
Algorithmique du texte
Master Infomatique LaBRI

P. Ferraro
pascal.ferraro@labri.fr

LaBRI, Université Bordeaux I

Algorithmique du texte 2007

Algorithmique du texte 2007-2008 1 / 89

Plan

1 Preambule
Généralités
Trouver du sens (information)

2 Algorithmique du texte
Plusieurs solutions
Algorithmes

3 Index
À propos des index
Arbre des suffixes
Tableau des suffixes
Conclusion sur les index

Algorithmique du texte 2007-2008 2 / 89

Plan

1 Preambule
Généralités
Trouver du sens (information)

2 Algorithmique du texte
Plusieurs solutions
Algorithmes

3 Index
À propos des index
Arbre des suffixes
Tableau des suffixes
Conclusion sur les index

Algorithmique du texte 2007-2008 2 / 89

Plan

1 Preambule
Généralités
Trouver du sens (information)

2 Algorithmique du texte
Plusieurs solutions
Algorithmes

3 Index
À propos des index
Arbre des suffixes
Tableau des suffixes
Conclusion sur les index

Algorithmique du texte 2007-2008 2 / 89

Preambule

Objectifs

Preambule Généralités

Plan

1 Preambule
Généralités
Trouver du sens (information)

2 Algorithmique du texte
Plusieurs solutions
Algorithmes

3 Index
À propos des index
Arbre des suffixes
Tableau des suffixes
Conclusion sur les index

Algorithmique du texte 2007-2008 4 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée:

C A A A C A G T A T C C C C
C A A A G C C G T C T A C A
C G A G A A G A C A T T T T
A A A A A G T T T C G G C T
C C A C G G T T T C C T T C
C C A C A G T T T C G G G C
C A G A G A G G C A A T G T
A C G C A A C G T G G A T T
G C G C G G G T C C C A A C

Motifs connus

A A A
A A A

A
A A A A A

A
A

A A
A A

Occurence approchée: rotation, changement lettre

Algorithmique du texte 2007-2008 5 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée:

C A A A C A G T A T C C C C
C A A A G C C G T C T A C A
C G A G A A G A C A T T T T
A A A A A G T T T C G G C T
C C A C G G T T T C C T T C
C C A C A G T T T C G G G C
C A G A G A G G C A A T G T
A C G C A A C G T G G A T T
G C G C G G G T C C C A A C

Motifs connus

A A A
A A A

A
A A A A A

A
A

A A
A A

Occurence approchée: rotation, changement lettre

Algorithmique du texte 2007-2008 5 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée:

C A A A C A G T A T C C C C
C A A A G C C G T C T A C A
C G A G A A G A C A T T T T
A A A A A G T T T C G G C T
C C A C G G T T T C C T T C
C C A C A G T T T C G G G C
C A G A G A G G C A A T G T
A C G C A A C G T G G A T T
G C G C G G G T C C C A A C

Motifs connus

A A A
A A A

A
A A A A A

A
A

A A
A A

Occurence approchée: rotation, changement lettre

Algorithmique du texte 2007-2008 5 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée:

C A A A C A G T A T C C C C
C A A A G C C G T C T A C A
C G A G A A G A C A T T T T
A A A A A G T T T C G G C T
C C A C G G T T T C C T T C
C C A C A G T T T C G G G C
C A G A G A G G C A A T G T
A C G C A A C G T G G A T T
G C G C G G G T C C C A A C

Motifs connus

A A A
A A A

A
A A A A A C

A C C C
A C T T T C

A A T T T
A A T T T

Occurence approchée: rotation, changement lettre

Algorithmique du texte 2007-2008 5 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée:

C A A A C A G T A T C C C C
C A A A G C C G T C T A C A
C G A G G A G A C A T T T T
A A A A A G T T T C G G C T
C C A C G G T T T C C T T C
C C A C A G T T T C G G G C
C A G A G A G G C A A T G T
A C G C A A C G T G G A T T
G C G C G G G T C C C A A C

Motifs connus

A A A
A A A

A
A A A A A C

A C C C
A C T T T C

A A T T T
A A T T T

Occurence approchée: rotationOccurence approchée: rotation,
changement lettre

Algorithmique du texte 2007-2008 5 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée:

C A A A C A G T A T C C C C
C A A A G C C G T C T A C A
C G A G G A G A C A T T T T
A A A A A G T T T C G G C T
C C A C G G T T T C C T T C
C C A C A G T T T C G G G C
C A G A G A G G C A A T G T
A C G C A A C G T G G A T T
G C G C G G G T C C C A A C

Motifs connus

A A A
A A A

A
A A A A A C

A C C C
A C T T T C

A A T T T
A A T T T

Occurence approchée: rotation, changement lettre

Algorithmique du texte 2007-2008 5 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée

C G A A C G G T A A C C C C
C G A A G C C G A A T A C A
C G A A A A A A A A T T T T
A C A G G A A G G A G G C T
C C A A A T T A A A C T T C
C C A A A A A A A A G G G C
C T A A C C C C A A A T G T
A C A A A A A A A A G A T T
G C G C G G G T C C C A A C

Données en entrée

G C A A A C C G A A T A C A
G C A A T T A C A A A T G T
G C A A A A A A A A T A A A
T G A G G A A G G A C C G A
G G A A A T T A A A A T C G
T T A A A A A A A A G G A G
G C A A C C C C A A T A G A
G G A A A A A A A A G T A G
C T A T A C C T A G G T T G

Recherche de similarité

Algorithmique du texte 2007-2008 6 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée

C G A A C G G T A A C C C C
C G A A G C C G A A T A C A
C G A A A A A A A A T T T T
A C A G G A A G G A G G C T
C C A A A T T A A A C T T C
C C A A A A A A A A G G G C
C T A A C C C C A A A T G T
A C A A A A A A A A G A T T
G C G C G G G T C C C A A C

Données en entrée

G C A A A C C G A A T A C A
G C A A T T A C A A A T G T
G C A A A A A A A A T A A A
T G A G G A A G G A C C G A
G G A A A T T A A A A T C G
T T A A A A A A A A G G A G
G C A A C C C C A A T A G A
G G A A A A A A A A G T A G
C T A T A C C T A G G T T G

Recherche de similarité

Algorithmique du texte 2007-2008 6 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée

C G A A C G G T A A C C C C
C G A A G C C G A A T A C A
C G A A A A A A A A T T T T
A C A G G A A G G A G G C T
C C A A A T T A A A C T T C
C C A A A A A A A A G G G C
C T A A C C C C A A A T G T
A C A A A A A A A A G A T T
G C G C G G G T C C C A A C

Données en entrée

G C A A A C C G A A T A C A
G C A A T T A C A A A T G T
G C A A A A A A A A T A A A
T G A G G A A G G A C C G A
G G A A A T T A A A A T C G
T T A A A A A A A A G G A G
G C A A C C C C A A T A G A
G G A A A A A A A A G T A G
C T A T A C C T A G G T T G

Recherche de similarité

Algorithmique du texte 2007-2008 6 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée

C G A A C A A T A A C C C C
C G A A G A A G A A T A C A
C G A A A A A A A A T T T T
A C A G G A A G G A G G C T
C C A A A T T A A A C T T C
C C A A A A A A A A G G G C
C T A A C C C C A A A T G T
A C A A A A A A A A G A T T
G C G C G G G T C C C A A C

Données en entrée

Recherche de différences

Algorithmique du texte 2007-2008 7 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée

C G A A C A A T A A C C C C
C G A A G A A G A A T A C A
C G A A A A A A A A T T T T
A C A G G A A G G A G G C T
C C A A A T T A A A C T T C
C C A A A A A A A A G G G C
C T A A C C C C A A A T G T
A C A A A A A A A A G A T T
G C G C G G G T C C C A A C

Données en entrée

C G A A C G G T A A C C C C
C G A A G C C G A A T A C A
C G A A A A A A A A T T T T
A C A G G A A G G A G G C T
C C A A A T T A A A C T T C
C C A A A A A A A A G G G C
C T A A C C C C A A A T G T
A C A A A A A A A A G A T T
G C G C G G G T C C C A A C

Recherche de différences

Algorithmique du texte 2007-2008 7 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée

C G A A C A A T A A C C C C
C G A A G A A G A A T A C A
C G A A A A A A A A T T T T
A C A G G A A G G A G G C T
C C A A A T T A A A C T T C
C C A A A A A A A A G G G C
C T A A C C C C A A A T G T
A C A A A A A A A A G A T T
G C G C G G G T C C C A A C

Données en entrée

C G A A C G G T A A C C C C
C G A A G C C G A A T A C A
C G A A A A A A A A T T T T
A C A G G A A G G A G G C T
C C A A A T T A A A C T T C
C C A A A A A A A A G G G C
C T A A C C C C A A A T G T
A C A A A A A A A A G A T T
G C G C G G G T C C C A A C

Recherche de différences

Algorithmique du texte 2007-2008 7 / 89

Preambule Généralités

Comment NOUS trouvons l’information: exemples
Trouver l’information

Données en entrée

C G A A C A A T A A C C C C
C G A A G A A G A A T A C A
C G A A A A A A A A T T T T
A C A G G A A G G A G G C T
C C A A A T T A A A C T T C
C C A A A A A A A A G G G C
C T A A C C C C A A A T G T
A C A A A A A A A A G A T T
G C G C G G G T C C C A A C

Données en entrée

C G A A C G G T A A C C C C
C G A A G C C G A A T A C A
C G A A A A A A A A T T T T
A C A G G A A G G A G G C T
C C A A A T T A A A C T T C
C C A A A A A A A A G G G C
C T A A C C C C A A A T G T
A C A A A A A A A A G A T T
G C G C G G G T C C C A A C

Recherche de différences

Algorithmique du texte 2007-2008 7 / 89

Preambule Trouver du sens (information)

Plan

1 Preambule
Généralités
Trouver du sens (information)

2 Algorithmique du texte
Plusieurs solutions
Algorithmes

3 Index
À propos des index
Arbre des suffixes
Tableau des suffixes
Conclusion sur les index

Algorithmique du texte 2007-2008 8 / 89

Preambule Trouver du sens (information)

Comment trouver du sens à partir d’informations
connues
Motifs

Nous avons des connaissances

Nous utilisons ces connaissances pour explorer les données

Pour chaque motif (connaissance), nous recherchons celui-ci
dans les données:
⇒ Recherche de motif

Possiblité d’erreurs dans les occurences:
⇒ Recherche approchée de motif

Algorithmique du texte 2007-2008 9 / 89

Preambule Trouver du sens (information)

Comment trouver du sens sans information:
Similarité

Nous disposons d’au moins deux données en entrée

Nous recherchons des informations communes à ces données:
⇒ Inférence de motifs

Algorithmique du texte 2007-2008 10 / 89

Preambule Trouver du sens (information)

Comment trouver du sens sans information:

Nous disposons d’au moins deux données en entrée

Nous recherchons des différences entre ces données:
⇒ Inférence de motifs

Algorithmique du texte 2007-2008 11 / 89

Algorithmique du texte Plusieurs solutions

Plan

1 Preambule
Généralités
Trouver du sens (information)

2 Algorithmique du texte
Plusieurs solutions
Algorithmes

3 Index
À propos des index
Arbre des suffixes
Tableau des suffixes
Conclusion sur les index

Algorithmique du texte 2007-2008 12 / 89

Algorithmique du texte Plusieurs solutions

Recherche exacte de motifs

Pour une seule recherche on utilisera un algorithme de recherche
tel que KMP

Pour plusieurs recherche on construit un index de ce texte
(prochaine section)

Algorithmique du texte 2007-2008 13 / 89

Algorithmique du texte Plusieurs solutions

Recherche exacte de motifs

Pour une seule recherche on utilisera un algorithme de recherche
tel que KMP

Pour plusieurs recherche on construit un index de ce texte
(prochaine section)

Algorithmique du texte 2007-2008 13 / 89

Algorithmique du texte Plusieurs solutions

Recherche approchée de motifs

Nous cherchons des occurrences approchées d’un motif:
⇒ quelles types d’approximations ?

Distance de Hamming

Distance d’édition

Alignement

Algorithmique du texte 2007-2008 14 / 89

Algorithmique du texte Plusieurs solutions

Recherche approchée de motifs

Nous cherchons des occurrences approchées d’un motif:
⇒ quelles types d’approximations ?

Distance de Hamming

Distance d’édition

Alignement

Algorithmique du texte 2007-2008 14 / 89

Algorithmique du texte Plusieurs solutions

Recherche approchée de motifs

Nous cherchons des occurrences approchées d’un motif:
⇒ quelles types d’approximations ?

Distance de Hamming

Distance d’édition

Alignement

Algorithmique du texte 2007-2008 14 / 89

Algorithmique du texte Plusieurs solutions

Recherche approchée de motifs

Nous cherchons des occurrences approchées d’un motif:
⇒ quelles types d’approximations ?

Distance de Hamming

Distance d’édition

Alignement

Algorithmique du texte 2007-2008 14 / 89

Algorithmique du texte Plusieurs solutions

Définitions

On appelera indifférement séquence, texte, mot ou chaîne une
suite de symbole sur un alphabet donné Σ.

Soit t un texte de longueur n. On notera le ieme symbole de t , ti .

Soient deux mots u et v de longueurs n et m. On note u.v le mot
de longueur n + m resultant de la concaténation de u et v :
u0...unv0...vm

w (non nul) est un facteur de t s’il existe deux mots u et v
éventuellement de longueurs nulles tels que u.w .v = t . Si u = ǫ,
alors w est une prefixe. Si v = ǫ, alors w est un suffixe.

w de longueur m est un facteur de t s’il existe une position
i < n − m telle que ∀j ∈ [0, m[, wj = ti+j

Algorithmique du texte 2007-2008 15 / 89

Algorithmique du texte Plusieurs solutions

Définitions

On appelera indifférement séquence, texte, mot ou chaîne une
suite de symbole sur un alphabet donné Σ.

Soit t un texte de longueur n. On notera le ieme symbole de t , ti .

Soient deux mots u et v de longueurs n et m. On note u.v le mot
de longueur n + m resultant de la concaténation de u et v :
u0...unv0...vm

w (non nul) est un facteur de t s’il existe deux mots u et v
éventuellement de longueurs nulles tels que u.w .v = t . Si u = ǫ,
alors w est une prefixe. Si v = ǫ, alors w est un suffixe.

w de longueur m est un facteur de t s’il existe une position
i < n − m telle que ∀j ∈ [0, m[, wj = ti+j

Algorithmique du texte 2007-2008 15 / 89

Algorithmique du texte Plusieurs solutions

Définitions

On appelera indifférement séquence, texte, mot ou chaîne une
suite de symbole sur un alphabet donné Σ.

Soit t un texte de longueur n. On notera le ieme symbole de t , ti .

Soient deux mots u et v de longueurs n et m. On note u.v le mot
de longueur n + m resultant de la concaténation de u et v :
u0...unv0...vm

w (non nul) est un facteur de t s’il existe deux mots u et v
éventuellement de longueurs nulles tels que u.w .v = t . Si u = ǫ,
alors w est une prefixe. Si v = ǫ, alors w est un suffixe.

w de longueur m est un facteur de t s’il existe une position
i < n − m telle que ∀j ∈ [0, m[, wj = ti+j

Algorithmique du texte 2007-2008 15 / 89

Algorithmique du texte Plusieurs solutions

Définitions

On appelera indifférement séquence, texte, mot ou chaîne une
suite de symbole sur un alphabet donné Σ.

Soit t un texte de longueur n. On notera le ieme symbole de t , ti .

Soient deux mots u et v de longueurs n et m. On note u.v le mot
de longueur n + m resultant de la concaténation de u et v :
u0...unv0...vm

w (non nul) est un facteur de t s’il existe deux mots u et v
éventuellement de longueurs nulles tels que u.w .v = t . Si u = ǫ,
alors w est une prefixe. Si v = ǫ, alors w est un suffixe.

w de longueur m est un facteur de t s’il existe une position
i < n − m telle que ∀j ∈ [0, m[, wj = ti+j

Algorithmique du texte 2007-2008 15 / 89

Algorithmique du texte Plusieurs solutions

Définitions

On appelera indifférement séquence, texte, mot ou chaîne une
suite de symbole sur un alphabet donné Σ.

Soit t un texte de longueur n. On notera le ieme symbole de t , ti .

Soient deux mots u et v de longueurs n et m. On note u.v le mot
de longueur n + m resultant de la concaténation de u et v :
u0...unv0...vm

w (non nul) est un facteur de t s’il existe deux mots u et v
éventuellement de longueurs nulles tels que u.w .v = t . Si u = ǫ,
alors w est une prefixe. Si v = ǫ, alors w est un suffixe.

w de longueur m est un facteur de t s’il existe une position
i < n − m telle que ∀j ∈ [0, m[, wj = ti+j

Algorithmique du texte 2007-2008 15 / 89

Algorithmique du texte Plusieurs solutions

Distance de Hamming: exemple

Compter le nombre de symboles différents entre deux textes de même
taille.

Exemple:
l i s b o a
v i s i o n
1 0 0 1 0 1 = 3

Le distance de hamming entre lisboa et vision est 3

Algorithmique du texte 2007-2008 16 / 89

Algorithmique du texte Plusieurs solutions

Distance de Hamming: exemple

Compter le nombre de symboles différents entre deux textes de même
taille.

Exemple:
l i s b o a
v i s i o n

l i s b o a
v i s i o n
1 0 0 1 0 1 = 3

Le distance de hamming entre lisboa et vision est 3

Algorithmique du texte 2007-2008 16 / 89

Algorithmique du texte Plusieurs solutions

Distance de Hamming: exemple

Compter le nombre de symboles différents entre deux textes de même
taille.

Exemple:
l i s b o a
v i s i o n

l i s b o a
v i s i o n
1 0 0 1 0 1 = 3

Le distance de hamming entre lisboa et vision est 3

Algorithmique du texte 2007-2008 16 / 89

Algorithmique du texte Plusieurs solutions

Distance de Hamming: exemple

Compter le nombre de symboles différents entre deux textes de même
taille.

Exemple:
l i s b o a
v i s i o n
1 0 0 1 0 1

l i s b o a
v i s i o n
1 0 0 1 0 1 = 3

Le distance de hamming entre lisboa et vision est 3

Algorithmique du texte 2007-2008 16 / 89

Algorithmique du texte Plusieurs solutions

Distance de Hamming: exemple

Compter le nombre de symboles différents entre deux textes de même
taille.

Exemple:
l i s b o a
v i s i o n
1 0 0 1 0 1 = 3

Le distance de hamming entre lisboa et vision est 3

Algorithmique du texte 2007-2008 16 / 89

Algorithmique du texte Plusieurs solutions

Distance de Hamming: définition

Definition (Distance de Hamming)

Algorithmique du texte Plusieurs solutions

Distance de Hamming: exercice

Écrire une fonction hamming(s,t) qui calcule la distance de
Hamming entre s et t si ils sont de même taille et retourne None
sinon.

Écrire une fonction hamming_factors(p,t) qui prend en
arguments deux chaînes p et t de taille m et n (m < n). Cette
fonction fournit la liste des positions i telles que Ham(p, ti ...i+m) est
minimale sur l’ensemble des facteurs de t .

Quelles sont les complexités en temps de ces deux fonctions.

Algorithmique du texte 2007-2008 18 / 89

Algorithmique du texte Plusieurs solutions

Distance de Hamming: exercice

Écrire une fonction hamming(s,t) qui calcule la distance de
Hamming entre s et t si ils sont de même taille et retourne None
sinon.

Écrire une fonction hamming_factors(p,t) qui prend en
arguments deux chaînes p et t de taille m et n (m < n). Cette
fonction fournit la liste des positions i telles que Ham(p, ti ...i+m) est
minimale sur l’ensemble des facteurs de t .

Quelles sont les complexités en temps de ces deux fonctions.

Algorithmique du texte 2007-2008 18 / 89

Algorithmique du texte Plusieurs solutions

Distance de Hamming: exercice

Écrire une fonction hamming(s,t) qui calcule la distance de
Hamming entre s et t si ils sont de même taille et retourne None
sinon.

Écrire une fonction hamming_factors(p,t) qui prend en
arguments deux chaînes p et t de taille m et n (m < n). Cette
fonction fournit la liste des positions i telles que Ham(p, ti ...i+m) est
minimale sur l’ensemble des facteurs de t .

Quelles sont les complexités en temps de ces deux fonctions.

Algorithmique du texte 2007-2008 18 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

La distance de Hamming est trop simple pour comparer deux
séquences. En effet elle ne prend pas en compte certains
événements tels que l’insertion et la délétion de base:

Ham(examples, exxample) = 6 = Ham(examples, exercise)

La distance d’édition entre deux chaînes consiste à trouver une
suite d’opérations atomiques (dites d’édition) de coût minimal
permettant de transformer la première chaîne en la deuxième.

Algorithmique du texte 2007-2008 19 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

La distance de Hamming est trop simple pour comparer deux
séquences. En effet elle ne prend pas en compte certains
événements tels que l’insertion et la délétion de base:

Ham(examples, exxample) = 6 = Ham(examples, exercise)

La distance d’édition entre deux chaînes consiste à trouver une
suite d’opérations atomiques (dites d’édition) de coût minimal
permettant de transformer la première chaîne en la deuxième.

Algorithmique du texte 2007-2008 19 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

3 événements atomiques:

la substitution: change une lettre de t en une autre

la délétion: supprime une lettre de t à une position donnée

l’insertion: insert une lettre dans t à une position donnée

Soient deux séquences t et u, on recherche l’ensemble des suites
d’opérations d’édition S = {s1, s2, . . . } telles que si on applique
successivement s1, s2 ... à t on obtient u.

