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Checking Knowledge and evaluation

• Third part of USI-Algo-Prog teaching unit (UE) - approx.
3ECTs

• 1 DS and 1 exam - 1 Test not planned in advance.
• Theorical point of view of programming activities.
• Applications and implementations in Python
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History

Before availability of modern computer machine :
• Coming from works of a mathematician : Al Khwarismi

(780-850).
• Algebraic calculus roots.
• 1834 : Charles Babbage publish the first description of a

programmable machine.
• 1815-1852 : the first informatic program is written by Ada

Lovelace.
• 1934 : Turing machine

(http://zanotti.univ-tln.fr/turing/)

http://zanotti.univ-tln.fr/turing/
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Algorithms

• Donald Knuth, fundation of programmation “The Art of
Computer Programming”.

• Author of TeX and Metafont.
• Algorithm of Knuth-Morris-Pratt (1977): pattern research in

string - used in genome sequence processing.
• New architectures: recursive, parallel or quantum

algorithmics.
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Computer Architecture

• At its core, two components :
1. Central Processing Unit
2. Memory storage

• CPU allows you to read, to write and to modify the memory
space.

• Data are 0 or 1 value - discrete/boolean.
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Algorithm Principles

• An algorithm is step-by-step set of operations, or
instructions, which solve a problem.

• Algorithmics is a set of rules and methods used to define
and to design algorithms.
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Abstract Data Types

• An abstract data type is a data type along with all the
operations which are allowed on the data of this type

• In other words, an abstract type is defined by:
1. a name,
2. some data, i.e. a set of values,
3. a set of functions, named primitives, operating on this

data.
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Stacks and Queues
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Stacks and Queues

Outline :
1. Definitions.
2. Stack primitives and examples.
3. Queue primitives and examples.
4. Implementation of stacks.
5. Implementation of queues.
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Stack Definition

• Stacks and queues are containers where only one object is
accessible at each time.

• Stack
• In a stack, the accessible object is the last inserted one.
• LIFO: last in - first out.
• Example: a stack of plates.

• Queue
• In a queue, the accessible object is the first inserted one.
• FIFO: first in - first out.
• Example: a queue to buy a cinema ticket.
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Primitives of Stack

• Two operations are defined as stack primitives:
• push(P,e) to add an element e in P.
• pop(P) to suppress an element in P.

• Property : if an element f is pushed after an element e
then the element f is accessible before e.
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Stack Implementation

def create_s tack ( ) :
return [ ]

def push ( theStack , element ) :
theStack . append ( element )

def pop ( theStack ) :
return theStack . pop ( )

The primitive pop() takes time : have to go through the whole
list.
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Stack Implementation

To make pop() faster, it is necessary to use the class deque
belonging to the module collections:

import c o l l e c t i o n s

def create_s tack ( ) :
return c o l l e c t i o n s . deque ( )

def push ( theStack , element ) :
theStack . append ( element )

def pop ( theStack ) :
return theStack . pop ( )
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Queue

• A Queue F is a data structures containing elements and
having 2 operations :

• enqueue(F,e) which adds the element e into F ;
• dequeue(F) which suppresses an element from F ;

• Property : if an element f is added after an element e, then
the element e is accessible before f.
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Queue Implementation

def create_queue ( ) :
return [ ]

def enqueue ( theQueue , element ) :
theQueue . append ( element )

def dequeue ( theQueue ) :
return theQueue . pop ( 0 )

The primitive enqueue() takes time : have to go through the
whole list.
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Queue Implementation

• If we want to make things faster, we have to use the
module deque:

import c o l l e c t i o n s

def create_queue ( ) :
return c o l l e c t i o n s . deque ( )

def enqueue ( theQueue , element ) :
theQueue . append ( element )

def dequeue ( theQueue ) :
return theQueue . p o p l e f t ( )
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Recursivity
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Recursivity and everyday-life

Something that repeats itself within itself.
• Art : mise en abyme, fractals :

