
Find Your Library Experts

Software Engineering (http://se.labri.fr)
LaBRI, Université de Bordeaux, France

Cédric Teyton, Jean-Rémy Falleri,
Floréal Morandat, Xavier Blanc

WCRE 2013
Koblenz, Germany

 2

Libraries & Expertise

● Libraries are heavily used by modern software
→ Dozens of libraries, large range of applications

● Libraries experts are needed to :
→ Assist developers when using a library
→ Ensure maintenance of libraries (update or migrate ?)
→ Resolve bugs related to a library

How to find library experts ?

 3

Find Library Experts : Problem

● Self-evaluation ? Peers reviews ? Ok, but :

→ Time-consuming

→ Subjective, based on people opinion
- evaluations are not consistent between each other

→ Hard to keep up-to-date and to automatize
- what if I now tame a new library ?

 4

Find Library Experts : Challenge

● We want a solution :

→ Automatic : experts are identified and ranked
from source code analysis

→ Objective : experts are identified from “what
they really do”

 5

Find Library Experts : Road Map

● How to extract library expertise ?

● How to measure library expertise ?

● How to define “more expert than ?” and
compare expertise ?

 6

Libraries

● A library :
→ A name (ex: JUnit)
→ A version (ex : 3.8.1)
→ A list of symbols (ex : org.junit.AssertTrue(boolean))

● Symbols are public functions, fields accessible
through a well-defined API

● Developers ↔ Library ?

A developers knows a symbol once she used it

 7

(1) Expertise Extraction : Problem

● Libraries usage :
 → Is scattered [1], minor part source files contents
 → Ex : Google Guava in Apache HBase* project

- used in 228 Java files
- usage : 492 LOC out of 113,000 LOC (0.004 %)

● Can not rely on coarse-grained analysis

● Touch file ≠ “know” its content !

[1] Bauer et al, Understanding API Usage to Support Informed Decision Making in Software
Maintenance. CSMR 2012
* https://github.com/apache/hbase

 8

(1) Expertise extraction

● Fine-grained analysis of source code contributions
 → Detection of added parts of the code using diff
 → Search symbols in a pre-built symbols index

● Exemple : commit from Alice

1 symbol used

Developer Library Version (opt.) Symbol

Alice slf4j ? LoggerFactory.getLogger(Class)

 9

(2) Measure Library expertise

● Library expertise targets a library and optionally
two filters on versions and symbols

→ (library, [version], [symbol])
→ Ex : (junit), (junit,3.8.1), (junit,3.8.1,org.junit.runners.*)

● Measure : ratio of knowledge of symbols for a library
expertise definition

→ A real value between 0 and 1
→ 0 = no expertise, I = complete expertise

 10

(3) Compare Expertise

● Compare developers for one or more expertise

● Ex : rank experts for the 3 library expertise
{(junit,3.8.1), (guava), (log4j)} :

 1. Get for all the developers the 3 related expertise
scores { i,j,k } with 0 <= i,j,k <= 1
 2. Euclidean distance computation to a virtual reference

point (1,1,1) R that represents a complete expertise
 3. The closest to R, the highest ranked-expert

 11

Play With Expertise

● A prototype LibTic and a user-friendly language
to manipulate our model
 → ex : (junit,3.8.1,org.junit.runners.*) and (guava)

● Few keywords :
 → Who junit = 3.8.1 {org.junit.runners.*} guava

(returns developers with a score value)
 → How junit = 3.8.1 {org.junit.runners.*} guava
 (expends the list of symbols per constraint)

 12

Experiments : Setup

● 6330 Java projects from Github managed under
 Maven

 → Dependencies retrieval + versions information
 → Allows for symbol index construction
 → Each project revision analyzed

● 3705 developers, 1,026 libraries and 51,585 symbols

● Purposes :
1) Verify that we find consistent results

2) Show interest of LibTic in a software project context

 13

Experiments (Experts search)

1) Select top-2 experts of 3 libraries and 1 pair of libraries
 → 8 developers contacted to confirm their expertise

2) Results
 → 4 confirmed their strong expertise

→ 3 did not answer, but good confidence based on their
Github activities
 → 1 did not answer and no information about her

 → Consistent and valid data
 → Experts identification is possible

 14

Experiments (Project Management)

● Assessing Library Knowledge : coverage matrix

 → Identify critical resources

 → Critical human resource : if she
leaves, it will impact the level of
expertise of the team

 → Critical technological resource : too
few developers know a library. Should
some devs be trained with it ?

 → Anticipate needs and risks

 Project : Apache HBase

 15

Experiments (Task Recommendation)

● 11 issues (from 2010 to 2012) related to guava library

● Collected the devs involved in the resolution process

● What if all guava experts had been notified ?

 → compute precision/recall against

the true data

 → just an insight, does not prove
the bug triaging aspect

#BugId (known Guava experts)

 16

Summary

● Need to assess 3rd-party libraries expertise
 → Hard to identify and to maintain

● We propose an automatic approach to :
 → Measure developer library expertise

 → Rank experts for one or several expertise

● What's next ?
 → Overcome precision issues
 → Strengthen bug triaging part
 → Extend to more technological resources

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