On dira que S réalise l’édition de t en u et on notera t S
 u

Algorithmique du texte 2007-2008 20 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

3 événements atomiques:

la substitution: change une lettre de t en une autre

la délétion: supprime une lettre de t à une position donnée

l’insertion: insert une lettre dans t à une position donnée

Soient deux séquences t et u, on recherche l’ensemble des suites
d’opérations d’édition S = {s1, s2, . . . } telles que si on applique
successivement s1, s2 ... à t on obtient u.

On dira que S réalise l’édition de t en u et on notera t S
 u

Algorithmique du texte 2007-2008 20 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

3 événements atomiques:

la substitution: change une lettre de t en une autre

la délétion: supprime une lettre de t à une position donnée

l’insertion: insert une lettre dans t à une position donnée

Soient deux séquences t et u, on recherche l’ensemble des suites
d’opérations d’édition S = {s1, s2, . . . } telles que si on applique
successivement s1, s2 ... à t on obtient u.

On dira que S réalise l’édition de t en u et on notera t S
 u

Algorithmique du texte 2007-2008 20 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

on assigne un coût à chaque opération d’édition: csub, cdel et cins

tels que ssub est une distance et cdel(a) = cins(a)

Le coût c(S) d’une série d’opérations d’édition S = {s1, s2, . . . }
est défini par la somme des coûts de chaque opération.

La distance d’édition entre u et v est définie par:

d(t , u) = min{c(S)/t
S
 u}

Levenshtein, Binary codes capable of correcting deletions, insertions,
and reversals,1965

Algorithmique du texte 2007-2008 21 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

on assigne un coût à chaque opération d’édition: csub, cdel et cins

tels que ssub est une distance et cdel(a) = cins(a)

Le coût c(S) d’une série d’opérations d’édition S = {s1, s2, . . . }
est défini par la somme des coûts de chaque opération.

La distance d’édition entre u et v est définie par:

d(t , u) = min{c(S)/t
S
 u}

Levenshtein, Binary codes capable of correcting deletions, insertions,
and reversals,1965

Algorithmique du texte 2007-2008 21 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

on assigne un coût à chaque opération d’édition: csub, cdel et cins

tels que ssub est une distance et cdel(a) = cins(a)

Le coût c(S) d’une série d’opérations d’édition S = {s1, s2, . . . }
est défini par la somme des coûts de chaque opération.

La distance d’édition entre u et v est définie par:

d(t , u) = min{c(S)/t
S
 u}

Levenshtein, Binary codes capable of correcting deletions, insertions,
and reversals,1965

Algorithmique du texte 2007-2008 21 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

Lemma (d(t , u) est une distance)

d(t , u) est une distance si et seulement si csub est une distance et
cins(a) = cdel(a) > 0 pour tout a ∈ Σ.

Proof.
⇐ Inégalité triangulaire:
Supposons qu’il existe trois mots tels que d(u, t) > d(u, v) + d(v , t):

u
Suv
 v

v
Svt
 t

La série S = SuvSvt transforme u en t et a pour coût
d(u, v) + d(v , t) < d(u, t) !

Algorithmique du texte 2007-2008 22 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

Lemma (d(t , u) est une distance)

d(t , u) est une distance si et seulement si csub est une distance et
cins(a) = cdel(a) > 0 pour tout a ∈ Σ.

Proof.
⇒ d(t , u) est une distance donc, ∀a, b ∈ Σ:

d(a, b) = csub(a,b) est une distance

d(a, ǫ) = cdel(a) = d(ǫ, a) = cins(a) (positivité et symétrie)

⇐ Inégalité triangulaire:
Supposons qu’il existe trois mots tels que d(u, t) > d(u, v) + d(v , t):

u
Suv
 v

v
Svt
 t

La série S = SuvSvt transforme u en t et a pour coût
d(u, v) + d(v , t) < d(u, t) !

Algorithmique du texte 2007-2008 22 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

Lemma (d(t , u) est une distance)

d(t , u) est une distance si et seulement si csub est une distance et
cins(a) = cdel(a) > 0 pour tout a ∈ Σ.

Proof.
⇐ Positivity, ∀a, b ∈ Σ:

csub(a, b) ≥ 0

cdel(a) > 0

cins(a) > 0

⇐ Inégalité triangulaire:
Supposons qu’il existe trois mots tels que d(u, t) > d(u, v) + d(v , t):

u
Suv
 v

v
Svt
 t

La série S = SuvSvt transforme u en t et a pour coût
d(u v) + d(v t) d(u t) !

Algorithmique du texte 2007-2008 22 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

Lemma (d(t , u) est une distance)

d(t , u) est une distance si et seulement si csub est une distance et
cins(a) = cdel(a) > 0 pour tout a ∈ Σ.

Proof.
⇐ Séparation:
Si t = u, il est clair que d(t , u) = 0. Si d(t , u) = 0 alors t = u car seule
csub peut être nulle. ⇐ Inégalité triangulaire:
Supposons qu’il existe trois mots tels que d(u, t) > d(u, v) + d(v , t):

u
Suv
 v

v
Svt
 t

La série S = SuvSvt transforme u en t et a pour coût
d(u, v) + d(v , t) < d(u, t) !

Algorithmique du texte 2007-2008 22 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

Lemma (d(t , u) est une distance)

d(t , u) est une distance si et seulement si csub est une distance et
cins(a) = cdel(a) > 0 pour tout a ∈ Σ.

Proof.
⇐ Symétrie:
csub est symétrique et cdel = cins donc pour toute série d’opération S
qui transforme t en u, on peut construire une série S′ qui transforme u
en t et qui a le même coût que S. ⇐ Inégalité triangulaire:
Supposons qu’il existe trois mots tels que d(u, t) > d(u, v) + d(v , t):

u
Suv
 v

v
Svt
 t

La série S = SuvSvt transforme u en t et a pour coût
d(u, v) + d(v , t) < d(u, t) !

Algorithmique du texte 2007-2008 22 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

Lemma (d(t , u) est une distance)

d(t , u) est une distance si et seulement si csub est une distance et
cins(a) = cdel(a) > 0 pour tout a ∈ Σ.

Proof.
⇐ Inégalité triangulaire:
Supposons qu’il existe trois mots tels que d(u, t) > d(u, v) + d(v , t):

Appelons Suv la série d’opérations qui transforme u en v et qui a
pour coût d(u, v).

u
Suv
 v

v
Svt
 t

La série S = SuvSvt transforme u en t et a pour coût
d(u, v) + d(v , t) < d(u, t) !

Algorithmique du texte 2007-2008 22 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

Lemma (d(t , u) est une distance)

d(t , u) est une distance si et seulement si csub est une distance et
cins(a) = cdel(a) > 0 pour tout a ∈ Σ.

Proof.
⇐ Inégalité triangulaire:
Supposons qu’il existe trois mots tels que d(u, t) > d(u, v) + d(v , t):

u
Suv
 v

Appelons Svt la série d’opérations d’éditions qui transforme v en t
et qui a pour coût d(v , t).

v
Svt
 t

La série S = SuvSvt transforme u en t et a pour coût
d(u, v) + d(v , t) < d(u, t) !

Algorithmique du texte 2007-2008 22 / 89

Algorithmique du texte Plusieurs solutions

Distance d’édition/Levenstein

Lemma (d(t , u) est une distance)

d(t , u) est une distance si et seulement si csub est une distance et
cins(a) = cdel(a) > 0 pour tout a ∈ Σ.

Proof.
⇐ Inégalité triangulaire:
Supposons qu’il existe trois mots tels que d(u, t) > d(u, v) + d(v , t):

u
Suv
 v

v
Svt
 t

La série S = SuvSvt transforme u en t et a pour coût
d(u, v) + d(v , t) < d(u, t) !

Algorithmique du texte 2007-2008 22 / 89

Algorithmique du texte Plusieurs solutions

Alignement

Definition (Alignement)
Soient deux séquences u et t de tailles m et n sur Σ.
Un alignement de u et t consiste en un couple de deux séquences u′

et t ′ de même taille l sur Σ ∪ {−} telles que:

Si on supprime tout les − de u′ on obtient u.

Si on supprime tout les − de t ′ on obtient t .

∀i si u′

i =′ −′ alors v ′

i 6=
′ −′

Exemple: alignement de ”publics” and ”nucleic”:

Algorithmique du texte 2007-2008 23 / 89

Algorithmique du texte Plusieurs solutions

Alignement

Definition (Alignement)
Soient deux séquences u et t de tailles m et n sur Σ.
Un alignement de u et t consiste en un couple de deux séquences u′

et t ′ de même taille l sur Σ ∪ {−} telles que:

Si on supprime tout les − de u′ on obtient u.

Si on supprime tout les − de t ′ on obtient t .

∀i si u′

i =′ −′ alors v ′

i 6=
′ −′

Exemple: alignement de ”publics” and ”nucleic”:

Algorithmique du texte 2007-2008 23 / 89

Algorithmique du texte Plusieurs solutions

Alignement

Definition (Alignement)
Soient deux séquences u et t de tailles m et n sur Σ.
Un alignement de u et t consiste en un couple de deux séquences u′

et t ′ de même taille l sur Σ ∪ {−} telles que:

Si on supprime tout les − de u′ on obtient u.

Si on supprime tout les − de t ′ on obtient t .

∀i si u′

i =′ −′ alors v ′

i 6=
′ −′

Exemple: alignement de ”publics” and ”nucleic”:
p u b l - i c s
n u c l e i c -

Algorithmique du texte 2007-2008 23 / 89

Algorithmique du texte Plusieurs solutions

Alignement

Definition (Alignement)
Soient deux séquences u et t de tailles m et n sur Σ.
Un alignement de u et t consiste en un couple de deux séquences u′

et t ′ de même taille l sur Σ ∪ {−} telles que:

Si on supprime tout les − de u′ on obtient u.

Si on supprime tout les − de t ′ on obtient t .

∀i si u′

i =′ −′ alors v ′

i 6=
′ −′

Exemple: alignement de ”publics” and ”nucleic”:
p - u b - l i c - s
- n u c l - e i c -

Algorithmique du texte 2007-2008 23 / 89

Algorithmique du texte Plusieurs solutions

Alignement

Fonction de coût s: ∀a, b ∈ Σ,

s(a, b) = 2 if a = b
s(a, b) = −1 if a 6= b
s(a,−) = s(−, a) = −1

Le but est de maximiser le score de l’alignement des deux séquences.

Exemple: alignement de ”publics” et ”nucleic”:

Algorithmique du texte 2007-2008 24 / 89

Algorithmique du texte Plusieurs solutions

Alignement

Fonction de coût s: ∀a, b ∈ Σ,

s(a, b) = 2 if a = b
s(a, b) = −1 if a 6= b
s(a,−) = s(−, a) = −1

Le but est de maximiser le score de l’alignement des deux séquences.

Algorithmique du texte Plusieurs solutions

Alignement

Fonction de coût s: ∀a, b ∈ Σ,

s(a, b) = 2 if a = b
s(a, b) = −1 if a 6= b
s(a,−) = s(−, a) = −1

Le but est de maximiser le score de l’alignement des deux séquences.

Exemple: alignement de ”publics” et ”nucleic”:
p u b l - i c s
n u c l e i c -
-1 2 -1 2 -1 2 2 -1

le score est 4

Algorithmique du texte 2007-2008 24 / 89

Algorithmique du texte Plusieurs solutions

Alignement

Fonction de coût s: ∀a, b ∈ Σ,

s(a, b) = 2 if a = b
s(a, b) = −1 if a 6= b
s(a,−) = s(−, a) = −1

Le but est de maximiser le score de l’alignement des deux séquences.

Exemple: alignement de ”publics” et ”nucleic”:
p - u b - l i c - s
- n u c l - e i c -
-1 -1 2 -1 -1 -1 -1 -1 -1 -1

le score est -7

Algorithmique du texte 2007-2008 24 / 89

Algorithmique du texte Plusieurs solutions

Edit vs Alignement

Pour toutes les séries d’opérations d’édition qui transforment u en t , on
peut calculer un alignement valide

Edition
distance

fournie une distance et une
suite d’opérations

uniquement pour 2
séquences

Alignement
mesure de similarité

score + un alignement

alignement multiple

Si on utilise les fonctions de scores de l’édition dans l’alignement et
que l’on essaye de minimiser le score de l’alignement, alors on calcul
la distance d’édition.

Algorithmique du texte 2007-2008 25 / 89

Algorithmique du texte Plusieurs solutions

Edit vs Alignement

Pour toutes les séries d’opérations d’édition qui transforment u en t , on
peut calculer un alignement valide

Edition
distance

fournie une distance et une
suite d’opérations

uniquement pour 2
séquences

Alignement
mesure de similarité

score + un alignement

alignement multiple

Si on utilise les fonctions de scores de l’édition dans l’alignement et

Algorithmique du texte Plusieurs solutions

Edit vs Alignement

Pour toutes les séries d’opérations d’édition qui transforment u en t , on
peut calculer un alignement valide

Edition
distance

fournie une distance et une
suite d’opérations

uniquement pour 2
séquences

Alignement
mesure de similarité

score + un alignement

alignement multiple

Si on utilise les fonctions de scores de l’édition dans l’alignement et
que l’on essaye de minimiser le score de l’alignement, alors on calcul
la distance d’édition.

Algorithmique du texte 2007-2008 25 / 89

Algorithmique du texte Plusieurs solutions

Edit vs Alignement

Pour toutes les séries d’opérations d’édition qui transforment u en t , on
peut calculer un alignement valide

Edition
distance

fournie une distance et une
suite d’opérations

uniquement pour 2
séquences

Alignement
mesure de similarité

score + un alignement

alignement multiple

Si on utilise les fonctions de scores de l’édition dans l’alignement et
que l’on essaye de minimiser le score de l’alignement, alors on calcul
la distance d’édition.

Algorithmique du texte 2007-2008 25 / 89

Algorithmique du texte Plusieurs solutions

Edit vs Alignement

Pour toutes les séries d’opérations d’édition qui transforment u en t , on
peut calculer un alignement valide

Edition

Algorithmique du texte Algorithmes

Plan

1 Preambule
Généralités
Trouver du sens (information)

2 Algorithmique du texte
Plusieurs solutions
Algorithmes

3 Index
À propos des index
Arbre des suffixes
Tableau des suffixes
Conclusion sur les index

Algorithmique du texte 2007-2008 26 / 89

Algorithmique du texte Édition

Formule

L’idée principale est de calculer D(u0...i , t0...j) à partir des distances
D(u0...i−1, t0...j), D(u0...i , t0...j−1) et D(u0...i−1, t0...j−1)

D(u0...i , t0...j) = Min







D(u0...i−1 , t0...j−1) + csub(ui , tj)
D(u0...i−1 , t0...j) + cdel(ui)
D(u0...i , t0...j−1) + cins(tj)

Quelle est la complexité en temps d’une implémentation naïve de
cette formule O(3n+m) !

Algorithmique du texte 2007-2008 27 / 89

Algorithmique du texte Édition

Formule

L’idée principale est de calculer D(u0...i , t0...j) à partir des distances
D(u0...i−1, t0...j), D(u0...i , t0...j−1) et D(u0...i−1, t0...j−1)

D(u0...i , t0...j) = Min







D(u0...i−1 , t0...j−1) + csub(ui , tj)
D(u0...i−1 , t0...j) + cdel(ui)
D(u0...i , t0...j−1) + cins(tj)

Quelle est la complexité en temps d’une implémentation naïve de
cette formule O(3n+m) !

Algorithmique du texte 2007-2008 27 / 89

Algorithmique du texte Édition

Formule

L’idée principale est de calculer D(u0...i , t0...j) à partir des distances
D(u0...i−1, t0...j), D(u0...i , t0...j−1) et D(u0...i−1, t0...j−1)

D(u0...i , t0...j) = Min







D(u0...i−1 , t0...j−1) + csub(ui , tj)
D(u0...i−1 , t0...j) + cdel(ui)
D(u0...i , t0...j−1) + cins(tj)

Quelle est la complexité en temps d’une implémentation naïve de
cette formule O(3n+m) !

Algorithmique du texte 2007-2008 27 / 89

Algorithmique du texte Édition

Formule

L’idée principale est de calculer D(u0...i , t0...j) à partir des distances
D(u0...i−1, t0...j), D(u0...i , t0...j−1) et D(u0...i−1, t0...j−1)

D(u0...i , t0...j) = Min







D(u0...i−1 , t0...j−1) + csub(ui , tj)
D(u0...i−1 , t0...j) + cdel(ui)
D(u0...i , t0...j−1) + cins(tj)

Quelle est la complexité en temps d’une implémentation naïve de
cette formule O(3n+m) !

Algorithmique du texte 2007-2008 27 / 89

Algorithmique du texte Édition

Formule

L’idée principale est de calculer D(u0...i , t0...j) à partir des distances
D(u0...i−1, t0...j), D(u0...i , t0...j−1) et D(u0...i−1, t0...j−1)

D(u0...i , t0...j) = Min







D(u0...i−1 , t0...j−1) + csub(ui , tj)
D(u0...i−1 , t0...j) + cdel(ui)
D(u0...i , t0...j−1) + cins(tj)

Quelle est la complexité en temps d’une implémentation naïve de
cette formule O(3n+m) !

Algorithmique du texte 2007-2008 27 / 89

Algorithmique du texte Édition

Formule

L’idée principale est de calculer D(u0...i , t0...j) à partir des distances
D(u0...i−1, t0...j), D(u0...i , t0...j−1) et D(u0...i−1, t0...j−1)

D(u0...i , t0...j) = Min







D(u0...i−1 , t0...j−1) + csub(ui , tj)
D(u0...i−1 , t0...j) + cdel(ui)
D(u0...i , t0...j−1) + cins(tj)

Quelle est la complexité en temps d’une implémentation naïve de
cette formule O(3n+m) !

Algorithmique du texte 2007-2008 27 / 89

Algorithmique du texte Édition

Programmation dynamique

Idée: utiliser un algorithme de programmation dynamique:

Calculer des problèmes les plus ”petits” vers les problèmes les
plus ”gros”.

Ne jamais recalculer deux fois une même valeur

On remplit une matrice M de taille (n + 1) ∗ (m + 1) telle que M[i , j] soit
égal à D(u0...i−1, t0...j−1).

Algorithmique du texte 2007-2008 28 / 89

Algorithmique du texte Édition

Programmation dynamique

Idée: utiliser un algorithme de programmation dynamique:

Calculer des problèmes les plus ”petits” vers les problèmes les
plus ”gros”.

Ne jamais recalculer deux fois une même valeur

On remplit une matrice M de taille (n + 1) ∗ (m + 1) telle que M[i , j] soit
égal à D(u0...i−1, t0...j−1).

Algorithmique du texte 2007-2008 28 / 89

Algorithmique du texte Édition

Programmation dynamique

Idée: utiliser un algorithme de programmation dynamique:

Calculer des problèmes les plus ”petits” vers les problèmes les
plus ”gros”.

Ne jamais recalculer deux fois une même valeur

On remplit une matrice M de taille (n + 1) ∗ (m + 1) telle que M[i , j] soit
égal à D(u0...i−1, t0...j−1).

Algorithmique du texte 2007-2008 28 / 89

Algorithmique du texte Édition

Programmation dynamique

Idée: utiliser un algorithme de programmation dynamique:

Calculer des problèmes les plus ”petits” vers les problèmes les
plus ”gros”.

Ne jamais recalculer deux fois une même valeur

On remplit une matrice M de taille (n + 1) ∗ (m + 1) telle que M[i , j] soit
égal à D(u0...i−1, t0...j−1).

Algorithmique du texte 2007-2008 28 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0
1 c
2 o
3 u
4 r
5 s
6 e

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0 0
1 c
2 o
3 u
4 r
5 s
6 e

Commencer avec les cas les plus ”petits”: D(ǫ, ǫ) = 0

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0 0
1 c 1
2 o 2
3 u 3
4 r 4
5 s 5
6 e 6

les plus ”petits” cas: D(u0...i , ǫ) = i
exemple: D(co, ǫ) = cdel(c) + cdel(o) + D(ǫ, ǫ)

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0 0 1 2 3 4 5
1 c 1
2 o 2
3 u 3
4 r 4
5 s 5
6 e 6

les plus ”petits” cas: D(ǫ, t0...j) = j
exemple: D(ǫ, bon) = cins(b) + cins(o) + cins(n) + D(ǫ, ǫ)

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0 0 1 2 3 4 5
1 c 1 2
2 o 2
3 u 3
4 r 4
5 s 5
6 e 6

à partir des valeurs connues calculer les valeurs manquantes :
D(c, b) est D(c, ǫ) + cins(b)

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0 0 1 2 3 4 5
1 c 1 2
2 o 2
3 u 3
4 r 4
5 s 5
6 e 6

à partir des valeurs connues calculer les valeurs manquantes :
D(c, b) ou D(ǫ, b) + cdel(c)

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0 0 1 2 3 4 5
1 c 1 1
2 o 2
3 u 3
4 r 4
5 s 5
6 e 6

à partir des valeurs connues calculer les valeurs manquantes :
D(c, b) ou D(ǫ, ǫ) + csub(c, b)

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0 0 1 2 3 4 5
1 c 1 1
2 o 2 2
3 u 3
4 r 4
5 s 5
6 e 6

à partir des valeurs connues calculer les valeurs manquantes :
D(co, b) = min{1 + 1, 1 + 1, 2 + 1}

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 X
2 o 2 2
3 u 3 X
4 r 4
5 s 5
6 e 6

valeurs pouvant être calculées

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 2
2 o 2 2
3 u 3 3
4 r 4
5 s 5
6 e 6

valeurs pouvant être calculées

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 2
2 o 2 2 1?
3 u 3 3
4 r 4
5 s 5
6 e 6

D(co, bo) est D(c, b) + csub(o, o) = 1 + 0 = 1

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 2
2 o 2 2 3?
3 u 3 3
4 r 4
5 s 5
6 e 6

D(co, bo) ou D(c, bo) + cdel(o) = 2 + 1 = 3

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 2
2 o 2 2 3?
3 u 3 3
4 r 4
5 s 5
6 e 6

D(co, bo) ou D(co, b) + cins(o) = 2 + 1 = 3

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 2
2 o 2 2 1
3 u 3 3
4 r 4
5 s 5
6 e 6

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 2 3
2 o 2 2 1
3 u 3 3 2
4 r 4 4
5 s 5
6 e 6

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Resultat
La distance entre
”course” et ”bonus” est
4.