(a) (b)

Figure

• In computer science : when a function calls itself.
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Call stack

• Call stack:
• The sequence of instructions in a function are stored in a

specific memory place called the call stack.
• The stack is dedicated to a program.
• When a function is called, all the variables, instructions and

return values are pushed in the stack.
• At the end of the function, only the return value is kept on

the stack, all the other elements are popped from the stack.
• The program resumes from the last instruction in the main

program (or function).
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Call stack
Consider the following program :
def g ( a ) ;

pr in t ( " g ( " + st r ( a ) + " ) " )
return 1000

def h ( a ) ;
pr in t ( " h ( " + st r ( a ) + " ) " )
return 2000

def f ( a ) :
pr in t ( " f ( " + st r ( a ) + " ) " )
v = g ( a+1)
pr in t ( v )
v = h ( a+2)
pr in t ( v )

f ( 1 )
pr in t ( " f i n " )

The following result is displayed on the terminal :
f ( 1 )
g ( 2 )
1000
h ( 3 )
2000
f i n

Your turn : Draw each step in the call stack resulting from the
call to f(1).
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Visualizing the stack in Python

Try this Python program

import i nspec t

def f ( a , b ) :
g ( a+1 , b+1)

def g ( c , d ) :
pr in t ( " the stack i s : " )
pr in t ( i nspec t . s tack ( ) )
pr in t ( " " )

pr in t ( " Data o f the f u n c t i o n s i t u a t e d a t the top o f the stack are : " )
pr in t ( i nspec t . s tack ( ) [ 0 ] )
pr in t ( " " )

pr in t ( " unc t ion v a r i ab l e s a t the top o f the stack are : " )
pr in t ( i nspec t . getargva lues ( inspec t . s tack ( ) [ 0 ] [ 0 ] ) )

f ( 1 , 2 )
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Visualizing the stack in Python

The following result is obtained when you run the program :
1 the stack is :
2 [
3 ( < frame object at 0x7f59363a6938 > , ’ prog . py ’ , 8 , ’ g ’ , [ ’ p r i n t ( i nspec t . s tack ( ) ) \ n ’ ] , 0 ) ,
4 ( < frame object at 0x7f59363a93f0 > , ’ prog . py ’ , 4 , ’ f ’ , [ ’ g ( a+1 , b +1) \ n ’ ] , 0 ) ,
5 ( < frame object at 0x7f59364f6050 > , ’ prog . py ’ , 18 , ’ <module> ’ , [ ’ f ( 1 , 2 ) \ n ’ ] , 0)
6 ]
7
8 Data o f the f u n c t i o n s i t u a t e d a t the top o f the stack are :
9 ( < frame object at 0x7f59363a6938 > , ’ prog . py ’ , 12 , ’ g ’ , [ ’ p r i n t ( i nspec t . s tack ( ) [ 0 ] ) \ n ’ ] , 0)

10
11 Funct ion va r i a b l e s a t the top o f the stack are :
12 Arg In fo ( args =[ ’ c ’ , ’ d ’ ] , varargs=None , keywords=None , locals ={ ’ c ’ : 2 , ’ d ’ : 3 } )
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Recursivity

• Definition
• If an algorithm - a function - calls itself, it is called

recursive.
• In other words, a function is recursive if it is found at least

twice in the call stack during its execution.

• Complexity
• A recursive algorithm needs to store the calling context of

each call.
• Recursivity can lead to a memory complexity bigger than

iterative algorithm.
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Recursivity : example

• It is possible to write a recursive power function :
pow(x ,n) = xn.

• In Python :

def power ( x , n ) :
i f ( n == 0 ) :

return 1
i f ( n == 1 ) :

return x
return power ( x , n−1) * x
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Linked Lists
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Linked Lists
Description

• Linked list = Data structure where ach element is nested
into a cell.

• A cell contains :
1. a value;
2. a way to access the next cell

Definition

• In the list l the element sequence l1, l2, ..., ln are nested
into c1, c2, ..., cn cells.

