WCRE 2013
Koblenz, Germany

Automatic Discovery of Function
Mappings between Similar Libraries

Cedric Teyton, Jean-Rémy Falleri, Xavier Blanc

:’ ‘ Software Engineering (http://se.labri.fr)
: LaBRI, Université de Bordeaux, France @ LaBRI

BORDEAUX 1
eeeeeeeeeeeeeeeeeee



Libraries & Maintenance

» Software massively use 3rd-party libraries
— Robust and efficient services
— Reuse = gain of time

e Libraries can be replaced
— Library Migration, happens in practice [1]
- Many motivations : more features, more
convenient, not outdated
- EX : switch MySQL database to H2

[I] Teyton et al, Mining Library Migration Graphs, WCRE 2012



Library Migration
 Full abandon of a source library in favor of a
target library

TODO : adapt the project code base

» Hypothesis : the target library provides an
undefined subset of similar functions from the
source library



Migration : Tame a new API

e How To :
1. Locate the function calls to the source library
2. For each function :

a) Figure out of what it does é%g/ ko,

b) Search in the target library a similar function \=2=
c) Adapt the source code

* Problem :

Two libraries = Two APl structures and designs



Migration : Tame a new API

Example : (Apache commons = Google guava)

—import org.apache .commons. lang. Validate ;
+1import com. google .common. base. Preconditions ;

public long getProblemVersion(String i1d) {
— Validate . notNull(id);
+ Preconditions .checkArgument(id != null);

}

Validate.notNull(Object) Is similar to Preconditions.checkArgument(Boolean)
-~ How obvious is that ?
— Textual similarity is not relevant

Difficult and time-consuming
to discover function mappings




Proposed Solution

* |dentify software projects that already performed
a given library migration:s - t

* Analyze with precision their source code
changes during the migration

e Extract function mappings :

— a couple (x < y) of functions, x ESandy €t
— X can be replaced by y and vice-versa (“they
somehow do the same thing”)



(1) Segment Identification

e Does a software contain a migration s - t ? when?

* A migration segment is the smallest interval of
project versions (Vi,VJ_) where a migration happened

Versions 1

2 | 3 | 4
s |s,;t |t

5
t

Libraries S Segment : (2,4)

* FInd segment has a cost : version download +

static analysis of source code
— But... 100+ or 1000+ of versions



(1) Segment Identification

* \We propose a divide and conquer based
algorithm to efficiently identify migration
segments

e Goals :
— Reduce the search space of versions
- Reduce the computation time



(2) Function mappings Extraction

« FOr a segment (Vi,Vj), analyze each pair
versions (V,V, ), withi<k<J-1

 Compute source code diffs

o |dentify migration hunks :
— Seqguence of lines that contain :
1. removed references to the source library
2. added references to the target library
— A cartesian product between the 2 sets forms
candidate function mappings



(2) Function mappings Extraction

Example : 3 Migrations Hunks

public class Bar | public class Bar | @@ —4.2 +4.2 @@

public void test{) | public void test () | {:l:z_;-.niﬁll[:::fl::|T-H}ILU??::[. )
Log. getLog{ "MyLogger" ); Logger.getLogger("MyLogger" ); N .Lln‘gjéerj g;L.I:{.'.n.gger ("MyLogger");
something (3); other (3): + n[hﬂr(-ﬂ' N -

} } @@ —8,2 +8.2 @@

coovo . o I
public void something(int 1) | public void other{int 1) | public void .}?l‘hfll“n"_li.”.” 1
Log. getLoo( "MvLooger" ); Logo retloge "MvLozoer" ): Log. getLog("MyLogger"):
V8- BE ogl MylLogger): COBEET - £C ogger( " MyLogger ); 4+ public void other{int 1) |
if (i >0) | if (i > 0) | Loga retLoga "MvLogger " -
Log . tatal{"Error"); Logger.errori{ " Error"}; |+ Logger.gel ogger("MyLogger");
: ’ ’ : ’ ' — @@ —11 +11 @@ —
: : Log.tfatal{" Error"});
: : + Logger.error (" Error ");
" S Bariawva 1.7
{a) Barjava - version | i(b) Barjava - version 2 (c) Diff Barjava 1-2

2 function mappings :
Log.getlog(String) = Logger.getl ogger(String) - Score : 2
Log fatal(String)  — Logger.error(String) - Score . 1

Idea : code updates performed in a similar location




Evaluation

e Setup

- Java Software

— 4 library migrations (8 since bi-directional)
- JSON, 1I/O, Lang and Mock domains

- 11,592 randomly selected OSS projects

e Data obtained
— 36 migration segments (hard to find data!)
— 285 migration hunks
— 2 persons to manually correct the mappings
— 115 correct function mappings, 113 wrong (50%
precision)

Results online : http://www, labri.fr/perso/cteyton/Matching



Evaluation : Questions

1. Is our segment extraction algorithm faster
than an exact algorithm ?

2. Is our mapping hunk construction technique a
relevant solution ?

3. Can we improve precision using a filter ?

Results online : http://www,labri.fr/perso/cteyton/Matching



Evaluation : D&C Algorithm (1)

* Are we faster than an exact algorithm ? (that finds
all the segments)

* Measured on 10 projects that contain segments
* Our algorithm :
— finds the same number of segments

— computes 85 % faster in time

* Theoretical but rare cases where our algorithm fails
(cf. paper)



Evaluation : Hunk construction (2)

* Diff on files VS. Diff on class methods (AST-level)[2]

* Results
Files Methods
correct mappings 115 92 (-23)
wrong mappings 113 245 (+132)

precision 50 % 27% (-23 %)

 Build migration hunks from source-level diff seems
more relevant

[2] Schdfer,et Al. Mining framework usage changes from instantiation code, ICSE 2008



Evaluation : Filtering (3)

* Filtering technique to improve precision of
mappings
- Only keep mappings where both functions have their
best score with each other

* Results
— Can get better precision (up to 79%), but recall
decreases (55% of rules found)

* Filters still to be improved
— But lack of data is not ideal for filters



Conclusion

e Library Migration is a tedious operation
- Many efforts to adapt the code

* Observe adaptive changes from software that did
the job
— Migration segment extraction + Migration hunks

» Early good results (but actual recall Is missing)

* Next step :
— Automatic code update, integration with “wrappers” [2]

[2] Bartolomei et al, Swing to SWT and back : Patterns for APl migration by wrapping - 16
ICSM 2010



	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