L’espace necessaire est
O(m ∗ n)

La complexité en temps
est O(m ∗ n)

opérations d’édition ?

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Resultat
La distance entre
”course” et ”bonus” est
4.

L’espace necessaire est
O(m ∗ n)

La complexité en temps
est O(m ∗ n)

opérations d’édition ?

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Resultat
La distance entre
”course” et ”bonus” est
4.

L’espace necessaire est
O(m ∗ n)

La complexité en temps
est O(m ∗ n)

opérations d’édition ?

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique

Exemple: u=”course” and t=”bonus”

0 1 2 3 4 5
b o n u s

0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Resultat
La distance entre
”course” et ”bonus” est
4.

L’espace necessaire est
O(m ∗ n)

La complexité en temps
est O(m ∗ n)

opérations d’édition ?

Algorithmique du texte 2007-2008 29 / 89

Algorithmique du texte Édition

Programmation Dynamique: traceback

Depuis la valeur finale retracer le calcul:
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Traceback:
D(course, bonus) =

Algorithmique du texte 2007-2008 30 / 89

Algorithmique du texte Édition

Programmation Dynamique: traceback

Depuis la valeur finale retracer le calcul:
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Traceback:
D(course, bonus) =

D(cours, bonus) + cdel(e)

Algorithmique du texte 2007-2008 30 / 89

Algorithmique du texte Édition

Programmation Dynamique: traceback

Depuis la valeur finale retracer le calcul:
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Traceback:
D(course, bonus) =

cdel(e)

D(cour , bonu) + csub(s, s)

Algorithmique du texte 2007-2008 30 / 89

Algorithmique du texte Édition

Programmation Dynamique: traceback

Depuis la valeur finale retracer le calcul:
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Traceback:
D(course, bonus) =

cdel(e)

csub(s, s)

D(cou, bonu) + cdel(r)

Algorithmique du texte 2007-2008 30 / 89

Algorithmique du texte Édition

Programmation Dynamique: traceback

Depuis la valeur finale retracer le calcul:
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Traceback:
D(course, bonus) =

cdel(e)

csub(s, s)

cdel(r)

D(co, bon) + csub(u, u)

Algorithmique du texte 2007-2008 30 / 89

Algorithmique du texte Édition

Programmation Dynamique: traceback

Depuis la valeur finale retracer le calcul:
0 1 2 3 4 5

b o n u s
0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Traceback:

Algorithmique du texte Édition

Programmation Dynamique: traceback

Depuis la valeur finale retracer le calcul:

0 1 2 3 4 5
b o n u s

0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Traceback:
D(course, bonus) =

cdel(e)

csub(s, s)

cdel(r)

csub(u, u)

cins(n)

D(c, b) + csub(o, o)

Algorithmique du texte 2007-2008 30 / 89

Algorithmique du texte Édition

Programmation Dynamique: traceback

Depuis la valeur finale retracer le calcul:

0 1 2 3 4 5
b o n u s

0 0 1 2 3 4 5
1 c 1 1 2 3 4 5
2 o 2 2 1 2 3 4
3 u 3 3 2 2 2 3
4 r 4 4 3 3 3 3
5 s 5 5 4 4 4 3
6 e 6 6 5 5 5 4

Traceback:
D(course, bonus) =

((

(; (

((

Algorithmique du texte Édition

Programmation Dynamique: traceback

Alignement

c
b

Traceback:
D(course, bonus) =

cdel(e)

csub(s, s)

cdel(r)

csub(u, u)

cins(n)

csub(o, o)

D(ǫ, ǫ) + ssub(c, b)

Algorithmique du texte 2007-2008 30 / 89

Algorithmique du texte Édition

Programmation Dynamique: traceback

Alignement

c o
b o

Traceback:
D(course, bonus) =

Algorithmique du texte Édition

Programmation Dynamique: traceback

Alignement

c o -
b o n

Traceback:
D(course, bonus) =

cdel(e)

csub(s, s)

cdel(r)

csub(u, u)

cins(n)

csub(o, o)

D(ǫ, ǫ) + ssub(c, b)

Algorithmique du texte 2007-2008 30 / 89

Algorithmique du texte Édition

Programmation Dynamique: traceback

Alignement

c o - u
b o n u

Traceback:
D(course, bonus) =

cdel(e)

csub(s, s)

cdel(r)

csub(u, u)

cins(n)

csub(o, o)

D(ǫ, ǫ) + ssub(c, b)

Algorithmique du texte 2007-2008 30 / 89

Algorithmique du texte Édition

Programmation Dynamique: traceback

Alignement

c o - u r
b o n u -

Traceback:
D(course, bonus) =

cdel(e)

csub(s, s)

cdel(r)

csub(u, u)

cins(n)

csub(o, o)

D(ǫ, ǫ) + ssub(c, b)

Algorithmique du texte 2007-2008 30 / 89

Algorithmique du texte Édition

Programmation Dynamique: traceback

Alignement

c o - u r s
b o n u - s

Traceback:
D(course, bonus) =

cdel(e)

csub(s, s)

cdel(r)

csub(u, u)

cins(n)

csub(o, o)

D(ǫ, ǫ) + ssub(c, b)

Algorithmique du texte 2007-2008 30 / 89

Algorithmique du texte Édition

Programmation Dynamique: traceback

Alignement

c o - u r s e
b o n u - s -

Traceback:
D(course, bonus) =

cdel(e)

csub(s, s)

cdel(r)

csub(u, u)

cins(n)

csub(o, o)

D(ǫ, ǫ) + ssub(c, b)

Algorithmique du texte 2007-2008 30 / 89

Algorithmique du texte Édition

Réduire la complexité en espace

Seulement une colonne (ou ligne) est requise pour calculer la distance:

0 1 2 3 4 5
b o n u s

0 0
1 c 1
2 o 2
3 u 3
4 r 4
5 s 5
6 e 6

tableau

temporary variable 1

temporary variable 2

anciennes valeurs

Algorithmique du texte 2007-2008 31 / 89

Algorithmique du texte Édition

Réduire la complexité en espace

Seulement une colonne (ou ligne) est requise pour calculer la distance:

0 1 2 3 4 5
b o n u s

0 0
1 c 1
2 o 2
3 u 3
4 r 4
5 s 5
6 e 6

tableau

temporary variable 1

temporary variable 2

anciennes valeurs

Algorithmique du texte 2007-2008 31 / 89

Algorithmique du texte Édition

Réduire la complexité en espace

Seulement une colonne (ou ligne) est requise pour calculer la distance:

0 1 2 3 4 5
b o n u s

0 0 1
1 c 1
2 o 2
3 u 3
4 r 4
5 s 5
6 e 6

tableau

temporary variable 1

temporary variable 2

anciennes valeurs

Algorithmique du texte 2007-2008 31 / 89

Algorithmique du texte Édition

Réduire la complexité en espace

Seulement une colonne (ou ligne) est requise pour calculer la distance:

0 1 2 3 4 5
b o n u s

0 0 1
1 c 1 1
2 o 2
3 u 3
4 r 4
5 s 5
6 e 6

tableau

temporary variable 1

temporary variable 2

anciennes valeurs

Algorithmique du texte 2007-2008 31 / 89

Algorithmique du texte Édition

Réduire la complexité en espace

Seulement une colonne (ou ligne) est requise pour calculer la distance:

0 1 2 3 4 5
b o n u s

0 0 1
1 c 1 1
2 o 2 2
3 u 3
4 r 4
5 s 5
6 e 6

tableau

temporary variable 1

temporary variable 2

anciennes valeurs

Algorithmique du texte 2007-2008 31 / 89

Algorithmique du texte Édition

Réduire la complexité en espace

Seulement une colonne (ou ligne) est requise pour calculer la distance:

0 1 2 3 4 5
b o n u s

0 0 1
1 c 1 1
2 o 2 2
3 u 3 3
4 r 4
5 s 5
6 e 6

tableau

temporary variable 1

temporary variable 2

anciennes valeurs

Algorithmique du texte 2007-2008 31 / 89

Algorithmique du texte Édition

Réduire la complexité en espace

Seulement une colonne (ou ligne) est requise pour calculer la distance:

0 1 2 3 4 5
b o n u s

0 0 1
1 c 1 1
2 o 2 2
3 u 3 3
4 r 4 4
5 s 5
6 e 6

tableau

temporary variable 1

temporary variable 2

anciennes valeurs

Algorithmique du texte 2007-2008 31 / 89

Algorithmique du texte Édition

Réduire la complexité en espace

Seulement une colonne (ou ligne) est requise pour calculer la distance:

0 1 2 3 4 5
b o n u s

0 0 1
1 c 1 1
2 o 2 2
3 u 3 3
4 r 4 4
5 s 5 5
6 e 6

tableau

temporary variable 1

temporary variable 2

anciennes valeurs

Algorithmique du texte 2007-2008 31 / 89

Algorithmique du texte Édition

Réduire la complexité en espace

Seulement une colonne (ou ligne) est requise pour calculer la distance:

0 1 2 3 4 5
b o n u s

0 0 1
1 c 1 1
2 o 2 2
3 u 3 3
4 r 4 4
5 s 5 5
6 e 6 6

tableau

temporary variable 1

temporary variable 2

anciennes valeurs

Algorithmique du texte 2007-2008 31 / 89

Algorithmique du texte Édition

Réduire la complexité en espace

Seulement une colonne (ou ligne) est requise pour calculer la distance:

0 1 2 3 4 5
b o n u s

0 0 1
1 c 1 1
2 o 2 2
3 u 3 3
4 r 4 4
5 s 5 5
6 e 6 6

tableau

temporary variable 1

temporary variable 2

anciennes valeurs

⇒ la complexité mémoire est
O(min(m, n))

Algorithmique du texte 2007-2008 31 / 89

Algorithmique du texte Édition

Exercice

Écrire une fonction edit_matrix(u,t) qui calcule la matrice
d’édition pour deux mots u et t .

Écrire une fonction trace_back(m,u,t) qui fournit la liste des
opérations (lettres ’s’, ’d’ et ’i’) à partir d’une matrice m et de deux
mots u et t .

Écrire un programme qui prend en argument un dictionnaire d
(fichier contenant un mot par ligne) et un mot w et affiche le mot
de d le plus proche de w au sens de l’édition.

Modifier le programme pour qu’il affiche aussi l’alignement des
deux mots.

Algorithmique du texte 2007-2008 32 / 89

Algorithmique du texte Édition

Exercice

Écrire une fonction edit_matrix(u,t) qui calcule la matrice
d’édition pour deux mots u et t .

Écrire une fonction trace_back(m,u,t) qui fournit la liste des
opérations (lettres ’s’, ’d’ et ’i’) à partir d’une matrice m et de deux
mots u et t .

Écrire un programme qui prend en argument un dictionnaire d
(fichier contenant un mot par ligne) et un mot w et affiche le mot
de d le plus proche de w au sens de l’édition.

Modifier le programme pour qu’il affiche aussi l’alignement des
deux mots.

Algorithmique du texte 2007-2008 32 / 89

Algorithmique du texte Édition

Exercice

Écrire une fonction edit_matrix(u,t) qui calcule la matrice
d’édition pour deux mots u et t .

Écrire une fonction trace_back(m,u,t) qui fournit la liste des
opérations (lettres ’s’, ’d’ et ’i’) à partir d’une matrice m et de deux
mots u et t .

Écrire un programme qui prend en argument un dictionnaire d
(fichier contenant un mot par ligne) et un mot w et affiche le mot
de d le plus proche de w au sens de l’édition.

Modifier le programme pour qu’il affiche aussi l’alignement des
deux mots.

Algorithmique du texte 2007-2008 32 / 89

Algorithmique du texte Édition

Exercice

Écrire une fonction edit_matrix(u,t) qui calcule la matrice
d’édition pour deux mots u et t .

Écrire une fonction trace_back(m,u,t) qui fournit la liste des
opérations (lettres ’s’, ’d’ et ’i’) à partir d’une matrice m et de deux
mots u et t .

Écrire un programme qui prend en argument un dictionnaire d
(fichier contenant un mot par ligne) et un mot w et affiche le mot
de d le plus proche de w au sens de l’édition.

Modifier le programme pour qu’il affiche aussi l’alignement des
deux mots.

Algorithmique du texte 2007-2008 32 / 89

Algorithmique du texte Best Fit

Edition: variantes

Problème: Best Fit
Soient deux séquences q et t de taille m et n (m < n), trouver toutes
les positions p1 . . . pl telles que:

D(q, tp1...p1+m1) = D(q, tp2...p2+m2) . . .

et qu’il n’exite pas de position j telle que

D(q, tj ...j+mj
) <= D(q, tp1...p1+m1)

Algorithmique du texte 2007-2008 33 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0
1 T 1
2 A 2
3 C 3
4 G 4
5 C 5
6 T 6

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1
2 A 2
3 C 3
4 G 4
5 C 5
6 T 6

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1
2 A 2
3 C 3
4 G 4
5 C 5
6 T 6

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1
2 A 2 1
3 C 3
4 G 4
5 C 5
6 T 6

Algorithmique du texte

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1
2 A 2 1 2
3 C 3 2 1
4 G 4 3 2
5 C 5 4 3
6 T 6 5 4

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1
2 A 2 1 2
3 C 3 2 1
4 G 4 3 2
5 C 5 4 3
6 T 6 5 4

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1
2 A 2 1 2
3 C 3 2 1
4 G 4 3 2
5 C 5 4 3
6 T 6 5 4

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1
2 A 2 1 2
3 C 3 2 1
4 G 4 3 2
5 C 5 4 3
6 T 6 5 4

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1
2 A 2 1 2
3 C 3 2 1
4 G 4 3 2
5 C 5 4 3
6 T 6 5 4

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1
2 A 2 1 2
3 C 3 2 1
4 G 4 3 2
5 C 5 4 3
6 T 6 5 4

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1
2 A 2 1 2
3 C 3 2 1
4 G 4 3 2
5 C 5 4 3
6 T 6 5 4

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1
2 A 2 1 2
3 C 3 2 1
4 G 4 3 2
5 C 5 4 3
6 T 6 5 4

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1 1
2 A 2 1 2 2
3 C 3 2 1 2
4 G 4 3 2 2
5 C 5 4 3 2
6 T 6 5 4 3

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1 1 0 1 0 1 1 1 0 1 1
2 A 2 1 2 2 1 0 1 1 2 2 1 0 1
3 C 3 2 1 2 2 1 1 2 2 2 2 1 0
4 G 4 3 2 2 3 2 2 1 2 3 3 2 1
5 C 5 4 3 2 3 3 3 2 2 2 3 3 2
6 T 6 5 4 3 2 3 3 3 3 3 2 3 3

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1 1 0 1 0 1 1 1 0 1 1
2 A 2 1 2 2 1 0 1 1 2 2 1 0 1
3 C 3 2 1 2 2 1 1 2 2 2 2 1 0
4 G 4 3 2 2 3 2 2 1 2 3 3 2 1
5 C 5 4 3 2 3 3 3 2 2 2 3 3 2
6 T 6 5 4 3 2 3 3 3 3 3 2 3 3

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1 1 0 1 0 1 1 1 0 1 1
2 A 2 1 2 2 1 0 1 1 2 2 1 0 1
3 C 3 2 1 2 2 1 1 2 2 2 2 1 0
4 G 4 3 2 2 3 2 2 1 2 3 3 2 1
5 C 5 4 3 2 3 3 3 2 2 2 3 3 2
6 T 6 5 4 3 2 3 3 3 3 3 2 3 3

A C C T A T G G C T A C

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1 1 0 1 0 1 1 1 0 1 1
2 A 2 1 2 2 1 0 1 1 2 2 1 0 1
3 C 3 2 1 2 2 1 1 2 2 2 2 1 0
4 G 4 3 2 2 3 2 2 1 2 3 3 2 1
5 C 5 4 3 2 3 3 3 2 2 2 3 3 2
6 T 6 5 4 3 2 3 3 3 3 3 2 3 3

A C C T A T G G C T A C
T

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1 1 0 1 0 1 1 1 0 1 1
2 A 2 1 2 2 1 0 1 1 2 2 1 0 1
3 C 3 2 1 2 2 1 1 2 2 2 2 1 0
4 G 4 3 2 2 3 2 2 1 2 3 3 2 1
5 C 5 4 3 2 3 3 3 2 2 2 3 3 2
6 T 6 5 4 3 2 3 3 3 3 3 2 3 3

A C C T A T G G C T A C
C T

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1 1 0 1 0 1 1 1 0 1 1
2 A 2 1 2 2 1 0 1 1 2 2 1 0 1
3 C 3 2 1 2 2 1 1 2 2 2 2 1 0
4 G 4 3 2 2 3 2 2 1 2 3 3 2 1
5 C 5 4 3 2 3 3 3 2 2 2 3 3 2
6 T 6 5 4 3 2 3 3 3 3 3 2 3 3

A C -C T A T G G C T A C
GC T

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1 1 0 1 0 1 1 1 0 1 1
2 A 2 1 2 2 1 0 1 1 2 2 1 0 1
3 C 3 2 1 2 2 1 1 2 2 2 2 1 0
4 G 4 3 2 2 3 2 2 1 2 3 3 2 1
5 C 5 4 3 2 3 3 3 2 2 2 3 3 2
6 T 6 5 4 3 2 3 3 3 3 3 2 3 3

A C -C T A T G G C T A C
C GC T

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1 1 0 1 0 1 1 1 0 1 1
2 A 2 1 2 2 1 0 1 1 2 2 1 0 1
3 C 3 2 1 2 2 1 1 2 2 2 2 1 0
4 G 4 3 2 2 3 2 2 1 2 3 3 2 1
5 C 5 4 3 2 3 3 3 2 2 2 3 3 2
6 T 6 5 4 3 2 3 3 3 3 3 2 3 3

A C -C T A T G G C T A C
A C GC T

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1 1 0 1 0 1 1 1 0 1 1
2 A 2 1 2 2 1 0 1 1 2 2 1 0 1
3 C 3 2 1 2 2 1 1 2 2 2 2 1 0
4 G 4 3 2 2 3 2 2 1 2 3 3 2 1
5 C 5 4 3 2 3 3 3 2 2 2 3 3 2
6 T 6 5 4 3 2 3 3 3 3 3 2 3 3

-A C -C T A T G G C T A C
TA C GC T

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Best Fit

0 1 2 3 4 5 6 7 8 9 10 11 12
ǫ A C C T A T G G C T A C

0 ǫ 0 0 0 0 0 0 0 0 0 0 0 0 0
1 T 1 1 1 1 0 1 0 1 1 1 0 1 1
2 A 2 1 2 2 1 0 1 1 2 2 1 0 1
3 C 3 2 1 2 2 1 1 2 2 2 2 1 0
4 G 4 3 2 2 3 2 2 1 2 3 3 2 1
5 C 5 4 3 2 3 3 3 2 2 2 3 3 2
6 T 6 5 4 3 2 3 3 3 3 3 2 3 3

-A C -C T A T G -G C T A C
TA C GC T T A CG C T

Algorithmique du texte 2007-2008 34 / 89

Algorithmique du texte Best Fit

Exercices

Exercices
Trouver quel facteur de ACCACGTGTCA à la plus petite distance
d’édition avec AGGTC avec la même fonction de score que dans
l’exemple précédent.