• One more cell, cn+1, is used to specify the end of the list.
• Even if two values are similar, the cells nesting them are

different.
• A reference to the next cell is given for all i ≤ n.
• The last cell points to None.
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Linked Lists

• The list is empty if it contains only one cell.
• Representation of the list [1,2,4,2] :
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Primitives of Linked Lists

• The linked list type provides the following functions.

c r e a t e _ l i s t ( l )
push_f ront ( l , e )
f i r s t ( l )
end ( l )
next ( l , c e l l )
value ( c e l l )

where l is a list, e an element of the list and cell a cell.
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Primitives of Linked Lists

• create_list create an empty list with a single end cell.;
• push_front adds the element e at the beginning of the list

(and increases the size by one);
• Primitives first , end and next all return cells;
• The primite end(l) returns the cell cn+1 at the end of the

list ;
• The primitive first(l) returns the first cell c1 belonging to the

list;
• For each integer i ∈ [1,n] the function next(l , ci) returns

the successor of ci which is ci+1 ;
• For each integer i ∈ [1,n], the function value(ci) returns

the value of ci , denoted li ;
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Primitives of Linked Lists

• In Python

def c r e a t e _ l i s t ( ) :
return { ’ f i r s t ’ : None , ’ end ’ : None }

def add_to_beginning ( l , e ) :
l [ ’ f i r s t ’ ] = { ’ value ’ : e , ’ next ’ : l [ ’ f i r s t ’ ] }

def next ( l , e ) :
return e [ ’ next ’ ]

def f i r s t ( l ) :
return l [ ’ f i r s t ’ ]

def end ( l ) :
return l [ ’ end ’ ]

def value ( l , e ) :
return e [ ’ value ’ ]
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Primitives of Linked Lists

• List can be used as in the following example :

l = c r e a t e _ l i s t ( )
add_to_beginning ( l , 3)
add_to_beginning ( l , 5)
add_to_beginning ( l , 2)

i t = f i r s t ( l )
while ( i t != end ( l ) ) :

pr in t ( value ( l , i t ) )
i t = next ( l , i t )
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Double Linked List

• A double linked list is a linked list with an additional
information : the precursor.

• Precursor is a reference to :
1. ci−1 if 2 ≥ i ≥ n + 1
2. to the end list cell cn+1 if i = 1
3. else to None

• The list [1,2,4,2] could be represented by :
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Double Linked List

• Two primitives functions are defined for the list l and the
cell cell :

push_back ( l , e )
prev ( l , c e l l )

• push_back adds the element e at the end of the list (and
increases the size by one).

• For all integers i ∈ [2,n + 1] the function prev(l , ci) returns
the precursor of ci .

• For all integers i ∈ [1,n], the function value(ci) returns the
value of ci which is li ;
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Complexity

• Evaluation of time and memory space to execute a
program.

• Mathematic formula to obtain it from initial data and
executing time (and memory).

• Caution : difficult to obtain in practice.
• Suppose the time of each operation is constant and

counting how many operations are done for each program.
• Notation : complexity of the function fct is noticed C(fct)
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Complexity - Example

• The following program :

def f c t ( n ) : # i n i t i a l i s a t i o n de n : 1 opéra t ion
r = 0 # 1 opéra t ion
for i in range ( n ) : # n * ( incrément + corps de boucle ) = n * ( 1 + 2 )

r = r + 1 # | 2 opera t ions
return r # 1 opéra t ion

realize 3 + 3n operations, its complexity is C(fct) = 3 + 3n.
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Complexity - Example

def max( T ) : # i n i t . : 1 opéra t ion
res = T [ 0 ] # 1 opéra t ion
for i in range ( len (T ) ) : # C1

i f res < T [ i ] : # | C2
res = T [ i ] # | | 2 opera t ions

return res # 1 opéra t ion

• Let n the size of the array T .
• Complexity C2 of the conditional jump if is equal to 3

operations plus the operations of the if core.
• The core of if adds 2 or 0 supplementary operations

depending on the test value.
• Result : 3 ≤ C2 ≤ 5.
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Complexity - Example

• Complexity of C1 - for loop - is

n × ( incrément + loop core )

Then :

C1 =

{
n(1 + 3) if false;
n(1 + 5) if true.

