
Foundations of Web
Programming

IT103

Jean-Rémy Falleri

General information

What is IT103?

A gentle introduction to web programming

Why is web programming important?

● YouTube
○ 2005 : funded in one night by three former PayPal

employees
○ 2006 : sold 1,65 billion dollars to Google
○ now : you watch it everyday, admit it 😉

● Wikipedia
○ 2001 : created by Jimmy Whales and Larry Sanger on

a collaborative model
○ 2015 : contains more than 40 millions articles in 300

languages (Britannica: 40 000 articles)
○ now : it saved the day of many homework, isn’t it?

You, now

● Familiar user of many web applications (Snapshat,
Twitter, …)

● Rookie coder 👩💻 in at least a real language (C, Python)
● Familiar with basic networking and knowledge of the

internet infrastructure (IP, TCP, …)

You, after IT103

● Knowledge of the main concepts and technologies
used in web programming

● Knowledge of the main web application architectures
● Able to create a simple responsive web application

(desktops and phones ready) involving server side
processing and database storage

● We do not learn how to code
● We do not learn advanced client side programming (such

as JavaScript)
● You won’t be a web programming wizard by taking just

one course (only years of experience will have this effect)

What we do not learn

IT103 in practice

1. Client-side programming
a. HTML
b. CSS

2. Server-side programming
a. Databases
b. PHP

Lectures and evaluation

● Introduction lecture in an amphitheater
● Subsequent lectures in half promotion in machine

classrooms
○ More integration between concepts and manipulation
○ Better for questions!

● Evaluation
○ MCQ (1/2)
○ Project (1/2)

Introduction

What is internet?

Wikipedia : a global system of interconnected computer
networks

Network access

IP

SSL/TLSTCP

Applications

Addressing

Transport

What is the web?

● Wikipedia: an information system where documents
[…] are accessible over internet

● Relying on a client-server architecture
● Mainly standardized by the W3C consortium

○ HTML, CSS, …
● Other important technologies standardized by the IETF

○ HTTP, TCP, ...
● W3C and IETF technologies are implemented in

open-source or industrial programs
○ Browsers (Firefox, Chrome, …)
○ Web servers (Apache, Nginx, …)

The client-server architecture

Client (Browsers) (Web) Server

Hey! I am a client
and I want a
resource!

Yo! I am a server and
I have plenty of
resources

What the heck is a browser?

● Native program that allows a user to transparently access
web resources

● Also, it can execute arbitrary code (JavaScript code only)
● Nowadays, shipped by default in most desktop operating

systems
○ Safari on Mac OS
○ Edge on Windows
○ Firefox on Linux distributions
○ But the more famous is Chrome 😊

Browsers in practice

What the heck is a web server?

● A web server is nothing more than a
normal machine connected to internet

● However, it has a special program,
always running that listens to every
incoming TCP connections

● And replies accordingly
● If you want, your laptop can become a

web server : install Apache

Web servers in practice

A web application in a nutshell

http://www.example.com

Hey web browser! Can you
retrieve for me the marvelous
http://www.example.com
homepage?

A client

http://www.example.com

A web application in a nutshell

http://www.example.com

A client
Example.com

server

www.example.com
server do you have
this resource?

Network
message

http://www.example.com

A web application in a nutshell

http://www.example.com

A client
Example.com

server

Of course! Here it
is.

Awesome!

Network
message

http://www.example.com

A step back

This was a rather handwavy explanation!
All started by entering http://www.example.com in the
browser what is this?

http://www.example.com

A Uniform Resource Locator (URL)

http://www.example.com: no user, no password, no port
(in this case the default 80 port is used), no url-path (in this
case the default resource will be retrieved)

But wait www.example.com is not an IP address! How
am I going to establish a network connection?

http://www.example.com
http://www.example.com

Domain Name System (DNS)

Can I have the IP
address of
www.example.com?

A client DNS server

UDP network
message

Sure! It’s
93.184.216.34

Domain Name System (DNS)

A client DNS server

UDP network
message

Under the hood

IP address of
www.example.com

Back to the resource exchange

A client Server at
93.184.216.34

How does the client tell the server that it wants
the default resource?