Algorithmique du texte 2007-2008 35 / 89

Algorithmique du texte Alignement

Alignement: Formule

L’idée principale est de calculer A(u0...i , t0...j) à partir des scores
A(u0...i−1, t0...j), A(u0...i , t0...j−1) et A(u0...i−1, t0...j−1): Exemple de
fonction de coût:
cost(a,a)=2, cost(a,b)=-1, cost(a,’-’)=-1, cost(’-’,a)=-1

S. Needleman, C. Wunsch,A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J Mol Biol.
48(3):443-53.

Algorithmique du texte 2007-2008 36 / 89

Algorithmique du texte Alignement

Alignement: Formule

L’idée principale est de calculer A(u0...i , t0...j) à partir des scores
A(u0...i−1, t0...j), A(u0...i , t0...j−1) et A(u0...i−1, t0...j−1):

A(u0...i , t0...j) = Max
{

A(u0...i−1 , t0...j−1) + cost(ui , tj)

Exemple de fonction de coût:
cost(a,a)=2, cost(a,b)=-1, cost(a,’-’)=-1, cost(’-’,a)=-1

S. Needleman, C. Wunsch,A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J Mol Biol.
48(3):443-53.

Algorithmique du texte 2007-2008 36 / 89

Algorithmique du texte Alignement

Alignement: Formule

L’idée principale est de calculer A(u0...i , t0...j) à partir des scores
A(u0...i−1, t0...j), A(u0...i , t0...j−1) et A(u0...i−1, t0...j−1):

A(u0...i , t0...j) = Max







A(u0...i−1 , t0...j−1) + cost(ui , tj)
A(u0...i−1 , t0...j) + cost(ui ,

′−′)

Exemple de fonction de coût:
cost(a,a)=2, cost(a,b)=-1, cost(a,’-’)=-1, cost(’-’,a)=-1

S. Needleman, C. Wunsch,A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J Mol Biol.
48(3):443-53.

Algorithmique du texte 2007-2008 36 / 89

Algorithmique du texte Alignement

Alignement: Formule

L’idée principale est de calculer A(u0...i , t0...j) à partir des scores
A(u0...i−1, t0...j), A(u0...i , t0...j−1) et A(u0...i−1, t0...j−1):

A(u0...i , t0...j) = Max







A(u...i−1L/R33 10.9091 Tf
4.79953 0 Td
[(t)3]TJ
/R34 7.97011 Tf
1 0 0 1 204.36 197.52 Tm
[(06R384493 7.97011 Tf
4.44 0 Td
[(.)-5.98427(.)-5.98427(.)-5.98427]TJ
/R33 7.97011 Tf
6.96 0 Td
[(i)-3.84309]T309]TJ
/R482 7.97011 Tf
2.51953 0 Td
[(�)-1.69456]TJ
/R34 7.97011 Tf
6.59953 0 Td
[(1)-1.0807]TJ
/R384 10.9091 Tf
1 0 0 1 247.68 185.88 Tm
[(3)-1.08L)160(/R33 2266
290112(+10.9091 Tf
18.84 0 Td
[(M)-3(3)-6.98427(.)s)5]TJ
/R-280(c3Tf
1 0 0 1 247.68 1852908795]TJ
/R33 10.9091 Tf
4.2 0 Td
[(u)-5]TJ
/R34 7.97011 Tf
1 0 031 204.36 197.52 Tm
[(95)3.8893 7.9706 10.90993 0 1 214.32 1 214.B27592 199.299-0.6(L)160(/R33 10.9091 Tf
4.79953 0 Td
[(t)3]TJ
/R34 7.97011 Tf
1 0 031 204.36 197.52 Tm
[306R8/R493 7.970j 10.90993 0 1 214 1 247.68 185.88 Tm
[11 R8/R4L)160(/R33 226.9091 Tf
4.2 0 Td
[(u)-5]TJ-164-0.6J
/R384 10.9091 Tf
7.32 0 Td
[(()3.88682]TJ
/R33 10.9091 Tf
4.2 0 Td
[(u)-5]TJ
/R34 7.97011 Tf
1 0 0 1 163.44 1590)-1.0807]TJ
/R4162]TJ
/R493 7.970.44 0 Td
[(.)-5.98427(.)-5.98427(.)-5.98427]TJ
/R33 7.97011 Tf
6.96 0 Td
[(i)-3.84309]TJ
/R482 7.97011 Tf
2.51953 0 Td
[(�)-1.69456]TJ
/R34 7.97011 Tf
6.59953 0 Td
[(1)-1.0807]TJ
/R386 10.9091 Tf
1 0 0 1 214.32 1 214.B27592 199.44 Tm
[(53]TJ
/R33 10.9091 Tf
4.79953 0 Td
[(t)3]TJ
/R34 7.97011 Tf
1 0 0 1 204.36 197.52 Tm
[(06R3844162]TJ
/R493 7.970.44 0 Td
[(.)-5.98427(.)-5.98427(.)-5.98427]TJ
/R33 7.97011 Tf
6.96 0 Td
[(i)-3.84309]T309]TJ
/R482 7.97011 Tf
2.5 0 1 247.68 185.88 Tm
[(21-0.6(.113(/)-3.22266193.909(+10.9091 Tf
18.84 0 Td
[(M)-3(43)3.88427(.)s)5]TJ
/R-280(c3Tf
1 0 0 1 247.68 1852908795]TJ
/R33 10.9091 Tf
4.2 0 Td
[(u)-5]TJ
/R34 7.97011 Tf
1 0 031 204.36 197.52 Tm
[(95)3.88162]TJ
/R496 10.90993 0 1 214.32 1 214.B27592 199.299-0.6(53]TJ
/R33 10.9091 Tf
4.79 Td
[(�)-1.6945.88 Tm
[112-0.6())3J
/R493 7)-1.09Tf
18.82811 247.68 185.88 Tm
[116.66(53]TJ
/R33 �10.9091 Tf
18.8 Td
[(�)-1.6945.88 Tm
[115-1.08))3J
/R493 7)-1.09Tf
18.814 1 247.68 185.88 Tm
[1A)-8282.113(/)-3.2226.9091 Tf
4.2 0 Td
[(u)-5]TJ-17)-1.0J
/R384 10.9091 Tf
7.32 0 Td
[(()3.88682]TJ
/R33 10.9091 Tf
4.2 0 Td
[(u)-5]TJ
/R34 7.97011 Tf
1 0 0 1 163.44 1590)-1.0807]TJ
/R4319]TJ
/R34 7.97011 Tf
4.44 0 Td
[(.)-5.98427(.)-5.98427(.)-5.98427]TJ
/R33 7.97011 Tf
6.96 0 Td
[(i)-3.84309]TJ
/R386 10.9091 Tf
1 0 0 1 196.56 199.44 Tm
[(, Tm
[(r)-2
/R33 10.9091 Tf
4.79953 0 Td
[(t)3]TJ
/R34 7.97011 Tf
1 0 0 1 204.36 197.52 Tm
[(06R3844319]TJ
/R34 7.97011 Tf
4.44 0 Td
[(.)-5.98427(.)-5.98427(.)-5.98427]TJ
/R33 7.97011 Tf
6.96 0 Td
[(i)-3.8309]TJ
/R482 7.97011 Tf
2.51953 0 Td
[(�)-1.69456]TJ
/R34 7.97011 Tf
6.59953 0 Td
[(1)-1.0807]TJ
/R384 10.9091 Tf
1 0 0 1 247.68 185.88 Tm
[(3)-1.08r)-2
/R33 2266
290112(+10.9091 Tf
18.84 0 Td
[(M)-3(3)-6.98427(.)s)5]TJ
/R-280(c3Tf
1 0 0 1 247.68 1852908795]TJ
/R33 10.9091 Tf
4.2 Td
[(�)-1.6945.88 Tm
[289-282374]TJ/R493 7)-1.09Tf
18.82811 247.68 185.88 Tm
[292..08r)-2
/R33 �10.9091 Tf
18.8 Td
[(�)-1.6945.88 Tm
[10))3J
2374]TJ/R493 7)-1.09Tf
18.8 0 1 196.56 199.44 Tm
[304-1.08r

Algorithmique du texte Alignement

Alignement: Formule

L’idée principale est de calculer A(u0...i , t0...j) à partir des scores
A(u0...i−1, t0...j), A(u0...i , t0...j−1) et A(u0...i−1, t0...j−1):

A(u0...i , t0...j) = Max







A(u0...i−1 , t0...j−1) + cost(ui , tj)
A(u0...i−1 , t0...j) + cost(ui ,

′−′)
A(u0...i , t0...j−1) + cost(′−′, tj)

u0 . . . ui−1 ui

t0 . . . ti−1 tj
= Max































u0 . . . ui−1 ui

t0 . . . tj−1 tj

Exemple de fonction de coût:
cost(a,a)=2, cost(a,b)=-1, cost(a,’-’)=-1, cost(’-’,a)=-1
S. Needleman, C. Wunsch,A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J Mol Biol.
48(3):443-53.

Algorithmique du texte 2007-2008 36 / 89

Algorithmique du texte Alignement

Alignement: Formule

L’idée principale est de calculer A(u0...i , t0...j) à partir des scores
A(u0...i−1, t0...j), A(u0...i , t0...j−1) et A(u0...i−1, t0...j−1):

A(u0...i , t0...j) = Max







A(u0...i−1 , t0...j−1) + cost(ui , tj)
A(u0...i−1 , t0...j) + cost(ui ,

′−′)
A(u0...i , t0...j−1) + cost(′−′, tj)

u0 . . . ui−1 ui

t0 . . . ti−1 tj
= Max







































u0 . . . ui−1 ui

t0 . . . tj−1 tj

u0 . . . ui−1 ui

t0 . . . tj −

Exemple de fonction de coût:
cost(a,a)=2, cost(a,b)=-1, cost(a,’-’)=-1, cost(’-’,a)=-1
S. Needleman, C. Wunsch,A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J Mol Biol.
48(3):443-53.Algorithmique du texte 2007-2008 36 / 89

Algorithmique du texte Alignement

Alignement: Formule

L’idée principale est de calculer A(u0...i , t0...j) à partir des scores
A(u0...i−1, t0...j), A(u0...i , t0...j−1) et A(u0...i−1, t0...j−1):

A(u0...i , t0...j) = Max







A(u0...i−1 , t0...j−1) + cost(ui , tj)
A(u0...i−1 , t0...j) + cost(ui ,

′−′)
A(u0...i , t0...j−1) + cost(′−′, tj)

u0 . . . ui−1 ui

t0 . . . ti−1 tj
= Max















































u0 . . . ui−1 ui

t0 . . . tj−1 tj

u0 . . . ui−1 ui

t0 . . . tj −

u0 . . . ui −
t0 . . . tj−1 tj

Exemple de fonction de coût:
cost(a,a)=2, cost(a,b)=-1, cost(a,’-’)=-1, cost(’-’,a)=-1
S. Needleman, C. Wunsch,A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J Mol Biol.Algorithmique du texte 2007-2008 36 / 89

Algorithmique du texte Alignement

Alignement: Formule

L’idée principale est de calculer A(u0...i , t0...j) à partir des scores
A(u0...i−1, t0...j), A(u0...i , t0...j−1) et A(u0...i−1, t0...j−1):

A(u0...i , t0...j) = Max







A(u0...i−1 , t0...j−1) + cost(ui , tj)
A(u0...i−1 , t0...j) + cost(ui ,

′−′)
A(u0...i , t0...j−1) + cost(′−′, tj)

Exemple de fonction de coût:
cost(a,a)=2, cost(a,b)=-1, cost(a,’-’)=-1, cost(’-’,a)=-1

S. Needleman, C. Wunsch,A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J Mol Biol.
48(3):443-53.

Algorithmique du texte 2007-2008 36 / 89

Algorithmique du texte Alignement

Alignement: exemple

0 1 2 3 4 5 6 7 8 9
C A G A T C G A T

0 0
1 A
2 T
3 T
4 G
5 C
7 A
8 T
9 C

cost(a,a)=2

cost(a,b)=-1

cost(a,’-’)=-1

cost(’-’,a)=-1

Algorithmique du texte 2007-2008 37 / 89

Algorithmique du texte Alignement

Alignement: exemple

0 1 2 3 4 5 6 7 8 9
C A G A T C G A T

0 0
1 A -1
2 T -2
3 T -3
4 G -4
5 C -5
7 A -6
8 T -7
9 C -8

cost(a,a)=2

cost(a,b)=-1

cost(a,’-’)=-1

cost(’-’,a)=-1

Algorithmique du texte 2007-2008 37 / 89

Algorithmique du texte Alignement

Alignement: exemple

0 1 2 3 4 5 6 7 8 9
C A G A T C G A T

0 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
1 A -1
2 T -2
3 T -3
4 G -4
5 C -5
7 A -6
8 T -7
9 C -8

cost(a,a)=2

cost(a,b)=-1

cost(a,’-’)=-1

cost(’-’,a)=-1

Algorithmique du texte 2007-2008 37 / 89

Algorithmique du texte Alignement

Alignement: exemple

0 1 2 3 4 5 6 7 8 9
C A G A T C G A T

0 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
1 A -1 -1
2 T -2
3 T -3
4 G -4
5 C -5
7 A -6
8 T -7
9 C -8

cost(a,a)=2

cost(a,b)=-1

cost(a,’-’)=-1

cost(’-’,a)=-1

Algorithmique du texte 2007-2008 37 / 89

Algorithmique du texte Alignement

Alignement: exemple

0 1 2 3 4 5 6 7 8 9
C A G A T C G A T

0 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
1 A -1 -1 1 0 -1 -2 -3 -4 -5 -6
2 T -2 -2
3 T -3 -3
4 G -4 -4
5 C -5 -2
7 A -6 -3
8 T -7 -4
9 C -8 -5

cost(a,a)=2

cost(a,b)=-1

cost(a,’-’)=-1

cost(’-’,a)=-1

Algorithmique du texte 2007-2008 37 / 89

Algorithmique du texte Alignement

Alignement: exemple

0 1 2 3 4 5 6 7 8 9
C A G A T C G A T

0 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
1 A -1 -1 1 0 -1 -2 -3 -4 -5 -6
2 T -2 -2 0 0 -1 1 0 -1 -2 -3
3 T -3 -3 -1 -1 -1 1 0 -1 -2 0
4 G -4 -4 -2 1 0 0 0 2 1 0
5 C -5 -2 -3 0 0 -1 2 1 1 0
7 A -6 -3 0 -1 2 1 1 1 3 2
8 T -7 -4 -1 -1 1 4 3 2 2 5
9 C -8 -5 -2 -2 0 3 6 5 4 4

cost(a,a)=+2

Algorithmique du texte Alignement

Alignement: exemple

0 1 2 3 4 5 6 7 8 9
C A G A T C G A T

0 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
1 A -1 -1 1 0 -1 -2 -3 -4 -5 -6
2 T -2 -2 0 0 -1 1 0 -1 -2 -3
3 T -3 -3 -1 -1 -1 1 0 -1 -2 0
4 G -4 -4 -2 1 0 0 0 2 1 0
5 C -5 -2 -3 0 0 -1 2 1 1 0
7 A -6 -3 0 -1 2 1 1 1 3 2
8 T -7 -4 -1 -1 1 4 3 2 2 5
9 C -8 -5 -2 -2 0 3 6 5 4 4
C A G A T - C G A T -
- A T - T G C - A T C

cost(a,a)=+2

cost(a,b)=-1

cost(a,’-’)=-1

cost(’-’,a)=-1

Algorithmique du texte 2007-2008 37 / 89

Algorithmique du texte Alignement

Alignement: exemple

0 1 2 3 4 5 6 7 8 9
C A G A T C G A T

0 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
1 A -1 -1 1 0 -1 -2 -3 -4 -5 -6
2 T -2 -2 0 0 -1 1 0 -1 -2 -3
3 T -3 -3 -1 -1 -1 1 0 -1 -2 0
4 G -4 -4 -2 1 0 0 0 2 1 0
5 C -5 -2 -3 0 0 -1 2 1 1 0
7 A -6 -3 0 -1 2 1 1 1 3 2
8 T -7 -4 -1 -1 1 4 3 2 2 5
9 C -8 -5 -2 -2 0 3 6 5 4 4
C A G A T C G - A T -
- - - A T T G C A T C

cost(a,a)=+2

cost(a,b)=-1

cost(a,’-’)=-1

cost(’-’,a)=-1

Algorithmique du texte 2007-2008 37 / 89

Algorithmique du texte Alignement local

Alignement: Variantes

Problème: alignement local
Soient deux séquences q et t de longueur m et n, trouver les facteurs
de q et t qui ont le meilleur score d’alignement.

Algorithmique du texte 2007-2008 38 / 89

Algorithmique du texte Alignement local

Alignement Local

L’idée est que l’on peut commencer l’alignement à partir de n’importe
où dans la matrice:

A(u0...i , t0...j) = Max















A(u0...i−1 , t0...j−1) + cost(ui , tj)
A(u0...i−1 , t0...j) + cost(ui ,

′−′)
A(u0...i , t0...j−1) + cost(′−′, tj)
0

Algorithmique du texte 2007-2008 39 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0
1 A
2 T
3 T
4 A
5 C
7 A
8 T
9 C

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0
2 T 0
3 T 0
4 A 0
5 C 0
7 A 0
8 T 0
9 C 0

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0
3 T 0
4 A 0
5 C 0
7 A 0
8 T 0
9 C 0

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0
4 A 0
5 C 0
7 A 0
8 T 0
9 C 0

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0 0 0 0 0 3 3 2 1
4 A 0
5 C 0
7 A 0
8 T 0
9 C 0

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0 0 0 0 0 3 3 2 1
4 A 0 0 2 1 2 2 2 2 4
5 C 0
7 A 0
8 T 0
9 C 0

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0 0 0 0 0 3 3 2 1
4 A 0 0 2 1 2 2 2 2 4
5 C 0 2 1 1 1 1 4 3 3
7 A 0
8 T 0
9 C 0

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0 0 0 0 0 3 3 2 1
4 A 0 0 2 1 2 2 2 2 4
5 C 0 2 1 1 1 1 4 3 3
7 A 0 1 4 3 3 2 3 3 5
8 T 0
9 C 0

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0 0 0 0 0 3 3 2 1
4 A 0 0 2 1 2 2 2 2 4
5 C 0 2 1 1 1 1 4 3 3
7 A 0 1 4 3 3 2 3 3 5
8 T 0 0 3 3 2 5 4 3 4
9 C 0

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0 0 0 0 0 3 3 2 1
4 A 0 0 2 1 2 2 2 2 4
5 C 0 2 1 1 1 1 4 3 3
7 A 0 1 4 3 3 2 3 3 5
8 T 0 0 3 3 2 5 4 3 4
9 C 0 2 2 2 2 4 7 6 5

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0 0 0 0 0 3 3 2 1
4 A 0 0 2 1 2 2 2 2 4
5 C 0 2 1 1 1 1 4 3 3
7 A 0 1 4 3 3 2 3 3 5
8 T 0 0 3 3 2 5 4 3 4
9 C 0 2 2 2 2 4 7 6 5

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0 0 0 0 0 3 3 2 1
4 A 0 0 2 1 2 2 2 2 4
5 C 0 2 1 1 1 1 4 3 3
7 A 0 1 4 3 3 2 3 3 5
8 T 0 0 3 3 2 5 4 3 4
9 C 0 2 2 2 2 4 7 6 5

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0 0 0 0 0 3 3 2 1
4 A 0 0 2 1 2 2 2 2 4
5 C 0 2 1 1 1 1 4 3 3
7 A 0 1 4 3 3 2 3 3 5
8 T 0 0 3 3 2 5 4 3 4
9 C 0 2 2 2 2 4 7 6 5

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0 0 0 0 0 3 3 2 1
4 A 0 0 2 1 2 2 2 2 4
5 C 0 2 1 1 1 1 4 3 3
7 A 0 1 4 3 3 2 3 3 5
8 T 0 0 3 3 2 5 4 3 4
9 C 0 2 2 2 2 4 7 6 5

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0 0 0 0 0 3 3 2 1
4 A 0 0 2 1 2 2 2 2 4
5 C 0 2 1 1 1 1 4 3 3
7 A 0 1 4 3 3 2 3 3 5
8 T 0 0 3 3 2 5 4 3 4
9 C 0 2 2 2 2 4 7 6 5

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Alignement Local

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 2 1 2 1 0 0 2
2 T 0 0 0 1 1 4 3 2 1
3 T 0 0 0 0 0 3 3 2 1
4 A 0 0 2 1 2 2 2 2 4
5 C 0 2 1 1 1 1 4 3 3
7 A 0 1 4 3 3 2 3 3 5
8 T 0 0 3 3 2 5 4 3 4
9 C 0 2 2 2 2 4 7 6 5

Matrice:
A C G T -

A 2 -1 -1 -1 -1
C -1 2 -1 -1 -1
G -1 -1 2 -1 -1
T -1 -1 -1 2 -1
- -1 -1 -1 -1

Algorithmique du texte 2007-2008 40 / 89

Algorithmique du texte Alignement local

Exercice

Exercice
Calculer l’alignement local de ACGCACGT CAGGCTGG avec la
même fonction de score que l’exemple précédent.

Algorithmique du texte 2007-2008 41 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS (plus longue sous-séquence commune)

Definition (Sous-séquence)
La séquence s = s0 . . . sl−1 est une sous séquence de u (de longueur
n) si l’on peut construire s à partir de u en retirant lui n − l symboles.

Algorithmique du texte 2007-2008 42 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS (plus longue sous-séquence commune)

Definition (Sous-séquence)
La séquence s = s0 . . . sl−1 est une sous séquence de u (de longueur
n) si l’on peut construire s à partir de u en retirant lui n − l symboles.

