
Automatic Discovery of Function
Mappings between Similar Libraries

Software Engineering (http://se.labri.fr)
LaBRI, Université de Bordeaux, France

Cédric Teyton, Jean-Rémy Falleri, Xavier Blanc

WCRE 2013
Koblenz, Germany

 2

Libraries & Maintenance

● Software massively use 3rd-party libraries
→ Robust and efficient services
→ Reuse = gain of time

● Libraries can be replaced
→ Library Migration, happens in practice [1]
→ Many motivations : more features, more
convenient, not outdated
→ Ex : switch MySQL database to H2

[I] Teyton et al, Mining Library Migration Graphs, WCRE 2012

 3

Library Migration

● Full abandon of a source library in favor of a
target library

● Hypothesis : the target library provides an
undefined subset of similar functions from the
source library

TODO : adapt the project code base

 4

Migration : Tame a new API

● How To :
1. Locate the function calls to the source library
2. For each function :

a) Figure out of what it does
b) Search in the target library a similar function
c) Adapt the source code

● Problem :

Two libraries = Two API structures and designs

 5

Migration : Tame a new API

Example : (Apache commons Google guava)→

Difficult and time-consuming
to discover function mappings

Validate.notNull(Object) is similar to Preconditions.checkArgument(Boolean)
→ How obvious is that ?
→ Textual similarity is not relevant

 6

Proposed Solution

● Identify software projects that already performed
a given library migration : s → t

● Analyze with precision their source code
changes during the migration

● Extract function mappings :
→ a couple (x ↔ y) of functions, x ∈ s and y ∈ t
→ x can be replaced by y and vice-versa (“they
somehow do the same thing”)

 7

(1) Segment Identification

● Does a software contain a migration s → t ? when?

● A migration segment is the smallest interval of
project versions (V

i
,V

j
) where a migration happened

● Find segment has a cost : version download +
static analysis of source code

→ But... 100+ or 1000+ of versions

s s s,t tLibraries

Versions

t
2 3 4 51

Segment : (2,4)
t

 8

(1) Segment Identification

● We propose a divide and conquer based
algorithm to efficiently identify migration
segments

● Goals :
→ Reduce the search space of versions
→ Reduce the computation time

 9

(2) Function mappings Extraction

● For a segment (V
i
,V

j
), analyze each pair

versions (V
k
,V

k+1
), with i < k <j-1

● Compute source code diffs

● Identify migration hunks :
→ Sequence of lines that contain :

1. removed references to the source library
 2. added references to the target library
→ A cartesian product between the 2 sets forms
candidate function mappings

 10

(2) Function mappings Extraction

Example : 3 Migrations Hunks

2 function mappings :
Log.getLog(String) Logger.getLogger(String) → - Score : 2
Log.fatal(String) Logger.error(String) → - Score : 1

Idea : code updates performed in a similar location

 11

Evaluation

● Setup
→ Java Software
→ 4 library migrations (8 since bi-directional)
→ JSON, I/O, Lang and Mock domains
→ 11,592 randomly selected OSS projects

● Data obtained
→ 36 migration segments (hard to find data!)
→ 285 migration hunks
→ 2 persons to manually correct the mappings
→ 115 correct function mappings, 113 wrong (50%
precision)

Results online : http://www,labri.fr/perso/cteyton/Matching

 12

Evaluation : Questions

1. Is our segment extraction algorithm faster
than an exact algorithm ?

2. Is our mapping hunk construction technique a
relevant solution ?

3. Can we improve precision using a filter ?

Results online : http://www,labri.fr/perso/cteyton/Matching

 13

Evaluation : D&C Algorithm (1)

● Are we faster than an exact algorithm ? (that finds
all the segments)

● Measured on 10 projects that contain segments

● Our algorithm :
→ finds the same number of segments
→ computes 85 % faster in time

● Theoretical but rare cases where our algorithm fails
(cf. paper)

 14

Evaluation : Hunk construction (2)

● Diff on files VS. Diff on class methods (AST-level)[2]

● Results

● Build migration hunks from source-level diff seems
more relevant

correct mappings

wrong mappings

Files Methods

92115

245

(-23)

(+132)
precision

113

50 % 27 % (-23 %)

[2] Schäfer,et Al. Mining framework usage changes from instantiation code, ICSE 2008

 15

Evaluation : Filtering (3)

● Filtering technique to improve precision of
mappings

→ Only keep mappings where both functions have their
best score with each other

● Results
→ Can get better precision (up to 79%), but recall
decreases (55% of rules found)

● Filters still to be improved
→ But lack of data is not ideal for filters

 16

Conclusion

● Library Migration is a tedious operation
→ Many efforts to adapt the code

● Observe adaptive changes from software that did
the job

→ Migration segment extraction + Migration hunks

● Early good results (but actual recall is missing)

● Next step :
→ Automatic code update, integration with “wrappers” [2]

[2] Bartolomei et al, Swing to SWT and back : Patterns for API migration by wrapping –
ICSM 2010

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