Via a dedicated protocol : http://www.example.com

Hypertext Transfer Protocol (HTTP)

● Document exchange protocol based upon TCP
● Relying on a request-response model

○ Client sends request
○ Server sends response

● Several types of requests : get to retrieve a document

A client Server at
93.184.216.34

TCP connection

GET /

/ content

Client’s request

Server’s response

Headers

Telnet client for raw TCP connections

Data

Headers have drastic effects!

HTML

● Client-server applications running through the web
● Users interact with them via a browser
● Competitive advantage : no deployment!
● Major drawbacks :

○ GUI are not so great
○ Severe cost and technical challenges w.r.t. servers
○ Works often poorly when the network is down

Web applications

Static web applications

GET /INDEX.HTML

/VAR/WWW/INDEX.HTML

200 OK

Server-dynamic web applications

GET /INDEX.PHP

/VAR/WWW/INDEX.PHP

200 OK

HTML

Server and client-dynamic web applications

HTTP GET /INDEX.PHP

/VAR/WWW/INDEX.PHP

200 OK

HTML
JAVASCRIPT

JAVASCRIPT

HTML

Previously in IT103

A client Server at
93.184.216.34

TCP connection

GET index.html

index.html content

A static web application

/VAR/WWW/INDEX.HTML

Take home message

Mastering static web applications is the same as mastering
resources that are placed on a web server

● HTML resources (a logical document) today
● CSS resources (aesthetic properties) next episode
● Some binary resources

Before digging deeper, let’s get back to a more boring
resource : a text resource

● Computer memories store sequences of 0 and 1 (bits)
this is not text

● Then how to make text out of bits?
● We need a technique to encode text characters to bits
● Decoded characters are shown to the user using images

installed in the OS : fonts
● OK! So what is 011011000110111101101100 ?

Plain old text

The ASCII table

useless

Plain old text

01101100 01101111 01101100

L LO

Problem 7 bits are 128 values, far less than all
possible text characters!

In the hell of the ISO-* tables

Let’s use this
damn bit!

Yay! Extra 128 characters! One table per language
though 😢

The UTF tables

Variable-length text characters, using the last bit!
Nearly perfect solution, UTF-8 is 👑

Why this fuss about text?

HTML resources contains primarily text, so you have to know
how it works unless you like showing � to the users

● You’ll need to know what “kind” of text your editor
produces

● You’ll have to tell the browser which table to use to
decipher your text

Now: Hypertext Markup Language (HTML)

● We just saw how to encode text characters into a
sequence of bits

● Similarly, HTML encodes a tree into a text (i.e. a
sequence of text characters)

● Before presenting HTML, I will present the more general
eXtended Markup Language (HTML is a special case of
XML)

● You’ll learn one language for free, isn’t it cool?

A sample XML tree

A

node (or element)
foo="bar"
baz="oof" attributes

B C

C A
free
text!

piz="za"

1

1 2

2

XML tree traversal

A

A node (or element)
foo="bar"
baz="oof"

Attributes

B C

C A
free
text!

piz="za"

1

1 2

2

● When entering a node,
output a opening tag
(<a>) with attributes

● When exiting a node
output a closing tag
()

● For free text, just recopy
the free text

Rules :

XML tree traversal

A

A node (or element)
foo="bar"
baz='oof'

Attributes

B C

C A
free
text!

piz="za"

1

1 2

2

 <c>
 </c>
 A free text!

 <c piz="za"/>

XML code :

Free text white-spaces peculiarities

It·is···an·awesome·text!↵
↵

␣indented text!

It·is·an·awesome·text!
·indented·text!

Original text: Parsed text:

Don’t put too much effort in formatting your free text
😉

XML/HTML entities and comments

● Trouble ahead : imagine your free text contains <
● You have entities that are of the form <

○
○ &
○ >

● You can put comments using the following weird syntax
<!-- awesome comment -->

XML superpower

● Awesome language to define a user-format without
having the burden of writing a parser

● You want to store a list of students in a text file?

<students>
 <student id="1">
 <first_name>Joe</first_name>
 <last_name>Bar</last_name>
 </student>
</students

Nice! But what about damn HTML?