LCS:
Soient deux séquences u et v . Trouver la plus longue sous-séquence
commune à u et v

Algorithmique du texte 2007-2008 42 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0
1 A
2 T
3 G
4 A
5 C
7 A
8 T
9 G

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0
2 T 0
3 G 0
4 A 0
5 C 0
7 A 0
8 T 0
9 G 0

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0
3 G 0
4 A 0
5 C 0
7 A 0
8 T 0
9 G 0

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0
4 A 0
5 C 0
7 A 0
8 T 0
9 G 0

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0 0 1 2 2 2 2 3 3
4 A 0
5 C 0
7 A 0
8 T 0
9 G 0

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0 0 1 2 2 2 2 3 3
4 A 0 0 1 2 3 3 3 3 4
5 C 0
7 A 0
8 T 0
9 G 0

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0 0 1 2 2 2 2 3 3
4 A 0 0 1 2 3 3 3 3 4
5 C 0 1 1 2 3 3 4 4 4
7 A 0
8 T 0
9 G 0

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0 0 1 2 2 2 2 3 3
4 A 0 0 1 2 3 3 3 3 4
5 C 0 1 1 2 3 3 4 4 4
7 A 0 1 2 2 3 3 4 4 5
8 T 0
9 G 0

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0 0 1 2 2 2 2 3 3
4 A 0 0 1 2 3 3 3 3 4
5 C 0 1 1 2 3 3 4 4 4
7 A 0 1 2 2 3 3 4 4 5
8 T 0 1 2 2 3 4 4 4 5
9 G 0

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0 0 1 2 2 2 2 3 3
4 A 0 0 1 2 3 3 3 3 4
5 C 0 1 1 2 3 3 4 4 4
7 A 0 1 2 2 3 3 4 4 5
8 T 0 1 2 2 3 4 4 4 5
9 G 0 1 2 3 3 4 4 5 5

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0 0 1 2 2 2 2 3 3
4 A 0 0 1 2 3 3 3 3 4
5 C 0 1 1 2 3 3 4 4 4
7 A 0 1 2 2 3 3 4 4 5
8 T 0 1 2 2 3 4 4 4 5
9 G 0 1 2 3 3 4 4 5 5

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0 0 1 2 2 2 2 3 3
4 A 0 0 1 2 3 3 3 3 4
5 C 0 1 1 2 3 3 4 4 4
7 A 0 1 2 2 3 3 4 4 5
8 T 0 1 2 2 3 4 4 4 5
9 G 0 1 2 3 3 4 4 5 5

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0 0 1 2 2 2 2 3 3
4 A 0 0 1 2 3 3 3 3 4
5 C 0 1 1 2 3 3 4 4 4
7 A 0 1 2 2 3 3 4 4 5
8 T 0 1 2 2 3 4 4 4 5
9 G 0 1 2 3 3 4 4 5 5

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0 0 1 2 2 2 2 3 3
4 A 0 0 1 2 3 3 3 3 4
5 C 0 1 1 2 3 3 4 4 4
7 A 0 1 2 2 3 3 4 4 5
8 T 0 1 2 2 3 4 4 4 5
9 G 0 1 2 3 3 4 4 5 5

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0 0 1 2 2 2 2 3 3
4 A 0 0 1 2 3 3 3 3 4
5 C 0 1 1 2 3 3 4 4 4
7 A 0 1 2 2 3 3 4 4 5
8 T 0 1 2 2 3 4 4 4 5
9 G 0 1 2 3 3 4 4 5 5

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Plus longue sous-séquence commune

LCS

0 1 2 3 4 5 6 7 8
C A G A T C G A

0 0 0 0 0 0 0 0 0 0
1 A 0 0 1 0 1 0 0 0 1
2 T 0 0 1 1 1 2 2 2 2
3 G 0 0 1 2 2 2 2 3 3
4 A 0 0 1 2 3 3 3 3 4
5 C 0 1 1 2 3 3 4 4 4
7 A 0 1 2 2 3 3 4 4 5
8 T 0 1 2 2 3 4 4 4 5
9 G 0 1 2 3 3 4 4 5 5

Matrice:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Algorithmique du texte 2007-2008 43 / 89

Algorithmique du texte Gap: fonctions affines

A propos des gaps

Fonction de gap affine:

Coût d’ouverture de gap

Coût d’extension

Algorithmique du texte 2007-2008 44 / 89

Algorithmique du texte Gap: fonctions affines

A propos des gaps

Reformulation de l’alignement:

Alignement avec fonction de gap affine
Soient deux séquences u et v et deux valeurs o et e. On cherche un
alignement de u′ et v ′ des deux séquences. On désigne le symbole ’-’
par “espace”. Toute suite d’espace dans u′ ou v ′ sera appelée “gap”.
Le problème consiste à maximiser le score

∑

i

[cost(u′

i , v ′

i) + #gap ∗ o + #espace ∗ e]

avec cost(a,′ −′) = cost(′−′, a) = 0

Algorithmique du texte 2007-2008 44 / 89

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Le calcul du score repose sur l’utilisation de trois matrices:

V (i , j) : contient la valeur du meilleur alignement entre ui et vj .

E(i , j) : contient la valeur de l’alignement de ui et vj avec u en
court d’extension de gap

F (i , j) : contient la valeur de l’alignement de ui et vj avec v en
court d’extension de gap

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

Algorithmique du texte 2007-2008 45 / 89

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte 2007-2008 46 / 89

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte 2007-2008 46 / 89

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte 2007-2008 46 / 89

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte 2007-2008 46 / 89

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte 2007-2008 46 / 89

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte 2007-2008 46 / 89

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte 2007-2008 46 / 89

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte 2007-2008 46 / 89

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte Gap: fonctions affines

Fonction de gap affine

Conditions initiales:

V (i , 0) = E(i , 0) = o + i ∗ e

V (0, j) = F (0, j) = o + j ∗ e

V (i , j) = Max







E(i , j)
F (i , j)
V (i − 1, j − 1) + cost(ui , vj)

E(i , j) = Max
{

E(i , j − 1) + e
V (i , j − 1) + o + e

F (i , j) = Max
{

F (i − 1, j) + e
V (i − 1, j) + o + e

Algorithmique du texte 2007-2008 46 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0
1 C
2 A
3 T
4 T
5 T
6 G

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X
C
A
T
T
T
G

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X
C
A
T
T
T
G

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0
1 C
2 A
3 T
4 T
5 T
6 G

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C
A
T
T
T
G

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X
C
A
T
T
T
G

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0
1 C
2 A
3 T
4 T
5 T
6 G

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C
A
T
T
T
G

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2
C
A
T
T
T
G

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2
1 C
2 A
3 T
4 T
5 T
6 G

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C
A
T
T
T
G

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2
C
A
T
T
T
G

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2
1 C
2 A
3 T
4 T
5 T
6 G

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C
A
T
T
T
G

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3
C
A
T
T
T
G

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3
1 C
2 A
3 T
4 T
5 T
6 G

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C
A
T
T
T
G

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3
C
A
T
T
T
G

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3
1 C
2 A
3 T
4 T
5 T
6 G

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C
A
T
T
T
G

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C
A
T
T
T
G

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2
2 A -3
3 T -4
4 T -5
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2
A -3
T -4
T -5
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X
A X
T X
T X
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2
2 A -3
3 T -4
4 T -5
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3
T -4
T -5
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X
A X
T X
T X
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2
2 A -3
3 T -4
4 T -5
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3
T -4
T -5
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X
T X
T X
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3
3 T -4
4 T -5
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3
T -4
T -5
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X
T X
T X
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3
3 T -4
4 T -5
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4
T -5
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X
T X
T X
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3
3 T -4
4 T -5
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4
T -5
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X -5
T X
T X
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3 -1
3 T -4
4 T -5
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4
T -5
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X -5
T X
T X
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3 -1
3 T -4
4 T -5
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4 -2
T -5
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X -5
T X
T X
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3 -1
3 T -4
4 T -5
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4 -2
T -5
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X -5
T X -6
T X
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3 -1
3 T -4 -2
4 T -5
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4 -2
T -5
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X -5
T X -6
T X
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3 -1
3 T -4 -2
4 T -5
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4 -2
T -5 -3
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X -5
T X -6
T X
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3 -1
3 T -4 -2
4 T -5
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4 -2
T -5 -3
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X -5
T X -6
T X -7
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3 -1
3 T -4 -2
4 T -5 -3
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4 -2
T -5 -3
T -6
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X -5
T X -6
T X -7
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3 -1
3 T -4 -2
4 T -5 -3
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4 -2
T -5 -3
T -6 -4
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X -5
T X -6
T X -7
T X
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3 -1
3 T -4 -2
4 T -5 -3
5 T -6
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4 -2
T -5 -3
T -6 -4
G -7

F(i,=

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3 -1
3 T -4 -2
4 T -5 -3
5 T -6 -4
6 G -7

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4 -2
T -5 -3
T -6 -4
G -7

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X -5
T X -6
T X -7
T X -8
G X

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1
2 A -3 -1
3 T -4 -2
4 T -5 -3
5 T -6 -4
6 G -7 -5

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4
A -3 -1
T -4 -2
T -5 -3
T -6 -4
G -7 -5

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4
A X -5
T X -6
T X -7
T X -8
G X -9

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1
2 A -3 -1
3 T -4 -2
4 T -5 -3
5 T -6 -4
6 G -7 -5

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5
A -3 -1
T -4 -2
T -5 -3
T -6 -4
G -7 -5

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1
A X -5
T X -6
T X -7
T X -8
G X -9

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1
2 A -3 -1 2
3 T -4 -2
4 T -5 -3
5 T -6 -4
6 G -7 -5

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5
A -3 -1 -3
T -4 -2
T -5 -3
T -6 -4
G -7 -5

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1
A X -5 -3
T X -6
T X -7
T X -8
G X -9

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1
2 A -3 -1 2
3 T -4 -2 0
4 T -5 -3
5 T -6 -4
6 G -7 -5

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5
A -3 -1 -3
T -4 -2 0
T -5 -3
T -6 -4
G -7 -5

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1
A X -5 -3
T X -6 -4
T X -7
T X -8
G X -9

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1
2 A -3 -1 2
3 T -4 -2 0
4 T -5 -3 -1
5 T -6 -4
6 G -7 -5

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5
A -3 -1 -3
T -4 -2 0
T -5 -3 -1
T -6 -4
G -7 -5

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1
A X -5 -3
T X -6 -4
T X -7 -5
T X -8
G X -9

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1
2 A -3 -1 2
3 T -4 -2 0
4 T -5 -3 -1
5 T -6 -4 -2
6 G -7 -5

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5
A -3 -1 -3
T -4 -2 0
T -5 -3 -1
T -6 -4 -2
G -7 -5

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1
A X -5 -3
T X -6 -4
T X -7 -5
T X -8 -6
G X -9

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1
2 A -3 -1 2
3 T -4 -2 0
4 T -5 -3 -1
5 T -6 -4 -2
6 G -7 -5 -3

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5
A -3 -1 -3
T -4 -2 0
T -5 -3 -1
T -6 -4 -2
G -7 -5 -3

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1
A X -5 -3
T X -6 -4
T X -7 -5
T X -8 -6
G X -9 -7

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1 -2
2 A -3 -1 2 0
3 T -4 -2 0 1
4 T -5 -3 -1 -1
5 T -6 -4 -2 -2
6 G -7 -5 -3 -1

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5 -6
A -3 -1 -3 -4
T -4 -2 0 -2
T -5 -3 -1 -1
T -6 -4 -2 -2
G -7 -5 -3 -3

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1 -2
A X -5 -3 0
T X -6 -4 -2
T X -7 -5 -3
T X -8 -6 -4
G X -9 -7 -5

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1 -2
2 A -3 -1 2 0
3 T -4 -2 0 1
4 T -5 -3 -1 -1
5 T -6 -4 -2 -2
6 G -7 -5 -3 -1

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5 -6
A -3 -1 -3 -4
T -4 -2 0 -2
T -5 -3 -1 -1
T -6 -4 -2 -2
G -7 -5 -3 -3

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1 -2
A X -5 -3 0
T X -6 -4 -2
T X -7 -5 -3
T X -8 -6 -4
G X -9 -7 -5

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1 -2
2 A -3 -1 2 0
3 T -4 -2 0 1
4 T -5 -3 -1 -1
5 T -6 -4 -2 -2
6 G -7 -5 -3 -1

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5 -6
A -3 -1 -3 -4
T -4 -2 0 -2
T -5 -3 -1 -1
T -6 -4 -2 -2
G -7 -5 -3 -3

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1 -2
A X -5 -3 0
T X -6 -4 -2
T X -7 -5 -3
T X -8 -6 -4
G X -9 -7 -5

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1 -2
2 A -3 -1 2 0
3 T -4 -2 0 1
4 T -5 -3 -1 -1
5 T -6 -4 -2 -2
6 G -7 -5 -3 -1

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5 -6
A -3 -1 -3 -4
T -4 -2 0 -2
T -5 -3 -1 -1
T -6 -4 -2 -2
G -7 -5 -3 -3

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1 -2
A X -5 -3 0
T X -6 -4 -2
T X -7 -5 -3
T X -8 -6 -4
G X -9 -7 -5

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1 -2
2 A -3 -1 2 0
3 T -4 -2 0 1
4 T -5 -3 -1 -1
5 T -6 -4 -2 -2
6 G -7 -5 -3 -1

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5 -6
A -3 -1 -3 -4
T -4 -2 0 -2
T -5 -3 -1 -1
T -6 -4 -2 -2
G -7 -5 -3 -3

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1 -2
A X -5 -3 0
T X -6 -4 -2
T X -7 -5 -3
T X -8 -6 -4
G X -9 -7 -5

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1 -2
2 A -3 -1 2 0
3 T -4 -2 0 1
4 T -5 -3 -1 -1
5 T -6 -4 -2 -2
6 G -7 -5 -3 -1

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5 -6
A -3 -1 -3 -4
T -4 -2 0 -2
T -5 -3 -1 -1
T -6 -4 -2 -2
G -7 -5 -3 -3

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1 -2
A X -5 -3 0
T X -6 -4 -2
T X -7 -5 -3
T X -8 -6 -4
G X -9 -7 -5

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1 -2
2 A -3 -1 2 0
3 T -4 -2 0 1
4 T -5 -3 -1 -1
5 T -6 -4 -2 -2
6 G -7 -5 -3 -1

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5 -6
A -3 -1 -3 -4
T -4 -2 0 -2
T -5 -3 -1 -1
T -6 -4 -2 -2
G -7 -5 -3 -3

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1 -2
A X -5 -3 0
T X -6 -4 -2
T X -7 -5 -3
T X -8 -6 -4
G X -9 -7 -5

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1 -2
2 A -3 -1 2 0
3 T -4 -2 0 1
4 T -5 -3 -1 -1
5 T -6 -4 -2 -2
6 G -7 -5 -3 -1

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5 -6
A -3 -1 -3 -4
T -4 -2 0 -2
T -5 -3 -1 -1
T -6 -4 -2 -2
G -7 -5 -3 -3

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1 -2
A X -5 -3 0
T X -6 -4 -2
T X -7 -5 -3
T X -8 -6 -4
G X -9 -7 -5

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exemple

V (i, j) =

Max{E(i, j), F(i, j), V (i − 1, j − 1) + c}

0 1 2 3
C A G

0 0 -2 -3 -4
1 C -2 1 -1 -2
2 A -3 -1 2 0
3 T -4 -2 0 1
4 T -5 -3 -1 -1
5 T -6 -4 -2 -2
6 G -7 -5 -3 -1

E(i, j) =

Max{E(i, j − 1) + e, V (i, j − 1) + o + e}

0 1 2 3
C A G

X X X X
C -2 -4 -5 -6
A -3 -1 -3 -4
T -4 -2 0 -2
T -5 -3 -1 -1
T -6 -4 -2 -2
G -7 -5 -3 -3

F(i, j) =

Max{F(i − 1, j) + e, V (i − 1, j) + o + e}

0 1 2 3
C A G

X -2 -3 -4
C X -4 -1 -2
A X -5 -3 0
T X -6 -4 -2
T X -7 -5 -3
T X -8 -6 -4
G X -9 -7 -5

cost(a, a) = +1 cost(a, b) = −1 o = −1 e = −1

Algorithmique du texte 2007-2008 47 / 89

Algorithmique du texte Gap: fonctions affines

Exercice

Exercice
Calculer l’alignement global de TCCTATTC avec TCAGGTAC, avec
cost(a, a) = 1,cost(a, b) = −1, ouverture de −1 et extension de −1.

Algorithmique du texte 2007-2008 48 / 89

Algorithmique du texte Matrices d’édition

A propos des matrices

Matrice Unitaire:
A C G T -

A 1 0 0 0 0
C 0 1 0 0 0
G 0 0 1 0 0
T 0 0 0 1 0
- 0 0 0 0

Transition/Transversion:
A C G T -

A - β α β -
C β - β α -
G α β - β -
T β α β - -
- - - - -

Transitions:

Purines: A-G

Pyrimidines: C-T

Algorithmique du texte 2007-2008 49 / 89

Algorithmique du texte Matrices d’édition

A propos des matrices

BLAST:
A C G T -

A 1 -3 -3 -3 -5/-2
C -3 1 -3 -3 -5/-2
G -3 -3 1 -3 -5/-2
T -3 -3 -3 1 -5/-2
- -5/-2 -5/-2 -5/-2 -5/-2

Algorithmique du texte 2007-2008 49 / 89

Algorithmique du texte Chainage

Chaînage à une dimension

Problème
On dispose d’une séquence d’ADN R d’un gène eucaryote et d’un
ensemble d’exons E1, E2 . . . candidats pour ce gène. Pour chaque
exons, on calcul le facteur de R de plus forte similarité.

Algorithmique du texte 2007-2008 50 / 89

Algorithmique du texte Chainage

Chaînage à une dimension

Problème
On dispose d’une séquence d’ADN R d’un gène eucaryote et d’un
ensemble d’exons E1, E2 . . . candidats pour ce gène. Pour chaque
exons, on calcul le facteur de R de plus forte similarité.

Problème: trouver la suite d’exons dont les occurences sur R ne se
chevauchent pas et la somme des scores est maximale (recouvrement
maximal).

Algorithmique du texte 2007-2008 50 / 89

Algorithmique du texte Chainage

Chaînage à une dimension

Problème

Algorithmique du texte Chainage

Chaînage: algorithme

On pourrait tout a fait calculer le chaînage en utilisant un graphe
orienté sans cylcle tel que chaque exons soit représenté par un
sommet et deux sommets sont reliés s’ils sont compatibles:

Recherche du plus long chemin de S à T : O(n2)

Algorithmique du texte 2007-2008 51 / 89

Algorithmique du texte Chainage

Chaînage: algorithme

On pourrait tout a fait calculer le chaînage en utilisant un graphe
orienté sans cylcle tel que chaque exons soit représenté par un
sommet et deux sommets sont reliés s’ils sont compatibles:

Recherche du plus long chemin de S à T : O(n2)

Algorithmique du texte 2007-2008 51 / 89

Algorithmique du texte Chainage

Chaînage: algorithme

On pourrait tout a fait calculer le chaînage en utilisant un graphe
orienté sans cylcle tel que chaque exons soit représenté par un
sommet et deux sommets sont reliés s’ils sont compatibles:

Recherche du plus long chemin de S à T : O(n2)

Algorithmique du texte 2007-2008 51 / 89

Algorithmique du texte Chainage

Chaînage: algorithme

On pourrait tout a fait calculer le chaînage en utilisant un graphe
orienté sans cylcle tel que chaque exons soit représenté par un
sommet et deux sommets sont reliés s’ils sont compatibles:

Recherche du plus long chemin de S à T : O(n2)

Algorithmique du texte 2007-2008 51 / 89

Algorithmique du texte Chainage

Chaînage: algorithme

On pourrait tout a fait calculer le chaînage en utilisant un graphe
orienté sans cylcle tel que chaque exons soit représenté par un
sommet et deux sommets sont reliés s’ils sont compatibles:

Les arcs sont valués par le score du sommet d’origine Recherche du
plus long chemin de S à T : O(n2)

Algorithmique du texte 2007-2008 51 / 89

Algorithmique du texte Chainage

Chaînage: algorithme

On pourrait tout a fait calculer le chaînage en utilisant un graphe
orienté sans cylcle tel que chaque exons soit représenté par un
sommet et deux sommets sont reliés s’ils sont compatibles:

Recherche du plus long chemin de S à T : O(n2)

Algorithmique du texte 2007-2008 51 / 89

Algorithmique du texte Chainage

Chaînage: algorithme

On pourrait tout a fait calculer le chaînage en utilisant un graphe
orienté sans cylcle tel que chaque exons soit représenté par un
sommet et deux sommets sont reliés s’ils sont compatibles:

Recherche du plus long chemin de S à T : O(n2)

Algorithmique du texte 2007-2008 51 / 89

Algorithmique du texte Chainage

Chaînage: algorithme

On pourrait tout a fait calculer le chaînage en utilisant un graphe
orienté sans cylcle tel que chaque exons soit représenté par un
sommet et deux sommets sont reliés s’ils sont compatibles:

Recherche du plus long chemin de S à T : O(n2)

Algorithmique du texte 2007-2008 51 / 89

Algorithmique du texte Chainage

Chaînage: algorithme

On pourrait tout a fait calculer le chaînage en utilisant un graphe
orienté sans cylcle tel que chaque exons soit représenté par un
sommet et deux sommets sont reliés s’ils sont compatibles:

Recherche du plus long chemin de S à T : O(n2)

Algorithmique du texte 2007-2008 51 / 89

Algorithmique du texte Chainage

Chaînage: algorithme

On pourrait tout a fait calculer le chaînage en utilisant un graphe
orienté sans cylcle tel que chaque exons soit représenté par un
sommet et deux sommets sont reliés s’ils sont compatibles:

Recherche du plus long chemin de S à T : O(n2)

Algorithmique du texte 2007-2008 51 / 89

Algorithmique du texte Chainage

Chaînage: algorithme

On pourrait tout a fait calculer le chaînage en utilisant un graphe
orienté sans cylcle tel que chaque exons soit représenté par un
sommet et deux sommets sont reliés s’ils sont compatibles:

Recherche du plus long chemin de S à T : O(n2)

Algorithmique du texte 2007-2008 51 / 89

Algorithmique du texte Chainage

Chaînage: algorithme

On pourrait tout a fait calculer le chaînage en utilisant un graphe
orienté sans cylcle tel que chaque exons soit représenté par un
sommet et deux sommets sont reliés s’ils sont compatibles:

Recherche du plus long chemin de S à T : O(n2)

Algorithmique du texte 2007-2008 51 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

Une autre solution est d’utiliser un algorithme de type “programmation
dynamique”.

