

two filters on versions and symbols
— (library, [version], [symbol])
- EX : (Junit), (junit,3.8.1), (junit,3.8.1,0rg.junit.runners.*)

* Measure : ratio of knowledge of symbols for a library

expertise definition
— Areal value between O and 1
- 0 = no expertise, | = complete expertise

(3) Compare Expertise

« Compare developers for one or more expertise

« EX : rank experts for the 3 library expertise
{(Junit,3.8.1), (quava), (log4))} :

1. Get for all the developers the 3 related expertise
scores {i jk I with O <=i,jk <=1
2. Euclidean distance computation to a virtual reference

point (1,1,1) R that represents a complete expertise
3. The closest to R, the highest ranked-expert

Play With Expertise

A prototype LibTic and a user-friendly language

to manipulate our model
— eX : (junit,3.8.l,org.junit.runners.*) and (guava)

* Few keywords :
— Who junit = 3.8.] {org.junit.runners.*} guava

(returns developers with a score value)
— How junit = 3.8.] {org, junit.runners.*} guava

(expends the list of symbols per constraint)

Experiments : Setup

« 6330 Java projects from Github managed under
Maven

— Dependencies retrieval + versions information
— Allows for symbol index construction
— Each project revision analyzed

« 3705 developers, 1,026 libraries and 51,585 symbols

e PUrposes :
1) Verify that we find consistent results

2) Show interest of LIDTIC in a software project context

Experiments (Experts search)

1) Select top-2 experts of 3 libraries and 1 pair of libraries
— 8 developers contacted to confirm their expertise

2) Results

— 4 confirmed their strong expertise

- 3 did not answer, but good confidence based on their
Github activities

— 1 did not answer and no information about her

— Consistent and valid data
— EXperts identification is possible

Experiments (Project Management)

« Assessing Library Knowledge : coverage matrix

Sl 2188 e 2] 2] |2 E st 118 s |dentify critical resources
HEIREIE I AR AL | E Feit
HHAEHERHBHEHHEIRELHR RS
HHHEFHHEIHMEIEE P I E IR I ..)
S i iy Critical human resource : if she
cummuns‘-la.ng E ! ! ! [E F 9 = . . .
Smmslosgie s @@ e e el rere e e iedeit (egves, it will impact the level of
ha.dU,Ul?-crU,r.i . [I I I [] e o | o | o E. .E .E S
e : g expertise of the team
_jackﬁun-nmp:::lr'::; ; ;. 3 :;
. jaxb-api £ @ F@ L S @:
jersey-core [E =N I 4 @ .
O ot 1ol _, Critical resource : too
=g ——— : few developers know a library. Should
" el C sl Telsieisiel [ssle et te1 SOMe devs be trained with it ?
e . : i : ~
Henoe e o —tsi — Anticipate needs and risks
thrifts oo g | I { ' ' =@ ®
zookeeper E": ,i [] [E"”.

Project : Apache HBase

[

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0,2
0,1

=]

Experiments (Task Recommendation)

» 11 issues (from 2010 to 2012) related to guava library

 Collected the devs involved in the resolution process

 What If all guava experts had been notified ?

o

#1(1) #2(1) #£3(4) #4(6) #5(6) #6(6) #7(7) #B(7) #£9(9) #10(9) #11 (10)

#Bugld (known Guava experts)

— compute precision/recall against

the true data

— Just an insight, does not prove

the bug triaging aspect

Summary

* Need to assess 3rd-party libraries expertise
— Hard to identify and to maintain

* We propose an automatic approach to :
— Measure developer library expertise
— Rank experts for one or several expertise

* What's next ?
— QOvercome precision Issues
— Strengthen bug triaging part
— Extend to more technological resources

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