● HTML is just a particular case of XML where you don’t
get to choose nor the node labels neither the attributes

● In fact XHTML is the particular case of XML, HTML has
one particularity

● Some tags, which are known to be leaf tags, do not need
closing tags (i.e.
)

● In the remainder we will focus on HTML 5 (beware of
outdated online doc! protip: no longer exists 😉)

A HTML skeleton

<!DOCTYPE html><!-- HTML5 document -->
<html>
 <head>
 <!-- metadata -->
 </head>
 <body>
 <!-- content -->
 </body>
</html>

Categories of HTML tags

Metadata Tags Body Tags

Sectioning
Tags

Flow
Tags

Phrasing
Tags

Binary
Tags

Go into <head> Go into <body>

Metadata tags, the best-of

● <title>Browser tab’s title not the real title</title>
● <meta>

○ <meta charset="utf-8">
○ Perfect example of a tag without closing tag because HTML knows

it has no children
● <script src="mycode.js"></script>
● <style>
● <link href="style.css" rel="stylesheet">

Body tags

The four categories goes from the most abstract tags
(indicating the structure of the resources) to the most
low-level tags. The order is:

1. Sectioning
2. Flow
3. Phrasing
4. Binary

Sectioning tags, the best-of

● <header>
● <footer>
● <section>
● <article>
● <aside>
● <div>

Flow tags, the best-of

● <p>a paragraph</p>
● Google!
● a bulletan other
● <table><tr><td>line1 col1</td></tr></table>
● <h1>..<h6>
● <div>

Phrasing tags, the best-of

●
●
● <mark>
●

Binary tags, the best-of

●
● <audio src="sound.mp3">
● <video src="movie.mp4">

Now, your turn to work!

● Go make the blog!
● When using a tag for the first time, read the doc!
● Use the W3C validator frequently
● Set-up correctly your text editor
● It’s not pretty? We don’t care! We’ll get to that next time

CSS

Last episode’s blog

Ugly 🤮

How do I turn

This Into this?

Cascading Style Sheets

A CSS rule has a selector and contains multiple
declarations (here one):

selector {
property: value;

}

How does that works?

selector {
property: value;

}

The selector selects a subset
of the HTML tree’s nodes and
apply the declaration to them

Declaration have graphical
meaning that will be applied
by the browser

html

head body

h1 p section

p

First example with the joker selector

* {
color: red;

}

html

head body

h1 p section

p

color: red

color: red color: red

color: red color: red

color: red

color: red

The tag selector

p {
color: red;

}

html

head body

h1 p section

ph2 p

Selector union

h1, h2 {
font-weight: bold;
color: red;

}

html

head body

h1 p section

ph2 p

font-weight: bold
color: red

font-weight: bold
color: red

Multiple rules

h1, h2 {
font-weight: bold;

}

h1 {
color: red;

}

html

head body

h1 p section

ph2 p

font-weight: bold

font-weight: bold

color: red

The parent-child selectors

Selects all paragraphs that
are descendants of a body

body p {
color: red;

}

html

head body

h1 p section

ph2 p

The parent-child selectors

Selects all paragraphs that
are direct children of a
body

body > p {
color: red;

}

html

head body

h1 p section

ph2 p

The sibling selectors

Selects all paragraphs that
are (right) siblings of a h2

h2 ~ p {
color: red;

}

html

head body

h1 p section

ph2 p

The sibling selectors

Selects all paragraphs that
are direct (right) siblings of
a h2

h2 + p {
color: red;

}

html

head body

h1 p section

ph2 p

Attribute-based selection

Selects all paragraphs that
are direct children of a
body

img[alt='foo'] {
color: red;

}

html

head body

h1 p section

imgh2 img alt='foo'

ID-based selection

What if I want just to select
this paragraph? It’s kind of
boring (and dangerous) to
write a selector for it

html

head body

h1 p section

ph2 p

ID based selection

#foo {
color: red;

}

html

head body

h1 p section

ph2 p id='foo'

Class-based selection

html

head body

h1 p section

ph2 p

What if I want just to select
these nodes together? OK I
can always use selector
union, but if the group is
large it will quickly become
booooring!