On va chercher à calculer pour chaque exons le meilleur chaînage se
terminant par cet exon.

On parcours toutes la séquence de gauche à droite:

Algorithmique du texte Chainage

Chaînage 1D: algorithme

Une autre solution est d’utiliser un algorithme de type “programmation
dynamique”.

On va chercher à calculer pour chaque exons le meilleur chaînage se
terminant par cet exon.

On parcours toutes la séquence de gauche à droite:

À chaque fois que l’on rencontre le début d’un exon, on le chaîne
avec le meilleur chaînage déjà calculé.

Si l’on atteint le fin d’un exons alors on regarde si son chaînage
est le meilleur chaînage.

Algorithmique du texte 2007-2008 52 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

Une autre solution est d’utiliser un algorithme de type “programmation
dynamique”.

On va chercher à calculer pour chaque exons le meilleur chaînage se
terminant par cet exon.

On parcours toutes la séquence de gauche à droite:

À chaque fois que l’on rencontre le début d’un exon, on le chaîne
avec le meilleur chaînage déjà calculé.

Si l’on atteint le fin d’un exons alors on regarde si son chaînage
est le meilleur chaînage.

Algorithmique du texte 2007-2008 52 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

Une autre solution est d’utiliser un algorithme de type “programmation
dynamique”.

On va chercher à calculer pour chaque exons le meilleur chaînage se
terminant par cet exon.

On parcours toutes la séquence de gauche à droite:

À chaque fois que l’on rencontre le début d’un exon, on le chaîne
avec le meilleur chaînage déjà calculé.

Si l’on atteint le fin d’un exons alors on regarde si son chaînage
est le meilleur chaînage.

Algorithmique du texte 2007-2008 52 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

Une autre solution est d’utiliser un algorithme de type “programmation
dynamique”.

On va chercher à calculer pour chaque exons le meilleur chaînage se
terminant par cet exon.

On parcours toutes la séquence de gauche à droite:

À chaque fois que l’on rencontre le début d’un exon, on le chaîne
avec le meilleur chaînage déjà calculé.

Si l’on atteint le fin d’un exons alors on regarde si son chaînage
est le meilleur chaînage.

Algorithmique du texte 2007-2008 52 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Deux tableaux: I (positions) et V (meilleur score par exons)
position: 8 10 0 4 1 2 3 7 2 5 5 7

exon: 1ℓ 1r 2ℓ 2r 3ℓ 3r 4ℓ 4r 5ℓ 5r 6ℓ 6r

exons: 1 2 3 4 5 6
maximum: 0 0 0 0 0 0

max = 0

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Trier I
position: 0 1 2 2 3 4 5 5 7 7 8 10

exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 0 0 0 0 0 0

max = 0

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Parcourir I, Si position gauche de Ej alors V [j] = max + vj

position: 0 1 2 2 3 4 5 5 7 7 8 10
exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 0 4 0 0 0 0

max = 0

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Parcourir I, Si position gauche de Ej alors V [j] = max + vj

position: 0 1 2 2 3 4 5 5 7 7 8 10
exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 0 4 1 0 0 0

max = 0

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Parcourir I, Si position droite de Ej alors max=max(max, V [j])

position: 0 1 2 2 3 4 5 5 7 7 8 10
exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 0 4 1 0 0 0

max = 1

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Parcourir I, Si position gauche de Ej alors V [j] = max + vj

position: 0 1 2 2 3 4 5 5 7 7 8 10
exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 0 4 1 0 3+1=4 0

max = 1

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Parcourir I, Si position gauche de Ej alors V [j] = max + vj

position: 0 1 2 2 3 4 5 5 7 7 8 10
exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 0 4 1 4 4 0

max = 1

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Parcourir I, Si position droite de Ej alors max=max(max, V [j])

position: 0 1 2 2 3 4 5 5 7 7 8 10
exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 0 4 1 4 4 0

max = 4

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Parcourir I, Si position droite de Ej alors max=max(max, V [j])

position: 0 1 2 2 3 4 5 5 7 7 8 10
exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 0 4 1 4 4 0

max = 4

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Parcourir I, Si position gauche de Ej alors V [j] = max + vj

position: 0 1 2 2 3 4 5 5 7 7 8 10
exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 0 4 1 4 4 6

max = 4

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Parcourir I, Si position droite de Ej alors max=max(max, V [j])

position: 0 1 2 2 3 4 5 5 7 7 8 10
exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 0 4 1 4 4 6

max = 6

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Parcourir I, Si position droite de Ej alors max=max(max, V [j])

position: 0 1 2 2 3 4 5 5 7 7 8 10
exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 0 4 1 4 4 6

max = 6

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Parcourir I, Si position gauche de Ej alors V [j] = max + vj

position: 0 1 2 2 3 4 5 5 7 7 8 10
exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 8 4 1 4 4 6

max = 6

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Parcourir I, Si position droite de Ej alors max=max(max, V [j])

position: 0 1 2 2 3 4 5 5 7 7 8 10
exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 8 4 1 4 4 6

max = 8

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chaînage 1D: algorithme

E1 (2) : * * *
E2 (4) : * * * * *
E3 (1) : * *
E4 (3) : * * * * *
E5 (3) : * * * *
E6 (2) : * * *

R : 0 1 2 3 4 5 6 7 8 9 10

Le résultat est dans max
position: 0 1 2 2 3 4 5 5 7 7 8 10

exon: 2ℓ 3ℓ 3r 5ℓ 4ℓ 2r 5r 6ℓ 6r 4r 1ℓ 1r

exons: 1 2 3 4 5 6
maximum: 8 4 1 4 4 6

max = 8

Algorithmique du texte 2007-2008 53 / 89

Algorithmique du texte Chainage

Chainage 1D: Exercices

Exercices
Comment gérer le chevauchement?

Quelle est la complexité de l’algorithme?

Comment faire pour obtenir la liste des exons retenus?

Calculer le chaînage optimal pour les intervals suivants:

[(8, 10, 2); (10, 11, 1); (6, 9, 3); (3, 7, 1); (1, 4, 2); (0, 2, 2)]

Écrire le pseudo-code (ou le code python) permettant de calculer
le chaînage optimal (valeur + éléments). Le paramètre en entrée
est une liste de triplets (debut , fin, score).

Algorithmique du texte 2007-2008 54 / 89

Algorithmique du texte Chainage

Chaînage à deux dimensions

Problème

Algorithmique du texte Chainage

Chaînage à deux dimensions

Problème

Algorithmique du texte Chainage

Chaînage à deux dimensions

Problème
On dispose de deux séquences d’ADN S1 et S2 ainsi qu’un ensemble
R de couple de sous-chaînes de S1 et S2 de fortes similarités. À
chaque couple est associé un score.

Problème: Trouver un
sous-ensemble de R tel que
les zones ne soient pas
chevauchantes et la somme
des scores retenus soit
maximale.

Algorithmique du texte 2007-2008 55 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

L’algorithme est similaire au cas à une dimension
Chaque “rectangle” j est composé de 5 valeurs:

jl : valeur gauche

jr : valeur droite

jt : valeur haute

jb: valeur basse

vj : score

On commence par trier dans un tableau I l’ensemble des valeurs jg, jd
pour tous les j ∈ R.
Pour chaque valeur de I on conserve le numéro de rectangle
correspondant.

Algorithmique du texte 2007-2008 56 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

L’algorithme est similaire au cas à une dimension
Chaque “rectangle” j est composé de 5 valeurs:

jl : valeur gauche

jr : valeur droite

jt : valeur haute

jb: valeur basse

vj : score

On commence par trier dans un tableau I l’ensemble des valeurs jg, jd
pour tous les j ∈ R.
Pour chaque valeur de I on conserve le numéro de rectangle
correspondant.

Algorithmique du texte 2007-2008 56 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

L’algorithme est similaire au cas à une dimension
Chaque “rectangle” j est composé de 5 valeurs:

jl : valeur gauche

jr : valeur droite

jt : valeur haute

jb: valeur basse

vj : score

On commence par trier dans un tableau I l’ensemble des valeurs jg, jd
pour tous les j ∈ R.
Pour chaque valeur de I on conserve le numéro de rectangle
correspondant.

Algorithmique du texte 2007-2008 56 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

L’algorithme est similaire au cas à une dimension
Chaque “rectangle” j est composé de 5 valeurs:

jl : valeur gauche

jr : valeur droite

jt : valeur haute

jb: valeur basse

vj : score

On commence par trier dans un tableau I l’ensemble des valeurs jg, jd
pour tous les j ∈ R.
Pour chaque valeur de I on conserve le numéro de rectangle
correspondant.

Algorithmique du texte 2007-2008 56 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

On va aussi maintenir une liste L de triplets (jb, V [j], j) où

jb est la coordonnée basse du rectangle j

V [j] est la valeur de meilleur chaînage se terminant par j .

La liste L sera triée selon les positions basses décroissante. Le triplet
en début de liste est le rectangle le plus haut.

Algorithmique du texte 2007-2008 57 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

On va aussi maintenir une liste L de triplets (jb, V [j], j) où

jb est la coordonnée basse du rectangle j

V [j] est la valeur de meilleur chaînage se terminant par j .

La liste L sera triée selon les positions basses décroissante. Le triplet
en début de liste est le rectangle le plus haut.

Algorithmique du texte 2007-2008 57 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

L est vide, pour chaque position i de I:
Si I[i] est la position gauche du rectangle k :

Trouver dans L le dernier triplet (jb, V [j], j) tel que jb > kt (j est juste
au dessus de k).
Positionner V [k] à vk + V [j].

Sinon I[i] est la position droite de k :
Rechercher le dernier triplet (jb, V [j], j) de L tq jb ≥ kb
si V [k] > V [j]

Ajouter (kb, V (k), k) dans L

Retirer de L les triplets j ′ tq j ′b ≤ kb et V [k] > V [j ′] (rectangles plus
bas avec un score plus faible).

Algorithmique du texte 2007-2008 58 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

L est vide, pour chaque position i de I:
Si I[i] est la position gauche du rectangle k :

Trouver dans L le dernier triplet (jb, V [j], j) tel que jb > kt (j est juste
au dessus de k).
Positionner V [k] à vk + V [j].

Sinon I[i] est la position droite de k :
Rechercher le dernier triplet (jb, V [j], j) de L tq jb ≥ kb
si V [k] > V [j]

Ajouter (kb, V (k), k) dans L

Retirer de L les triplets j ′ tq j ′b ≤ kb et V [k] > V [j ′] (rectangles plus
bas avec un score plus faible).

Algorithmique du texte 2007-2008 58 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

L est vide, pour chaque position i de I:
Si I[i] est la position gauche du rectangle k :

Trouver dans L le dernier triplet (jb, V [j], j) tel que jb > kt (j est juste
au dessus de k).
Positionner V [k] à vk + V [j].

Sinon I[i] est la position droite de k :
Rechercher le dernier triplet (jb, V [j], j) de L tq jb ≥ kb
si V [k] > V [j]

Ajouter (kb, V (k), k) dans L

Retirer de L les triplets j ′ tq j ′b ≤ kb et V [k] > V [j ′] (rectangles plus
bas avec un score plus faible).

Algorithmique du texte 2007-2008 58 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

L est vide, pour chaque position i de I:
Si I[i] est la position gauche du rectangle k :

Trouver dans L le dernier triplet (jb, V [j], j) tel que jb > kt (j est juste
au dessus de k).
Positionner V [k] à vk + V [j].

Sinon I[i] est la position droite de k :
Rechercher le dernier triplet (jb, V [j], j) de L tq jb ≥ kb
si V [k] > V [j]

Ajouter (kb, V (k), k) dans L

Retirer de L les triplets j ′ tq j ′b ≤ kb et V [k] > V [j ′] (rectangles plus
bas avec un score plus faible).

Algorithmique du texte 2007-2008 58 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

L est vide, pour chaque position i de I:
Si I[i] est la position gauche du rectangle k :

Trouver dans L le dernier triplet (jb, V [j], j) tel que jb > kt (j est juste
au dessus de k).
Positionner V [k] à vk + V [j].

Sinon I[i] est la position droite de k :
Rechercher le dernier triplet (jb, V [j], j) de L tq jb ≥ kb
si V [k] > V [j]

Ajouter (kb, V (k), k) dans L

Retirer de L les triplets j ′ tq j ′b ≤ kb et V [k] > V [j ′] (rectangles plus
bas avec un score plus faible).

Algorithmique du texte 2007-2008 58 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

L est vide, pour chaque position i de I:
Si I[i] est la position gauche du rectangle k :

Trouver dans L le dernier triplet (jb, V [j], j) tel que jb > kt (j est juste
au dessus de k).
Positionner V [k] à vk + V [j].

Sinon I[i] est la position droite de k :
Rechercher le dernier triplet (jb, V [j], j) de L tq jb ≥ kb
si V [k] > V [j]

Ajouter (kb, V (k), k) dans L

Retirer de L les triplets j ′ tq j ′b ≤ kb et V [k] > V [j ′] (rectangles plus
bas avec un score plus faible).

Algorithmique du texte 2007-2008 58 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

L est vide, pour chaque position i de I:
Si I[i] est la position gauche du rectangle k :

Trouver dans L le dernier triplet (jb, V [j], j) tel que jb > kt (j est juste
au dessus de k).
Positionner V [k] à vk + V [j].

Sinon I[i] est la position droite de k :
Rechercher le dernier triplet (jb, V [j], j) de L tq jb ≥ kb
si V [k] > V [j]

Ajouter (kb, V (k), k) dans L

Retirer de L les triplets j ′ tq j ′b ≤ kb et V [k] > V [j ′] (rectangles plus
bas avec un score plus faible).

Algorithmique du texte 2007-2008 58 / 89

Algorithmique du texte Chainage

Chaînage 2D: Algorithme

L est vide, pour chaque position i de I:
Si I[i] est la position gauche du rectangle k :

Trouver dans L le dernier triplet (jb, V [j], j) tel que jb > kt (j est juste
au dessus de k).
Positionner V [k] à vk + V [j].

Sinon I[i] est la position droite de k :
Rechercher le dernier triplet (jb, V [j], j) de L tq jb ≥ kb
si V [k] > V [j]

Ajouter (kb, V (k), k) dans L

Retirer de L les triplets j ′ tq j ′b ≤ kb et V [k] > V [j ′] (rectangles plus
bas avec un score plus faible).

Algorithmique du texte 2007-2008 58 / 89

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 2 1 3 3 4
1g 1

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3

L:

Algorithmique du texte 2007-2008 59 / 89

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3

L:

Algorithmique du texte 2007-2008 59 / 89

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2

L:

Algorithmique du texte 2007-2008 59 / 89

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2

L:

Algorithmique du texte 2007-2008 59 / 89

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2 4

L:

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2 4

L:

Algorithmique du texte 2007-2008 59 / 89

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2 4

L: (2,2,1)

Algorithmique du texte 2007-2008 59 / 89

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2 4

L: (2,2,1)

Algorithmique du texte 2007-2008 59 / 89

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2 4

L: (2,2,1) (2>1)

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2 4 3= 1+2

L: (2,2,1)

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2 4 3

L: (2,2,1) (1,4,2)

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2 4 3

L: (2,2,1) (1,4,2)

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2 4 3

L: (2,2,1) (1,4,2)

Algorithmique du texte 2007-2008 59 / 89

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2 4 3

L: (2,2,1) (1,4,2)

Algorithmique du texte Chainage

Chaînage 2D: Exemple

Trois rectangles: 1:(0,2,2,4,2),
2:(1,3,1,5,4), 3:(3,4,0,1,1)

I:
0 1 2 3 3 4
1g 2g 1d 3g 2d 3d

V :
1 2 3
2 4 3

L: (2,2,1) (1,4,2)

Algorithmique du texte Chainage

Chainage 2D: Complexité

On remarque tout d’abord que les triplets de L sont implicitement triés
selon les scores croissants.

La complexité pour le tri de I est O(nlog(n)).

Pour les 2n positions (gauche/droites), la recherche l’insertion et la
délétion dans L se fait en O(log(n)) (ABR).

La complexité totale est O(nlog(n)).

possibilité d’extension avec des coûts pour les gaps

Algorithmique du texte 2007-2008 60 / 89

Algorithmique du texte Chainage

Chainage 2D: Complexité

On remarque tout d’abord que les triplets de L sont implicitement triés
selon les scores croissants.

La complexité pour le tri de I est O(nlog(n)).

Pour les 2n positions (gauche/droites), la recherche l’insertion et la
délétion dans L se fait en O(log(n)) (ABR).

La complexité totale est O(nlog(n)).

possibilité d’extension avec des coûts pour les gaps

Algorithmique du texte 2007-2008 60 / 89

Algorithmique du texte Chainage

Chainage 2D: Complexité

On remarque tout d’abord que les triplets de L sont implicitement triés
selon les scores croissants.

La complexité pour le tri de I est O(nlog(n)).

Pour les 2n positions (gauche/droites), la recherche l’insertion et la
délétion dans L se fait en O(log(n)) (ABR).

La complexité totale est O(nlog(n)).

possibilité d’extension avec des coûts pour les gaps

Algorithmique du texte 2007-2008 60 / 89

Algorithmique du texte Chainage

Chainage 2D: Complexité

On remarque tout d’abord que les triplets de L sont implicitement triés
selon les scores croissants.

La complexité pour le tri de I est O(nlog(n)).

Pour les 2n positions (gauche/droites), la recherche l’insertion et la
délétion dans L se fait en O(log(n)) (ABR).

La complexité totale est O(nlog(n)).

possibilité d’extension avec des coûts pour les gaps

Algorithmique du texte 2007-2008 60 / 89

Algorithmique du texte Chainage

Chainage 2D: Complexité

On remarque tout d’abord que les triplets de L sont implicitement triés
selon les scores croissants.

La complexité pour le tri de I est O(nlog(n)).

Pour les 2n positions (gauche/droites), la recherche l’insertion et la
délétion dans L se fait en O(log(n)) (ABR).

La complexité totale est O(nlog(n)).

possibilité d’extension avec des coûts pour les gaps

Algorithmique du texte 2007-2008 60 / 89

Index À propos des index

Plan

1 Preambule
Généralités
Trouver du sens (information)

2 Algorithmique du texte
Plusieurs solutions
Algorithmes

3 Index
À propos des index
Arbre des suffixes
Tableau des suffixes
Conclusion sur les index

Algorithmique du texte 2007-2008 61 / 89

Index À propos des index

Le concept d’index

Soit une donnée D de grande taille

Nous cherchons des parties de S qui sont égale à certains motifs
(pas encore connus).

Sans pré-traitement sur D, chaque recherche demandera à
parcourir D entièrement.

⇒ Idée: pré-traiter D pour que chaque requête aille plus vite.

⇒ Construire une structure de donnée que l’on appelle un index
de D.

Algorithmique du texte 2007-2008 62 / 89

Index À propos des index

Le concept d’index

Soit une donnée D de grande taille

Nous cherchons des parties de S qui sont égale à certains motifs
(pas encore connus).

Sans pré-traitement sur D, chaque recherche demandera à
parcourir D entièrement.

⇒ Idée: pré-traiter D pour que chaque requête aille plus vite.

⇒ Construire une structure de donnée que l’on appelle un index
de D.

Algorithmique du texte 2007-2008 62 / 89

Index À propos des index

Le concept d’index

Soit une donnée D de grande taille

Nous cherchons des parties de S qui sont égale à certains motifs
(pas encore connus).

Sans pré-traitement sur D, chaque recherche demandera à
parcourir D entièrement.

⇒ Idée: pré-traiter D pour que chaque requête aille plus vite.

⇒ Construire une structure de donnée que l’on appelle un index
de D.

Algorithmique du texte 2007-2008 62 / 89

Index À propos des index

Le concept d’index

Soit une donnée D de grande taille

Nous cherchons des parties de S qui sont égale à certains motifs
(pas encore connus).

Sans pré-traitement sur D, chaque recherche demandera à
parcourir D entièrement.

⇒ Idée: pré-traiter D pour que chaque requête aille plus vite.

⇒ Construire une structure de donnée que l’on appelle un index
de D.

Algorithmique du texte 2007-2008 62 / 89

Index À propos des index

Le concept d’index

Soit une donnée D de grande taille

Nous cherchons des parties de S qui sont égale à certains motifs
(pas encore connus).

Sans pré-traitement sur D, chaque recherche demandera à
parcourir D entièrement.

⇒ Idée: pré-traiter D pour que chaque requête aille plus vite.

⇒ Construire une structure de donnée que l’on appelle un index
de D.

Algorithmique du texte 2007-2008 62 / 89

Index À propos des index

Regroupement des données

Extraire de D toutes les parties possibles.

Ordonner ces éléments de telle façon que chaque requête prend
un temps proportionnel à la taille de celle-ci ⇒ construire un index

Compresser l’index afin d’éliminer la redondance.

Algorithmique du texte 2007-2008 63 / 89

Index À propos des index

Regroupement des données

Extraire de D toutes les parties possibles.

Ordonner ces éléments de telle façon que chaque requête prend
un temps proportionnel à la taille de celle-ci ⇒ construire un index

Compresser l’index afin d’éliminer la redondance.

Algorithmique du texte 2007-2008 63 / 89

Index À propos des index

Regroupement des données

Extraire de D toutes les parties possibles.

Ordonner ces éléments de telle façon que chaque requête prend
un temps proportionnel à la taille de celle-ci ⇒ construire un index

Compresser l’index afin d’éliminer la redondance.