Program complexity is :

3 + 4n ≤ C(max) ≤ 3 + 6n.

• The lower bound is reached if the element is at the first
position in the array.

• The upper bound is reached if all element are distint and
sorted by ascendant order in the array.
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Complexity - Example

• Another stupid implementation of the program :

def max2( T ) : # i n i t . : 1 opéra t ion −− on pose n= len (T )
T = l i s t ( T ) # = + Copie de tab leau : 1+n opéra t ions
for i in range ( len (T ) ) : # C1

for j in range ( len (T ) ) : # | C2
i f T [ i ] < T [ j ] : # | | C3

T [ i ] = T [ j ] # | | | 3 opéra t ions
return T [ len (T)−1 ] # 3 opéra t ions

By analogy to the previous one, one can compute :

3 ≤ C3 ≤ 6,
n(1 + 3) ≤ C2 ≤ n(1 + 6),

n(1 + 4n) ≤ C1 ≤ n(1 + 7n).

The complexity is :

5 + 2n + 4n2 ≤ C(max2) ≤ 5 + 2n + 7n2.
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Trees
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Trees

• A tree is a data structure A containing elements named
vertex.

• Primitive functions are :
• Child(A,p) return the list of vertex accessible from p.
• parent(A,f) return the vertex of A which is the

ascendant of f or None.
• root(A) return the vertex of A which is the root of the tree.
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Tree Properties

• A root has no parent : parent(A, root(A)) = None
• All vertex, except the root, have a parent (and only one) :

∀s ∈ A ⊂ {root(A)}, parent(A, s) ∈ A

• From each vertex, root is accessible by using parent
relationship.

∀s ∈ A,∃k ∈ N,parentk (A, s) = None;

where parentk is recursively defined by : parent0(A, s) = s
and parentk+1(A, s) = parent(A,parentk (A, s)) for k ≥ 1.

• The childs of a vertex s have as s as parent:

∀s ∈ A, ∀f ∈ child(A, s), parent(A, f ) = s.
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Labeled Trees
• A labeled tree is a tree A with one operation label(A, s)

which returns an element named label of s for each vertex.
• It is possible to draw a tree like that :
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Binary Trees

• A binary tree is a data structure A containing elements
named vertex.

• The primitive functions are :
• left_child(A,p) takes as parameters a tree A, a vertex p

and returns a vertex of A named left child of p or None if p
has no left child.

• right_child(A,p) takes as parameters a tree A, a vertex p
and returns a vertex of A named right child of p or None if p
has no right child.

• parent(A, f ) takes as parameter a tree A , a vertex f and
returns a vertex of A or None; this vertex is called the
parent of f ;

• root(A) takes as paremeter a tree A and returns a vertex of
A named the root of the tree.
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Primitives of Binary Trees - Properties

• a root has no parent : parent(A, root(A)) = None;
• From any vertex, it is possible to reach the root by using

parent relationship :

∀s ∈ A,∃k ∈ N, root(parentk (A, s));

where parentk is recursively defined by : parent0(A, s) = s
and parentk+1(A, s) = parent(A,parentk (A, s)) for k ≥ 1.

• The left child of a vertex s have as parent s :

∀s ∈ A, if left_child(A, s) 6= None then parent(A, left_right(A, s)) = s;

• The right child of a vertex shave as parent s :

∀s ∈ A, if right_child(A, s) 6= None then parent(A, right_child(A, s)) = s.
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Labeled Binary Trees
• A labeled binary tree is a tree A with one operation

label(A, s) which returns an element named label of s for
each vertex.

• It is possible to draw a tree like that :
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