Class-based selection

html

head body

h1 class='foo' p section

ph2 class='foo' p

.foo {
color: red;

}

Pseudo class selection

p:first-of-type {
color: red;

}

html

head body

h1 p section

ph2 p

Neat! But how I give CSS to a HTML resource?

A client Server
TCP connection

GET index.html

index.html content

But wait! What’s going on when there is an image in
the page? It’s not part of the content!

A more realistic resource exchange

In fact:

OK!

When the browser receives a HTML resource, it scans
it and asks to the server all embedded resources

Download of embedded resources

In fact:

OK!

When the browser receives a HTML resource, it scans
it and asks to the server all embedded resources

Back to CSS inclusion, the king’s way

<! doctype html>
<html>
 <head>
 <link href='my.css' rel='stylesheet'>
 </head>
 <body>
 <p>Yay</p>
 </body>
</html>

Back to CSS inclusion, the quick way

<! doctype html>
<html>
 <head>
 <style>h1 { color: red; }</style>
 </head>
 <body>
 <p>Yay</p>
 </body>
</html>

Back to CSS inclusion, the dirty way

<! doctype html>
<html>
 <head>
 </head>
 <body>
 <p style='color: red; font-weight:
bold'>Yay</p>
 </body>
</html>

Back to CSS rules with a 🤯 example

html

head body

h1 class='foo' p section

ph2 class='foo' p

.foo {
color: red;

}
h1 {

color: blue;
}

color: ???

color: red

Who wins ⚔ ?

CSS specificity

● Each declaration has a four-dimensional specificity vector
coming from its selector

● First (right) dimension: number of tags in the selector (i.e.
body > html has [0, 0, 0, 2])

● Second dimension: number of classes or attributes in the
selector (i.e. body + p.foo has [0, 0, 1, 2])

● Third dimension: number of ids in the selector (i.e. body
> #foo has [0, 1, 0, 1])

● Fourth dimension: 1 if the declaration comes from a style
attribute (has [1, 0, 0, 0])

● When two conflicting declarations (i.e. color: red;
and color: blue;) are given via two selectors: fight!

● The corresponding specificity vectors are compared left
to right

● As soon as one has a greater value in the i-th dimension,
it wins! Example: [0, 0, 3, 2] > [0, 0, 2, 4]

● In case of egality, last defined rule wins (yuck)!
● To give priority to a loser declaration, you can use:

h1 {
color: red !important;

}

CSS specificity comparison

Quick poll

Who wins?

● body #foo p.bar h1
● body #foo #baz
● *

Quick poll

Who wins?

● body #foo p.bar h1 [0, 1, 1, 3]
● body #foo #baz [0, 2, 0, 1]
● * [0, 0, 0, 0]

I still don’t know are things are displayed!

OK let’s dig into that now. First thing to know is that there are
block elements and inline elements

For instance how do you think the following HTML will be
displayed?

<h1>Hello World!</h1>
<p>Yay it’s an awesome text
paragraph!</p>

Result

Hello World!

Yay it’s an awesome text paragraph!

How come the h1 is alone on this line whereas
awesome is in the same line as the p’s text?

Block and inlines

Because

● h1 and p are block elements (as all sectioning and flow
tags are)

● em is an inline element (as all phrasing tags are)

Block elements

● Flows from top to bottom, alone on their lines
● Can have a width, a height and a custom position

○ width: 200px; height: 20%;
● Example

Width

Height

Inline elements

● Flows from left to right, automatically going to a new line
● Have automatic width and height and no custom position
● Cannot have children
● Example:

Tweaking the size of block elements

Lorem ipsum, lorem ipsum,
lorem ipsum

border

margin

padding

Inline elements have only left and right margin/padding

top

bottom

left right

Margin, padding and border properties

Border:

● border: 1px solid
red;

● border-top: 1px
solid red;

● border-width: 3px;
● border-style:

dotted;
● border-color: red;
● border-top-width:

3px;

Margin (same for padding):

● margin: 2px;
● margin: 1em;
● margin: 50%;
● margin: auto;
● margin-top: 1px;
● margin: 1px 2px;

And what if I want this?