Algorithmique du texte 2007-2008 63 / 89

Index Arbre des suffixes

Plan

Index Arbre des suffixes

L’arbre des suffixes

T est un large texte

Nous allons chercher des facteurs dans T

On extrait de T tous les facteurs possibles

On indexe ces facteurs dans un arbre digital (lexical)

Algorithmique du texte 2007-2008 65 / 89

Index Arbre des suffixes

Arbre digital

Arbre digital du mot ”lisboa”

b

l

Algorithmique du texte 2007-2008 66 / 89

Index Arbre des suffixes

Arbre digital

Arbre digital du mot ”lisboa”

b

l

b

i

Algorithmique du texte 2007-2008 66 / 89

Index Arbre des suffixes

Arbre digital

Arbre digital du mot ”lisboa”

b

l

b

i

b

s

b

b

b

o

b

a

Algorithmique du texte 2007-2008 66 / 89

Index Arbre des suffixes

Arbre digital

Arbre digital des mots ”lisboa” and ”listen”

b

l

b

i

b

s

b

b

b

o

b

a

b

t

b

e

b

n

Algorithmique du texte 2007-2008 66 / 89

Index Arbre des suffixes

Arbre digital

Arbre digital des mots ”lisboa”, ”listen” and ”late”

b

l

b

a

b

t

b

e

b

i

b

s

b

b

b

o

b

a

b

t

b

e

b

n

Algorithmique du texte 2007-2008 66 / 89

Index Arbre des suffixes

Arbre digital des facteurs

Pour le mot ”cacao” tous les facteurs possibles sont
{c, a, c, a, o, ca, . . . , cacao}.

On retire les doublons {c, a, o}, {ca, ac, ao}, {cac, aca, cao},
{caca, acao},{cacao}

Inserons les dans un arbre digital

Algorithmique du texte 2007-2008 67 / 89

Index Arbre des suffixes

Arbre digital des facteurs

Pour le mot ”cacao” tous les facteurs possibles sont
{c, a, c, a, o, ca, . . . , cacao}.

On retire les doublons {c, a, o}, {ca, ac, ao}, {cac, aca, cao},
{caca, acao},{cacao}

Inserons les dans un arbre digital

Algorithmique du texte 2007-2008 67 / 89

Index Arbre des suffixes

Arbre digital des facteurs

Pour le mot ”cacao” tous les facteurs possibles sont
{c, a, c, a, o, ca, . . . , cacao}.

On retire les doublons {c, a, o}, {ca, ac, ao}, {cac, aca, cao},
{caca, acao},{cacao}

Inserons les dans un arbre digital

Algorithmique du texte 2007-2008 67 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao},{cacao}.

a c o

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao},{cacao}.

a

c o

c

a

o

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao},{cacao}.

a

c

a

o

c

a

c o

o

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao},{cacao}.

a

c

a

o

o

c

a

c

a

o

o

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao}, {cacao}.

a

c

a

o

o

c

a

c

a

o

o

o

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao}, {cacao}.

a

c

a

o

o

c

a

c

a

o

o

o
Regardons les mots eppelés depuis la
racine vers les feuilles:

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao}, {cacao}.

a

c

a

o

o

c

a

c

a

o

o

o
Regardons les mots eppelés depuis la
racine vers les feuilles:

cacao

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao}, {cacao}.

a

c

a

o

o

c

a

c

a

o

o

o
Regardons les mots eppelés depuis la
racine vers les feuilles:

cacao

acao

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao}, {cacao}.

a

c

a

o

o

c

a

c

a

o

o

o
Regardons les mots eppelés depuis la
racine vers les feuilles:

cacao

acao

cao

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao}, {cacao}.

a

c

a

o

o

c

a

c

a

o

o

o
Regardons les mots eppelés depuis la
racine vers les feuilles:

cacao

acao

cao

ao

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao}, {cacao}.

a

c

a

o

o

c

a

c

a

o

o

o
Regardons les mots eppelés depuis la
racine vers les feuilles:

cacao

acao

cao

ao

o

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao}, {cacao}.

a

c

a

o

o

c

a

c

a

o

o

o
Regardons les mots eppelés depuis la
racine vers les feuilles:

cacao

acao

cao

ao

o

⇒ Nous avons indexer tous les suffixes
de ”cacao”.

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao}, {cacao}.

a

c

a

o

o

c

a

c

a

o

o

o
Regardons les mots eppelés depuis la
racine vers les feuilles:

cacao

acao

cao

ao

o

⇒ Nous avons indexer tous les suffixes
de ”cacao”.
(Tous les facteurs sont prefixes d’un
suffixe)

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Arbre digital des facteurs

{c, a, o}, {ca, ac, ao}, {cac, aca, cao}, {caca, acao}, {cacao}.

a

c

a

o

o

c

a

c

a

o

o

o Complexité
Quelle est la complexité en espace dans
le pire des cas ?

Quel est le temps necessaire à la
construction de l’arbre ?

Quelle est la complexité pour savoir si un
mot est présent dans le texte?

Quelle est la complexité pour énumérer
toutes les occurences d’un mot dans le
texte?

Algorithmique du texte 2007-2008 68 / 89

Index Arbre des suffixes

Complexité de l’arbre des suffixes

Soit t le texte de taille n sur Σ indexé dans l’arbre des suffixes.

Complexité

Index Arbre des suffixes

Complexité de l’arbre des suffixes

Soit t le texte de taille n sur Σ indexé dans l’arbre des suffixes.

Complexité
Quelle est la complexité en espace dans le

pire des cas?

Quel est le temps
necessaire à la
construction de l’arbre ?

Quel est le temps necessaire à la

construction de l’arbre ?

Quelle est la complexité pour savoir si un mot

est présent dans le texte?

Quelle est la complexité
pour énumérer toutes
les occurences d’un mot
dans le texte?

Complexité de l’arbre des
suffixes

La somme des longueurs des suffixes:
Pi=n

i=1 i = O(n2)

Chaque insertion dans l’arbre
prend un temps proportionnel
à sa longueur → O(n2)

Chaque insertion dans l’arbre prend un temps

proportionnel à sa longueur → O(n2)

Soit m la taille du motif. Le temps requit est O(m).

Dans le pire des cas, nous
devons traverser tous l’arbre
qui contient O(n2) noeuds
⇒ O(m + n2)

Algorithmique du texte 2007-2008 69 / 89

Index Arbre des suffixes

Complexité de l’arbre des suffixes

Soit t le texte de taille n sur Σ indexé dans l’arbre des suffixes.

Complexité
Quelle est la complexité en espace dans le

pire des cas?

Quel est le temps necessaire à la

construction de l’arbre ?

Quelle est la complexité
pour savoir si un mot est
présent dans le texte?

Quelle est la complexité pour savoir si un mot

est présent dans le texte?

Quelle est la complexité
pour énumérer toutes
les occurences d’un mot
dans le texte?

Complexité de l’arbre des
suffixes

La somme des longueurs des suffixes:
Pi=n

i=1 i = O(n2)

Chaque insertion dans l’arbre prend un temps

proportionnel à sa longueur → O(n2)

Soit m la taille du motif. Le
temps requit est O(m).

Soit m la taille du motif. Le temps requit est O(m).

Dans le pire des cas, nous
devons traverser tous l’arbre
qui contient O(n2) noeuds
⇒ O(m + n2)

Algorithmique du texte 2007-2008 69 / 89

Index Arbre des suffixes

Complexité de l’arbre des suffixes

Soit t le texte de taille n sur Σ indexé dans l’arbre des suffixes.

Complexité
Quelle est la complexité en espace dans le

pire des cas?

Quel est le temps necessaire à la

construction de l’arbre ?

Quelle est la complexité pour savoir si un mot

est présent dans le texte?

Quelle est la complexité
pour énumérer toutes
les occurences d’un mot
dans le texte?

Complexité de l’arbre des
suffixes

La somme des longueurs des suffixes:
Pi=n

i=1 i = O(n2)

Chaque insertion dans l’arbre prend un temps

proportionnel à sa longueur → O(n2)

Soit m la taille du motif. Le temps requit est O(m).

Dans le pire des cas, nous
devons traverser tous l’arbre
qui contient O(n2) noeuds
⇒ O(m + n2)

Algorithmique du texte 2007-2008 69 / 89

Index Arbre des suffixes

Compacter l’arbre des suffixes

Idée
Pour réduire le temps pour trouver toutes les occurences d’un motif
dans le texte nous devons réduire le nombre de noeuds dans l’arbre

Solution
Supprimer tous les noeuds n’aillant qu’un fils. Les arcs sont alors
étiquetés sur Σ∗

a
c

a
o

o
c
a

c
a
o

o

o a

cao o

ca

cao o

o

Algorithmique du texte 2007-2008 70 / 89

Index Arbre des suffixes

Compacter l’arbre des suffixes

Idée
Pour réduire le temps pour trouver toutes les occurences d’un motif
dans le texte nous devons réduire le nombre de noeuds dans l’arbre

Solution
Supprimer tous les noeuds n’aillant qu’un fils. Les arcs sont alors
étiquetés sur Σ∗

a
c

a
o

o
c
a

c
a
o

o

o a

cao o

ca

cao o

o

Algorithmique du texte 2007-2008 70 / 89

Index Arbre des suffixes

Compacter l’arbre des suffixes

Idée
Pour réduire le temps pour trouver toutes les occurences d’un motif
dans le texte nous devons réduire le nombre de noeuds dans l’arbre

Solution
Supprimer tous les noeuds n’aillant qu’un fils. Les arcs sont alors
étiquetés sur Σ∗

a
c

a
o

o
c
a

c
a
o

o

o a

cao o

ca

cao o

o

Algorithmique du texte 2007-2008 70 / 89

Index Arbre des suffixes

Arbre compact des suffixes

Complexité en espace
L’arbre ne comporte par plus de n feuilles. Dans le pire des cas
chaque noeud interne est de degré 2.
⇒ Il y a au plus 2n noeuds dans l’arbre
⇒ Trouver toutes les occurences d’un motif de taille m prend un temps
proportionnel au nombre d’occurence L de ce motif: O(m + L)
(O(m + n) dans le pire des cas)
Les étiquettes des arcs sont sur Σ∗

⇒ La complexité en espace est toujours O(n2)

Idée
Si l’on veut que l’espace occupé soit linéaire en la taille du texte, il faut
que les étiquettes occupent un espace constant.

Algorithmique du texte 2007-2008 71 / 89

Index Arbre des suffixes

Arbre compact des suffixes

Complexité en espace
L’arbre ne comporte par plus de n feuilles. Dans le pire des cas
chaque noeud interne est de degré 2.
⇒ Il y a au plus 2n noeuds dans l’arbre
⇒ Trouver toutes les occurences d’un motif de taille m prend un temps
proportionnel au nombre d’occurence L de ce motif: O(m + L)
(O(m + n) dans le pire des cas)
Les étiquettes des arcs sont sur Σ∗

⇒ La complexité en espace est toujours O(n2)

Idée
Si l’on veut que l’espace occupé soit linéaire en la taille du texte, il faut
que les étiquettes occupent un espace constant.

Algorithmique du texte 2007-2008 71 / 89

Index Arbre des suffixes

Arbre compact des suffixes

Complexité en espace
L’arbre ne comporte par plus de n feuilles. Dans le pire des cas
chaque noeud interne est de degré 2.
⇒ Il y a au plus 2n noeuds dans l’arbre
⇒ Trouver toutes les occurences d’un motif de taille m prend un temps
proportionnel au nombre d’occurence L de ce motif: O(m + L)
(O(m + n) dans le pire des cas)
Les étiquettes des arcs sont sur Σ∗

⇒ La complexité en espace est toujours O(n2)

Idée
Si l’on veut que l’espace occupé soit linéaire en la taille du texte, il faut
que les étiquettes occupent un espace constant.

Algorithmique du texte 2007-2008 71 / 89

Index Arbre des suffixes

Arbre compact des suffixes

Complexité en espace
L’arbre ne comporte par plus de n feuilles. Dans le pire des cas
chaque noeud interne est de degré 2.
⇒ Il y a au plus 2n noeuds dans l’arbre
⇒ Trouver toutes les occurences d’un motif de taille m prend un temps
proportionnel au nombre d’occurence L de ce motif: O(m + L)
(O(m + n) dans le pire des cas)
Les étiquettes des arcs sont sur Σ∗

⇒ La complexité en espace est toujours O(n2)

Idée
Si l’on veut que l’espace occupé soit linéaire en la taille du texte, il faut
que les étiquettes occupent un espace constant.

Algorithmique du texte 2007-2008 71 / 89

Index Arbre des suffixes

Arbre compact des suffixes

Complexité en espace
L’arbre ne comporte par plus de n feuilles. Dans le pire des cas
chaque noeud interne est de degré 2.
⇒ Il y a au plus 2n noeuds dans l’arbre
⇒ Trouver toutes les occurences d’un motif de taille m prend un temps
proportionnel au nombre d’occurence L de ce motif: O(m + L)
(O(m + n) dans le pire des cas)
Les étiquettes des arcs sont sur Σ∗

⇒ La complexité en espace est toujours O(n2)

Idée
Si l’on veut que l’espace occupé soit linéaire en la taille du texte, il faut
que les étiquettes occupent un espace constant.

Algorithmique du texte 2007-2008 71 / 89

Index Arbre des suffixes

Arbre compact des suffixes

Complexité en espace
L’arbre ne comporte par plus de n feuilles. Dans le pire des cas
chaque noeud interne est de degré 2.
⇒ Il y a au plus 2n noeuds dans l’arbre
⇒ Trouver toutes les occurences d’un motif de taille m prend un temps
proportionnel au nombre d’occurence L de ce motif: O(m + L)
(O(m + n) dans le pire des cas)
Les étiquettes des arcs sont sur Σ∗

⇒ La complexité en espace est toujours O(n2)

Idée
Si l’on veut que l’espace occupé soit linéaire en la taille du texte, il faut
que les étiquettes occupent un espace constant.

Algorithmique du texte 2007-2008 71 / 89

Index Arbre des suffixes

L’arbre des suffixes

c a c a o
0 1 2 3 4

a

cc
a

Index Arbre des suffixes

L’arbre des suffixes

c a c a o
0 1 2 3 4

a

cao o

ca

cao o

o (1,1)

(2,4) (4,4)

(0,1)

(2,4)
(4,4)

(4,4)

Algorithmique du texte 2007-2008 72 / 89

Index Arbre des suffixes

L’arbre des suffixes

”cacao”

(1,1)

(2,4) (4,4)

(0,1)

(2,4)
(4,4)

(4,4)

L’arbre implicite des suffixes
Soit t un texte de taille n sur Σ.
L’arbre des suffixes S de t est un arbre
dont les étiquettes sont sur Σ∗.
Chaque mot eppelé depuis la racine vers
une feuille est un suffixe de t .
Tous les noeuds internes ont un degré
≥ 2 et les étiquettes des arcs sortant
débutent avec un caractère différent.
Si la dernière lettre de t apparait ailleur
dans t alors S est appelé arbre implicite
des suffixes.

Algorithmique du texte 2007-2008 73 / 89

Index Arbre des suffixes

L’arbre des suffixes

”cacao”

(1,1)

(2,4) (4,4)

(0,1)

(2,4)
(4,4)

(4,4)

L’arbre implicite des suffixes

Index Arbre des suffixes

L’arbre des suffixes

”cacao”

(1,1)

(2,4) (4,4)

(0,1)

(2,4)
(4,4)

(4,4)

L’arbre implicite des suffixes

Index Arbre des suffixes

L’arbre des suffixes

”cacao”

(1,1)

(2,4) (4,4)

(0,1)

(2,4)
(4,4)

(4,4)

L’arbre implicite des suffixes

Index Arbre des suffixes

L’arbre des suffixes

”cacao”

(1,1)

(2,4) (4,4)

(0,1)

(2,4)
(4,4)

(4,4)

L’arbre implicite des suffixes
Soit t un texte de taille n sur Σ.
L’arbre des suffixes S de t est un arbre
dont les étiquettes sont sur Σ∗.
Chaque mot eppelé depuis la racine vers
une feuille est un suffixe de t .
Tous les noeuds internes ont un degré
≥ 2 et les étiquettes des arcs sortant
débutent avec un caractère différent.
Si la dernière lettre de t apparait ailleur
dans t alors S est appelé arbre implicite
des suffixes.

Algorithmique du texte 2007-2008 73 / 89

Index Arbre des suffixes

Exercice

Construire l’arbre des suffixes de “london”

Construire l’arbre des suffixes de “london$”

Algorithmique du texte 2007-2008 74 / 89

Index Arbre des suffixes

Algorithmes de construction

Il existe trois algorithmes qui construisent l’arbre des suffixes en un
temps lineaire en la taille du text:

Weiner (73)

Mc Creight (76)

Ukkonen (95), online

Algorithmique du texte 2007-2008 75 / 89

Index Arbre des suffixes

Algorithmes de construction

Il existe trois algorithmes qui construisent l’arbre des suffixes en un
temps lineaire en la taille du text:

Weiner (73)

Mc Creight (76)

Ukkonen (95), online

Algorithmique du texte 2007-2008 75 / 89

Index Arbre des suffixes

Ukkonen

La construction se compose de n phases. Chaque phase i de 0 à
n − 1 consiste en l’insertion de tous les suffixes de t0...i dans l’arbre.

phase i i
text t t0 t1 . . . ti . . . tn−1

étape

t0 t1 . . . ti
t1 . . . ti

. . .
...
ti

⇒ Cet algorithme construit l’arbre car à la fin tout les suffixes de t sont
inserés!
⇒ Quelle est la complexité en temps?

∑n−1
i=0

∑j=i
j=0 j → O(n3)

Algorithmique du texte 2007-2008 76 / 89

Index Arbre des suffixes

Ukkonen

La construction se compose de n phases. Chaque phase i de 0 à
n − 1 consiste en l’insertion de tous les suffixes de t0...i dans l’arbre.

phase i i
text t t0 t1 . . . ti . . . tn−1

étape

t0 t1 . . . ti
t1 . . . ti

. . .
...
ti

⇒ Cet algorithme construit l’arbre car à la fin tout les suffixes de t sont
inserés!
⇒ Quelle est la complexité en temps?

∑n−1
i=0

∑j=i
j=0 j → O(n3)

Algorithmique du texte 2007-2008 76 / 89

Index Arbre des suffixes

Ukkonen

La construction se compose de n phases. Chaque phase i de 0 à
n − 1 consiste en l’insertion de tous les suffixes de t0...i dans l’arbre.

phase i i
text t t0 t1 . . . ti . . . tn−1

étape

t0 t1 . . . ti
t1 . . . ti

. . .
...
ti

⇒ Cet algorithme construit l’arbre car à la fin tout les suffixes de t sont
inserés!
⇒ Quelle est la complexité en temps?

∑n−1
i=0

∑j=i
j=0 j → O(n3)

Algorithmique du texte 2007-2008 76 / 89

Index Arbre des suffixes

Ukkonen

La construction se compose de n phases. Chaque phase i de 0 à
n − 1 consiste en l’insertion de tous les suffixes de t0...i dans l’arbre.

phase i i
text t t0 t1 . . . ti . . . tn−1

étape

t0 t1 . . . ti
t1 . . . ti

. . .
...
ti

⇒ Cet algorithme construit l’arbre car à la fin tout les suffixes de t sont
inserés!
⇒ Quelle est la complexité en temps?

∑n−1
i=0

∑j=i
j=0 j → O(n3)

Algorithmique du texte 2007-2008 76 / 89

Index Arbre des suffixes

3 cas lors de l’insertion

”cacao”

a

cao o

ca

cao o

o

Insertion d’un mot dans l’arbre
On insert w = vu, v est le plus long
prefixe déjà présent dans l’arbre:

u est vide ⇒ rien à faire

v mène à une feuille ⇒ extension
création de noeud:

v mène à un noeud
v mène à un arc

Exemples

Algorithmique du texte 2007-2008 77 / 89

Index Arbre des suffixes

3 cas lors de l’insertion

”cacao”

a

cao o

ca

cao o

o

Insertion d’un mot dans l’arbre
On insert w = vu, v est le plus long
prefixe déjà présent dans l’arbre:

u est vide ⇒ rien à faire

v mène à une feuille ⇒ extension
création de noeud:

v mène à un noeud
v mène à un arc

Exemples
w = cac, v = cac, u = ǫ

Algorithmique du texte 2007-2008 77 / 89

Index Arbre des suffixes

3 cas lors de l’insertion

”cacao”

a

cao o

ca

cao o

on

Insertion d’un mot dans l’arbre
On insert w = vu, v est le plus long
prefixe déjà présent dans l’arbre:

u est vide ⇒ rien à faire

v mène à une feuille ⇒ extension
création de noeud:

v mène à un noeud
v mène à un arc

Exemples
v = on, v = o, u = n

Algorithmique du texte 2007-2008 77 / 89

Index Arbre des suffixes

3 cas lors de l’insertion

”cacao”

a

cao o r

ca

cao o

o

Insertion d’un mot dans l’arbre
On insert w = vu, v est le plus long
prefixe déjà présent dans l’arbre:

u est vide ⇒ rien à faire

v mène à une feuille ⇒ extension
création de noeud:

v mène à un noeud
v mène à un arc

Exemples
v = ar , v = a, u = r

Algorithmique du texte 2007-2008 77 / 89

Index Arbre des suffixes

3 cas lors de l’insertion

”cacao”

a

c

ao t

o

ca

cao o

o

Insertion d’un mot dans l’arbre
On insert w = vu, v est le plus long
prefixe déjà présent dans l’arbre:

u est vide ⇒ rien à faire

v mène à une feuille ⇒ extension
création de noeud:

v mène à un noeud
v mène à un arc

Exemples
v = act , v = ac, u = t

Algorithmique du texte 2007-2008 77 / 89

Index Arbre des suffixes

Les liens suffixes

”cacao”

a

cao o

ca

cao o

o

Lien suffixes
Liens entre les noeuds de l’arbre:
on note sl(a) le lien suffixe de a
on note p(a) le mot eppelé depuis la
racine à a
p(sl(a)) = p(a)1...