Positioned block

Blocks can have custom positions, not following the classic
rules previously presented

● position: static; default one (already explained)
● position: absolute; these blocks are positioned

w.r.t. to the whole page
● position: fixed; these blocks are positioned w.r.t. to

the browser’s window
● position: relative; these blocks are positioned

w.r.t. to their parent
● position: sticky; hard to explain, but fun! Test it

Example of a positioned block

#mydiv {
 position: fixed;
 top: 10px;
 right: 10px;
 z-index: 10;
}

Multi-column layouts

How the hell do I do this 🤔

Historial solution : inline-block

● Elements with display: inline-box; can go side by
side (as inline ones)

● They can also have a custom size / position
● Best of both worlds

Example

#left {
 display: inline-block;
 width: 50%;
 margin: 0;
 padding: 0;
 background-color: red;
}

#right {
 display: inline-block;
 width: 50%;
 margin: 0;
 padding: 0;
 background-color: blue;
}

There is a sneaky trick to make
this works! will you find it?

Multi-column layouts in the new age: flexbox

#container {
 display: flex;
 background-color: blue;
}

.column {
 flex: 50%;
 background-color: red;
}

Go make your blog a beauty

● Use the CSS we learned to improve the design of the
blog developed previously

● Try to change fonts, colors
● Try to use a columned layout
● Try to put a title bar
● Validate constantly your CSS
● Use the browser inspector to debug it

PHP

Server-dynamic web applications

GET /INDEX.PHP

/VAR/WWW/INDEX.PHP

200 OK

HTML

Why do we need server-dynamic web applications?

Imagine a web application of type search engine

● You won’t be able to a-priori build web resources that
give answers to every possible search (infinite space)

● But given a set of keywords, you can search for matches
on-the-fly and generate a resource returned to the client

● Of course the content to be searched cannot fit in RAM it
needs to be stored (persisted) somewhere

● Such content is usually stored in a database

What more with server-dynamic web applications?

Imagine the Facebook web application

● First time you hit the URL bar and enters Facebook’s URL
● You end up on the login form and enter your credentials
● This gives you back your wall
● If you hit refresh your browser will issue the very same

request
● But now you directly get your wall, the server

remembers you!
● HTTP cannot remember your, but what about the scripts

running on the server?

Classical concerns for server-dynamic applications

● You need to know how to produce HTML resources for
your clients

● You need to know how to pass parameters to your
scripts

● You need to know how to simulate a persistent
connexion with your clients

● You need to know how to integrate with a persistent
storage system

Drawbacks of server-dynamic web applications

● You need to know one more language than can be
executed by web servers
○ In this course, we use PHP

● You will be subject to many more security threats due
to the server-side code execution

● Your servers will experience a drastic increase of CPU
charge and memory consumption

● You can no longer test your application without a running
server

PHP

● Interpreted language specially targeting web applications
○ no compilation
○ executed line by line
○ slow 🐌

● Dynamic typing
● Garbage collected
● Many fancy built-in types (dynamic and associative

arrays)
● Mature language successfully used in popular web

applications (Facebook, Wordpress, Drupal)

How do I put a PHP script in my application?

In a nutshell, it’s very simple just drop a script.php file on
your server and access it through it’s regular URL via your
browser (http://mymachine.org/script.php)

You often use ssh or webdav to access your server’s
filesystem

The web server recognizes that it’s PHP (using the extension)
and executes it automatically

http://mymachine.org/script.php

The hello world script

<?php
 echo "<!doctype html><html><head>";
 echo "<meta charset=\"utf-8\">";
 echo "</head><body><p>";
 echo "Hello World!";
 echo "</p></body></html>";
?>

You’ve discovered how to generate HTML for your
clients!

It’s ugly 🤮🤮🤮

The fact that we have to produce HTML to the client makes
program hard to read

Indeed, your HTML is now contained in PHP strings given as
arguments for echo

Can we do a little better?

Hell yes!

The hello world revisited

<?php $msg = "Hello World!"; ?>
<!doctype html>
<html>
 <head><meta charset="utf-8"></head>
 <body><p>
 <?php echo " " . $msg; . "\n" ?>
 </p></body>
</html>

Lines outside PHP zones are replaced by calls to
echo

PHP script quirks

<!doctype html>
<html>
 <head><meta charset="utf-8"></head>
 <body><p>
 <?php if ($display == true) { ?>
 Hello!
 <?php } ?>
 </p></body>
</html>

That works because Hello! is in fact
replaced by a echo

PHP collections

$strings = array("a", "b", "c");
$strings = ["a", "b", "c"];
array_push($strings, "d");

foreach ($string as $val) {
 echo $val;
}

PHP collections are associative arrays

$infos = array("age" => "12", "id" => "Joe");
$infos = ["age" => "12", "id" => "Joe"];

foreach ($infos as $key => $value) {
 echo $key;
 echo $value;
}

PHP functions

function add($a, $b) {
 return $a + $b;
}

echo add(2,5);

PHP includes

// execute instructions of other_script.php
include "other_script.php";
// fails if other_script.php doesn’t exist
require "other_script.php";
// do nothing if not the first include of the
script
require_once "other_script.php";

You can also use includes to reuse HTML fragments
that are duplicated across resources!

● Remember you have to supply the searched text to the
search script

● The searched text must go from the client to the server
● It needs to go through the network and thus must be part

of a HTTP request
● How does it work?

Back to our search engine use case

● Remember it’s the main request type of browsers
● You do not have many options

○ You cannot send content to the server
○ The headers are set by the browser so you cannot use

them
○ Only one thing remain: the URL

● http://mysite.com/script.php?p1=v1&p2=v2
● parameters are passed via the query part of the URL
● You have to put links such as Link in
your page to pass parameters

In case of a GET request

Obtaining GET URL parameters in PHP

// parameters are automatically injected in a
global associative array
$_GET["p1"] // v1
$_GET["p2"] // v2

// You can use foreach to iterate on params
foreach ($_GET as $param => $value) {}

// You can check if a param has been supplied
if (isset($_GET["p1"])) {}

Parameters in GET URL : summary

● Easy to do for the developer
● Hard to do for users
● You can bookmark a page that has parameters
● Very well suited when you have integer parameters
● Cannot accommodate large parameter values

○ Imagine you want to give a long text as a parameter
○ The URL quickly becomes huge
○ Imagine now you want to send an image!
○ You finally receive a 414 Request-URI Too Long

Parameters in POST requests

● POST requests seems a much more attractive fit to pass
parameters as they can send content to the server

● However browsers do not issue post requests by default
● How do I force a browser to issue a POST request (with

my parameters in the content)?
● Solution: use a form

Forms

<form action="script.php" method="post">
 <input name="p1" type="text">
 <input name="p2" type="text">
 <input type="submit">
</form>

Will display two text input boxes and a submit button in
your page. When clicked all data will be pass to
script.php inside the content of a POST request
(basically the content is exactly the same as query string of
the URL but inside the content of the request)

The POST request example

POST script.php HTTP/1.1
Host: mydomain.com

p1=v1&p2=v2

Obtaining POST parameters in PHP

// parameters are automatically injected in a
global associative array
$_POST["p1"] // v1
$_POST["p2"] // v2

// You can use foreach to iterate on params
foreach ($_POST as $param => $value) {}

// You can check if a param has been supplied
if (isset($_POST["p1"])) {}

Parameters in POST request : summary

● Hard (boring at least) to do for developers
● Easy to manipulate for users
● You cannot bookmark a page that has parameters (damn

form resend!)
● Can accommodate large parameter values

○ Long texts
○ Even whole binary files

PHP parameters oddity

Imagine this form

<form action="script.php?id=12"
method="post">
 <input name="age" type="text">
 <input type="submit">
</form>

When submitted, script.php receives params both in the
URL and in the request content

$_GET["id"] // 12
$_POST["age"] // value entered in the form

Back to the Facebook use case

● Remember your scripts have to memorize if they have
already seen a given client

● How to do that?

By passing a parameter!