Exemple:

p(a) = ca, p(sl(a)) = a

p(a) = acao, p(sl(a)) = cao

Algorithmique du texte 2007-2008 78 / 89

Index Arbre des suffixes

Les liens suffixes

”cacao”

a

cao o

ca

cao o

o

Lien suffixes
Liens entre les noeuds de l’arbre:
on note sl(a) le lien suffixe de a
on note p(a) le mot eppelé depuis la
racine à a
p(sl(a)) = p(a)1...

Exemple:

p(a) = ca, p(sl(a)) = a

p(a) = acao, p(sl(a)) = cao

Algorithmique du texte 2007-2008 78 / 89

Index Arbre des suffixes

Les liens suffixes

”cacao”

a

cao o

ca

cao o

o

Lien suffixes
Liens entre les noeuds de l’arbre:
on note sl(a) le lien suffixe de a
on note p(a) le mot eppelé depuis la
racine à a
p(sl(a)) = p(a)1...

Exemple:

p(a) = ca, p(sl(a)) = a

p(a) = acao, p(sl(a)) = cao

Algorithmique du texte 2007-2008 78 / 89

Index Arbre des suffixes

Les liens suffixes

”cacao”

a

cao o

ca

cao o

o

Lien suffixes
Liens entre les noeuds de l’arbre:
on note sl(a) le lien suffixe de a
on note p(a) le mot eppelé depuis la
racine à a
p(sl(a)) = p(a)1...

Exemple:

p(a) = ca, p(sl(a)) = a

p(a) = acao, p(sl(a)) = cao

Algorithmique du texte 2007-2008 78 / 89

Index Arbre des suffixes

Insertion rapide

”panamanians$”

a

na
in

am n

na
in

am
a

ian

na
i

na
in

am n

na
in

am
a

ian

panamanian

Insertion rapide
Nous avons l’arbre de
”panamanian”

Insertion des suffixes de
”panamanians”

on ajoute ”panamanians” et
”anamanians”

insertion rapide de
”namanians” (saut)

L’insertion prend un temps
proportionnel au nombre de
noeuds traversés.

Algorithmique du texte 2007-2008 79 / 89

Index Arbre des suffixes

Insertion rapide

”panamanians$”

a

na
in

am n

sn
ai

na
m

a

ian

na
i

na
in

am n

na
in

am
a

ian

panamanians

Insertion rapide
Nous avons l’arbre de
”panamanian”

Insertion des suffixes de
”panamanians”

on ajoute ”panamanians” et
”anamanians”

insertion rapide de
”namanians” (saut)

L’insertion prend un temps
proportionnel au nombre de
noeuds traversés.

Algorithmique du texte 2007-2008 79 / 89

Index Arbre des suffixes

Insertion rapide

”panamanians$”

a

na
in

am n

sn
ai

na
m

a

ian

na
i

na
in

am n

na
in

am
a

ian

panamanians

Insertion rapide
Nous avons l’arbre de
”panamanian”

Insertion des suffixes de
”panamanians”

on ajoute ”panamanians” et
”anamanians”

insertion rapide de
”namanians” (saut)

L’insertion prend un temps
proportionnel au nombre de
noeuds traversés.

Algorithmique du texte 2007-2008 79 / 89

Index Arbre des suffixes

Insertion rapide

”panamanians$”

a

na
in

am n

sn
ai

na
m

a

ian

na
i

na
in

am n

na
in

am
a

ian

panamanians

Insertion rapide
Nous avons l’arbre de
”panamanian”

Insertion des suffixes de
”panamanians”

on ajoute ”panamanians” et
”anamanians”

insertion rapide de
”namanians” (saut)

L’insertion prend un temps
proportionnel au nombre de
noeuds traversés.

Algorithmique du texte 2007-2008 79 / 89

Index Arbre des suffixes

Insertion rapide

”panamanians$”

a

na
in

am n

sn
ai

na
m

a

ian

na
i

na
in

am n

na
in

am
a

ian

panamanians

Insertion rapide
Nous avons l’arbre de
”panamanian”

Insertion des suffixes de
”panamanians”

on ajoute ”panamanians” et
”anamanians”

insertion rapide de
”namanians” (saut)

L’insertion prend un temps
proportionnel au nombre de
noeuds traversés.

Algorithmique du texte 2007-2008 79 / 89

Index Arbre des suffixes

Insertion rapide

”panamanians$”

a

na
in

am n

sn
ai

na
m

a

ian

na
i

na
in

am n

sn
ai

na
m

a

ian

panamanians

Insertion rapide
Nous avons l’arbre de
”panamanian”

Insertion des suffixes de
”panamanians”

on ajoute ”panamanians” et
”anamanians”

insertion rapide de
”namanians” (saut)

L’insertion prend un temps
proportionnel au nombre de
noeuds traversés.

Algorithmique du texte 2007-2008 79 / 89

Index Arbre des suffixes

Insertion rapide

”panamanians$”

a

na
in

am n

sn
ai

na
m

a

ian

na
i

na
in

am n

sn
ai

na
m

a

ian

panamanians

Insertion rapide
Nous avons l’arbre de
”panamanian”

Insertion des suffixes de
”panamanians”

on ajoute ”panamanians” et
”anamanians”

insertion rapide de
”namanians” (saut)

L’insertion prend un temps
proportionnel au nombre de
noeuds traversés.

Algorithmique du texte 2007-2008 79 / 89

Index Arbre des suffixes

Extension automatique

a c a d e m y
0 1 2 3 4 5 6

i-1

aca ca

Extension automatique

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a d e m y
0 1 2 3 4 5 6

i

acad ca

Extension automatique

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a d e m y
0 1 2 3 4 5 6

i

acad cad

Extension automatique

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a d e m y
0 1 2 3 4 5 6

j i

a

cad d

cad

Extension automatique

À la phase i , étape j on a
inséré tj ...i et créé une feuille.

En phase i + 1, l’insertion de
tj ...i+1 mène à . . .

une extension

l’indice de fin passe de i à i +1

⇒ l’indice de fin est égale à
l’indice de la phase en court

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a d e m y
0 1 2 3 4 5 6

j i

a

cad d

cad d

Extension automatique

À la phase i , étape j on a
inséré tj ...i et créé une feuille.

En phase i + 1, l’insertion de
tj ...i+1 mène à . . .

une extension

l’indice de fin passe de i à i +1

⇒ l’indice de fin est égale à
l’indice de la phase en court

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a d e m y
0 1 2 3 4 5 6

j i i+1

a

cade d

cad d

Extension automatique

À la phase i , étape j on a
inséré tj ...i et créé une feuille.

En phase i + 1, l’insertion de
tj ...i+1 mène à . . .

une extension

l’indice de fin passe de i à i +1

⇒ l’indice de fin est égale à
l’indice de la phase en court

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a d e m y
0 1 2 3 4 5 6

j i i+1

a

cade d

cade d

Extension automatique

À la phase i , étape j on a
inséré tj ...i et créé une feuille.

En phase i + 1, l’insertion de
tj ...i+1 mène à . . .

une extension

l’indice de fin passe de i à i +1

⇒ l’indice de fin est égale à
l’indice de la phase en court

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a d e m y
0 1 2 3 4 5 6

j i i+1

a

cad de

cade d

Extension automatique

À la phase i , étape j on a
inséré tj ...i et créé une feuille.

En phase i + 1, l’insertion de
tj ...i+1 mène à . . .

une extension

l’indice de fin passe de i à i +1

⇒ l’indice de fin est égale à
l’indice de la phase en court

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a d e m y
0 1 2 3 4 5 6

j i i+1

a

cad de (3, 3) → (3, 4)

cade d

Extension automatique

À la phase i , étape j on a
inséré tj ...i et créé une feuille.

En phase i + 1, l’insertion de
tj ...i+1 mène à . . .

une extension

l’indice de fin passe de i à i +1

⇒ l’indice de fin est égale à
l’indice de la phase en court

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a d e m y
0 1 2 3 4 5 6

j i i+1

a

cad de (3, 3) → (3, 4)

cade

de
(3, 3)
→ (3, 4)

Extension automatique

À la phase i , étape j on a
inséré tj ...i et créé une feuille.

En phase i + 1, l’insertion de
tj ...i+1 mène à . . .

une extension

l’indice de fin passe de i à i +1

⇒ l’indice de fin est égale à
l’indice de la phase en court

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a d e m y
0 1 2 3 4 5 6

j i i+1

a

cad de (3, 3) → (3, 4)

cade

de
(3, 3)
→ (3, 4)

Extension automatique

À la phase i , étape j on a
inséré tj ...i et créé une feuille.

En phase i + 1, l’insertion de
tj ...i+1 mène à . . .

une extension

l’indice de fin passe de i à i +1

⇒ l’indice de fin est égale à
l’indice de la phase en court

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a a e
0 1 2 3 4

j i

a

caa a

caa

Extension automatique
Phase i :

Si tj ...i créé une feuille

∀k < j , tk ...i mène à une feuille

Suppose tj+1...i ne crée pas de
feuille

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a a e
0 1 2 3 4

k j i

a

caa a

caa

Extension automatique
Phase i :

Si tj ...i créé une feuille

∀k < j , tk ...i mène à une feuille

Suppose tj+1...i ne crée pas de
feuille

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a a e
0 1 2 3 4

j i

a

caa a

caa

Extension automatique
Phase i :

Si tj ...i créé une feuille

∀k < j , tk ...i mène à une feuille

Suppose tj+1...i ne crée pas de
feuille

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a a e
0 1 2 3 4

j i

a
0, 0

caa
1, 3

a
3, 3

caa
1, 3

Extension automatique
Phase i :

Si tj ...i créé une feuille

∀k < j , tk ...i mène à une feuille

Suppose tj+1...i ne crée pas de
feuille

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a a e
0 1 2 3 4

j i+1

a
0, 0

caae
1, 4

ae
3, 4

caae
1, 4

Extension automatique
Phase i :

Si tj ...i créé une feuille

∀k < j , tk ...i mène à une feuille

Suppose tj+1...i ne crée pas de
feuille

Phase i + 1:

∀k ≤ j , tk ...i+1 déjà insérés

Reprise à tj+1...i+1

insertion rapide depuis la
dernière feuille

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a a e
0 1 2 3 4

k i+1

a
0, 0

caae
1, 4

ae
3, 4

caae
1, 4

Extension automatique
Phase i :

Si tj ...i créé une feuille

∀k < j , tk ...i mène à une feuille

Suppose tj+1...i ne crée pas de
feuille

Phase i + 1:

∀k ≤ j , tk ...i+1 déjà insérés

Reprise à tj+1...i+1

insertion rapide depuis la
dernière feuille

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a a e
0 1 2 3 4

. . . . j+1 i+1

a
0, 0

caae
1, 4

ae
3, 4

e
4, 4

caae
1, 4

Extension automatique
Phase i :

Si tj ...i créé une feuille

∀k < j , tk ...i mène à une feuille

Suppose tj+1...i ne crée pas de
feuille

Phase i + 1:

∀k ≤ j , tk ...i+1 déjà insérés

Reprise à tj+1...i+1

insertion rapide depuis la
dernière feuille

Algorithmique du texte 2007-2008 80 / 89

Index Arbre des suffixes

Extension automatique

a c a a e
0 1 2 3 4

. . . . j+1 i+1

a
0, 0

caae
1, 4

ae
3, 4

e
4, 4

caae
1, 4

Extension automatique

Index Arbre des suffixes

Extension automatique

a c a a e
0 1 2 3 4

. . . . j+1 i+1

a
0, 0

caae
1, 4

ae
3, 4

e
4, 4

caae
1, 4

Extension automatique
Phase i :

Si tj ...i créé une feuille

∀k < j , tk

Index Arbre des suffixes

Extension automatique

a c a a e
0 1 2 3 4

. . . . j+1 i+1

a
0, 0

caae
1, 4

ae
3, 4

e
4, 4

caae
1, 4

Index Arbre des suffixes

Exemple complet

text: w i n i n g $
phase:
step:

Algorithmique du texte 2007-2008 81 / 89

Index Arbre des suffixes

Exemple complet

text: w i n i n g
phase: i
step: j

w

Algorithmique du texte 2007-2008 81 / 89

Index Arbre des suffixes

Exemple complet

text: w i n i n g
phase: i
step: j

i wi

Algorithmique du texte 2007-2008 81 / 89

Index Arbre des suffixes

Exemple complet

text: w i n i n g
phase: i
step: j

in n win

Algorithmique du texte 2007-2008 81 / 89

Index Arbre des suffixes

Exemple complet

text: w i n i n g
phase: i
step: j

ini ni wini

Algorithmique du texte 2007-2008 81 / 89

Index Arbre des suffixes

Exemple complet

text: w i n i n g
phase: i
step: j

inin nin winin

Algorithmique du texte 2007-2008 81 / 89

Index Arbre des suffixes

Exemple complet

text: w i n i n g
phase: i
step: j

ining ning wining

Algorithmique du texte 2007-2008 81 / 89

Index Arbre des suffixes

Exemple complet

text: w i n i n g
phase: i
step: j

in

g ing

ning wining

Algorithmique du texte 2007-2008 81 / 89

Index Arbre des suffixes

Exemple complet

text: w i n i n g
phase: i
step: j

in

g ing

n

g ing

wining

Algorithmique du texte 2007-2008 81 / 89

Index Arbre des suffixes

Exemple complet

text: w i n i n g
phase: i
step: j

in

g ing

n

g ing

wining

Algorithmique du texte 2007-2008 81 / 89

Index Arbre des suffixes

Exemple complet

text: w i n i n g
phase: i
step: j

g in

g ing

n

g ing

wining

Algorithmique du texte 2007-2008 81 / 89

Index Arbre des suffixes

Exemple complet

text: w i n i n g x
phase: i
step: j

g in

g ing

n

g ing

wining

Algorithmique du texte 2007-2008 81 / 89

Index Arbre des suffixes

Complexité en temp

Lemme
Soit depth(N) le nombre noeud entre N et la racine.
Pour chaque noeud N de l’arbre des suffixes:

depth(N) ≤ depth(sl(N)) + 1

Algorithmique du texte 2007-2008 82 / 89

Index Arbre des suffixes

Complexité en temp

Lemme
depth(N) ≤ depth(sl(N)) + 1

Complexité
Pour chaque phase, l’extension automatique prend un temps
constant, toutes ces insertions coûtent O(n)

Soit j l’indice de l’insertion explicite. j ne décrémente jamais mais
peut rester inchanger entre deux phases ⇒ O(2 ∗ n) insertions.

insertion: La profondeur en cours dans l’arbre reponte d’au plus 2
et puis redescend.

La profondeur max. est n, ⇒ O(n) noeuds traversés.

Algorithmique du texte 2007-2008 82 / 89

Index Arbre des suffixes

Complexité en temp

Lemme

Index Arbre des suffixes

Complexité en temp

Lemme
depth(N) ≤ depth(sl(N)) + 1

Complexité
Pour chaque phase, l’extension automatique prend un temps
constant, toutes ces insertions coûtent O(n)

Soit j l’indice de l’insertion explicite. j ne décrémente jamais mais
peut rester inchanger entre deux phases ⇒ O(2 ∗ n) insertions.

insertion: La profondeur en cours dans l’arbre reponte d’au plus 2
et puis redescend.

La profondeur max. est n, ⇒ O(n) noeuds traversés.

Algorithmique du texte 2007-2008 82 / 89

Index Arbre des suffixes

Complexité en temp

Lemme
depth(N) ≤ depth(sl(N)) + 1

Complexité
Pour chaque phase, l’extension automatique prend un temps
constant, toutes ces insertions coûtent O(n)

Soit j l’indice de l’insertion explicite. j ne décrémente jamais mais
peut rester inchanger entre deux phases ⇒ O(2 ∗ n) insertions.

insertion: La profondeur en cours dans l’arbre reponte d’au plus 2
et puis redescend.

La profondeur max. est n, ⇒ O(n) noeuds traversés.

Algorithmique du texte 2007-2008 82 / 89

Index Arbre des suffixes

Extension

Generalized suffix tree
Given N sequences s1 . . . sN , the generalized suffix tree of these
sequences correspond to the superposition of the suffix tree of each
sequence.

This tree is built in O(
∑

i |si |) time and its space requierement is also
in O(

∑

i |si |) (|si | is the length of si).

Allow to ask the problem: ”find the longest common word of N
sequences” or ”output all word that occurs in at least q sequences”.

Algorithmique du texte 2007-2008 83 / 89

Index Arbre des suffixes

Extension

Generalized suffix tree
Given N sequences s1 . . . sN , the generalized suffix tree of these
sequences correspond to the superposition of the suffix tree of each
sequence.

This tree is built in O(
∑

i |si |) time and its space requierement is also
in O(

∑

i |si |) (|si | is the length of si).

Allow to ask the problem: ”find the longest common word of N
sequences” or ”output all word that occurs in at least q sequences”.

Algorithmique du texte 2007-2008 83 / 89

Index Arbre des suffixes

Extension

Generalized suffix tree
Given N sequences s1 . . . sN , the generalized suffix tree of these
sequences correspond to the superposition of the suffix tree of each
sequence.

This tree is built in O(
∑

i |si |) time and its space requierement is also
in O(

∑

i |si |) (|si | is the length of si).

Allow to ask the problem: ”find the longest common word of N
sequences” or ”output all word that occurs in at least q sequences”.

Algorithmique du texte 2007-2008 83 / 89

Index Arbre des suffixes

Generalized suffix tree: example

Generalized suffix tree of ”ACCG$”, ”GACA$” and ”CAC$”:

xxx

$

xxx

A

.x.

$

xxx

C

..x

$

.x.

A$

x..

CG$

xxx

C

..x

$

.xx

A

.x.

$

..x

C$

x..

C
G

$

x..

G$

xx.

G

x..

$

.x.

AC
A

$

Algorithmique du texte 2007-2008 84 / 89

Index Arbre des suffixes

Generalized suffix tree: example

Generalized suffix tree of ”ACCG$”, ”GACA$” and ”CAC$”:

xxx

$

xxx

A

.x.

$

xxx

C

..x

$

.x.

A$

x..

CG$

xxx

C

..x

$

.xx

A

.x.

$

..x

C$

x..

C
G

$

x..

G$

xx.

G

x..

$

.x.

AC
A

$

Algorithmique du texte 2007-2008 84 / 89

Index Arbre des suffixes

Generalized suffix tree: example

Generalized suffix tree of ”ACCG$”, ”GACA$” and ”CAC$”:

xxx

$

xxx

A

.x.

$

xxx

C

..x

$

.x.

A$

x..

CG$

xxx

C

..x

$

.xx

A

.x.

$

..x

C$

x..

C
G

$

x..

G$

xx.

G

x..

$

.x.

AC
A

$

Algorithmique du texte 2007-2008 84 / 89

Index Tableau des suffixes

Plan

Index Tableau des suffixes

The Suffix Array

Main idea
Sorting the suffix of a text into alphabetical order. Store this order into
a table.

example

suffix array of ”cacao”
c a c a o
0 1 2 3 4

acao
ao
cacao
cao
o

Algorithmique du texte 2007-2008 86 / 89

Index Tableau des suffixes

The Suffix Array

Main idea
Sorting the suffix of a text into alphabetical order. Store this order into
a table.

example

suffix array of ”cacao”
c a c a o
0 1 2 3 4

0 1 acao
1 3 ao
2 0 cacao
3 2 cao
4 4 o

Algorithmique du texte 2007-2008 86 / 89

Index Tableau des suffixes

The Suffix Array

Main idea
Sorting the suffix of a text into alphabetical order. Store this order into
a table.

example

suffix array of ”cacao”
c a c a o
0 1 2 3 4

0 1 acao
1 3 ao
2 0 cacao
3 2 cao
4 4 o

Algorithmique du texte 2007-2008 86 / 89

Index Tableau des suffixes

The Suffix Array

Main idea
Sorting the suffix of a text into alphabetical order. Store this order into
a table.

example

suffix array of ”cacao”
c a c a o
0 1 2 3 4

0 1 acao
1 3 ao
2 0 cacao
3 2 cao
4 4 o

Question: How to build suffix array
in linear time?

Algorithmique du texte 2007-2008 86 / 89

Index Conclusion sur les index

Plan

1 Preambule
Généralités
Trouver du sens (information)

2 Algorithmique du texte
Plusieurs solutions
Algorithmes

3 Index
À propos des index
Arbre des suffixes
Tableau des suffixes
Conclusion sur les index

Algorithmique du texte 2007-2008 87 / 89

Index Conclusion sur les index

Resume

Algorithmique du texte 2007-2008 88 / 89

Index Conclusion sur les index

The time/memory balance

Algorithmique du texte 2007-2008 89 / 89

	Preambule
	Généralités
	Trouver du sens (information)

	Algorithmique du texte
	Plusieurs solutions
	Algorithmes
	Édition
	Best Fit
	Alignement
	Alignement local
	Plus longue sous-séquence commune
	Gap: fonctions affines
	Matrices d'édition
	Chainage

	Index
	À propos des index
	Arbre des suffixes
	Tableau des suffixes
	Conclusion sur les index