● Imagine the server code issue an id the first time it
encounters a new client and somehow manage to send it
to him

● The server also keep a dedicated memory zone
associated to each id

● In order to be recognized the client then pass it’s id as a
parameter to the server in all subsequent requests

● The server can therefore access the client dedicated
memory zone

● Basically, it’s what is called a session

How a server is going to pass a param to clients?

● Remember HTTP requests are issued by the client, and
HTTP response are made by the server

● The parameter must be part of the response
● Which part of the response can I use?

The easy cookie way

● Remember HTTP requests can have headers
● Two headers manage cookies, a key-value list located in

your browser and associated with a domain
● The server send SetCookie: PHPSESSID=12345; in

the response headers
● The client’s browser stores PHPSESSID=12345 and

automatically adds a Cookie: PHPSESSID=12345;
header in all subsequent requests to the same domain

● Problem solved!

The messy URL-rewriting way

● Imagine that your client has turned off cookies
● We have no other choice than passing the session id in

the response content
● But we have to find a way that force the client to send it

back!
● Solution : URL rewriting
● Just before generating the HTML resource PHP engine

looks for relative links inside the resource and append a
PHPSESSID=id parameter to each link’s URL

● Therefore, whichever link the client will click on, the
session id will be sent back to the server

Passing the session id : summary

● Cookies are more reliable : less work if doing also HTTP
requests via JavaScript

● Cookie are more secured : any person can see the
session id on the client screen and hijack the session

● BTW how do you think that a session ids should be
computed
○ A sequence of natural numbers (1, 2, …, n) ?
○ Something else?

Using a session in PHP

session_start(); // before any call to echo:
create a session id and send it to the client

// after calling session_start you can access
a $_SESSION associative array initially empty

$_SESSION["logged"] = true;

// the content of this array will be
conserved across requests. You can imagine
that you have one array per client

Destroying a session

session_start(); // even if you want to
destroy a session, you have to start it first

session_destroy(); // at this point the
session array for the client has been dropped

Database

Data is important

● The data is one of the main important aspects of web
applications

● Therefore it cannot just be recorded on a plain file
carelessly
○ Concurrent modifications
○ A search would require an entire traversal of the file

Database systems

Client (Database) Server

Hey! I am a client
and I want to
manage data

Yo! I am the database
server and I have
your data!

Database systems

● Have a similar architecture to web applications
○ Client want data, server has data

● The clients and the server communicate through a TCP
connection
○ Except this time the language is not HTTP but a

language to manipulate data
○ And the connexion stays open until the client is

finished

ACID guarantees

● ATOMIC either a set of modifications (transaction) is
applied (commit) or nothing is applied (rollback)

● CONSISTENT a database only go from a sound state to
another sound state

● INDEPENDENT two transactions do not influence each
others or the database run them sequentially

● DURABLE once applied, a transaction result have a
permanent effect on the data

Relational databases in a nutshell

ID NAME AGE COUNTRY

...

...

ID CAR SPEED PRICE

...

...

Persons

Cars

Sample database

...

...

...

...

Relational databases

● Are just a bunch of named excel spreadsheets
● Columns have a name and a type

○ INT a fixed-size integer
○ VARCHAR a fixed size text
○ DATE a date
○ TEXT a variable size text
○ BLOB a variable size binary sequence

● Each line represent an entity
● Usually relational databases are manipulated using the

standard SQL language

Storing authors and categories of the blog

ID PSEUDO MAIL

1 Joe joe@mail.com

2 Bob bob@mail.com

Authors

ID TITLE

1 Sport

2 Personal

Categories

SQL code

CREATE TABLE `authors` (

 `id` int(11) NOT NULL,

 `pseudo` varchar(200) NOT NULL,

 `mail` varchar(200) NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

ALTER TABLE `authors`

 ADD PRIMARY KEY (`id`),

 ADD UNIQUE KEY `pseudo` (`pseudo`),

 ADD UNIQUE KEY `mail` (`mail`),

 MODIFY `id` int(11) NOT NULL AUTO_INCREMENT;

BTW what is the ID column?

● You often have to discriminate a particular line in a table
(example one line in the authors table is ONE author)

● You therefore have to rely on an unique value in a cell of
the line : PRIMARY KEY

● Sometimes a particular cell describing the data can do
the trick : for the author table the mail

● But remind yourself that then you’ll have to use this value
as a key everywhere you need this kind of data

● In web applications, we prefer passing integer
parameters, therefore entities have dedicated ID columns
(plus users might change mail addresses)

Storing the posts

ID TITLE DATE AUTHOR CONTENT

1 France wins! 12/01/1998 Joe ...

2 France loses! 12/01/2016 Bob ...

Posts

Problem with authors

● You can put there a pseudo that do not correspond to
one of the author table

● Even if you put a correct pseudo, imagine that Joe want
to change pseudo, you have to change it everywhere in
the post table

● This lead to CONSISTENCY problems
● Solution USING A FOREIGN KEY
● The underlying assumption is that you have a published

by relation between authors and post entities (one
author can publish multiple articles, a given article is only
published by one author)

Storing the posts revisited

ID TITLE DATE ID_AUTHOR CONTENT

1 France wins! 12/01/1998 1 ...

2 France loses! 12/01/2016 2 ...

Posts

The database ensures that
values in ID_AUTHOR are legal!

SQL code

CREATE TABLE `posts` (

 `id` int(11) NOT NULL,

 `titre` text NOT NULL,

 `date` date NOT NULL,

 `id_auteur` int(11) NOT NULL,

 `contenu` text NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

ALTER TABLE `posts`

 ADD CONSTRAINT `posts_ibfk_1` FOREIGN KEY (`id_auteur`)

REFERENCES `auteurs` (`id`);

Note on the design choice

● Authors can publish an unbounded number of articles
● Therefore we cannot put this information on the author

table (it requires an unbounded number of columns)
● Articles are published by only one author
● Therefore we can place this information on the article

table using a single column
● How to deal with posts being part of several

categories while categories can contains several
posts?

The N*M problem

● Categories can contain an unbounded number of posts
therefore we cannot put this information in the categories
table

● Posts can be part of an unbounded number of categories
therefore we cannot put this information in the posts table

● Where the hell to we put this information?
● In a dedicated table that encodes this relation!

The cat for post table

ID_POST ID_CAT

1 1

1 2

2 2

Cats for posts

The big picture

Write data into the tables

INSERT INTO `auteurs` (`id`, `pseudo`) VALUES (NULL, 'joe');
INSERT INTO `cats` (`id`, `nom`) VALUES (NULL, 'sport');
INSERT INTO `posts` (`id`, `titre`, `date`, `auteur`,
`contenu`) VALUES (NULL, 'premier post!', '2019-04-01', '1',
'c\'est un super post!')
INSERT INTO `cats_for_posts` (`id`, `nom`) VALUES (NULL,
'sport');
INSERT INTO `cats_for_posts` (`id_post`, `id_cat`) VALUES
('1', '1')

Read data from the tables

SELECT * FROM `cats`
SELECT (`titre`,`contenu`) FROM `posts`
SELECT (`pseudo`) from `auteurs` WHERE `id`=1
SELECT * FROM `posts` WHERE `date` = ‘2019-04-01’ AND
`pseudo=1
SELECT * FROM `posts` WHERE `auteur` = (SELECT `id` FROM
`auteurs` WHERE `pseudo` = ‘joe’)
SELECT posts.id as p_id, `auteurs`.id as a_id, titre,
contenu, pseudo FROM `posts` INNER JOIN `auteurs` ON
`posts`.id_auteur = `auteurs`.id WHERE `pseudo` = ‘joe’

Delete data from the table

DELETE FROM `posts` WHERE `id` = 1

Update data from the table

UPDATE posts SET titre = 'toto', date = '2019-04-01' WHERE
id = 1

Databases from PHP

<?php
$mysqli = mysqli_connect("db.com", "user", "passwd", "db");
if (mysqli_connect_errno($mysqli)) {
 echo "Echec lors de la connexion à MySQL : " .
mysqli_connect_error();
}

$res = mysqli_query($mysqli, "SELECT * FROM posts");
$row = mysqli_fetch_assoc($res);
echo $row['contenu'];
mysqli_free_results($res);
mysqli_close($mysqli);
?>

