
Introduction Stacks and Queues Recursivity Linked Lists Trees

Introduction

Introduction Stacks and Queues Recursivity Linked Lists Trees

Checking Knowledge and evaluation

• Third part of USI-Algo-Prog teaching unit (UE) - approx.
3ECTs

• 1 DS and 1 exam - 1 Test not planned in advance.
• Theorical point of view of programming activities.
• Applications and implementations in Python

Introduction Stacks and Queues Recursivity Linked Lists Trees

History

Before availability of modern computer machine :
• Coming from works of a mathematician : Al Khwarismi

(780-850).
• Algebraic calculus roots.
• 1834 : Charles Babbage publish the first description of a

programmable machine.
• 1815-1852 : the first informatic program is written by Ada

Lovelace.
• 1934 : Turing machine

(http://zanotti.univ-tln.fr/turing/)

http://zanotti.univ-tln.fr/turing/

Introduction Stacks and Queues Recursivity Linked Lists Trees

Algorithms

• Donald Knuth, fundation of programmation “The Art of
Computer Programming”.

• Author of TeX and Metafont.
• Algorithm of Knuth-Morris-Pratt (1977): pattern research in

string - used in genome sequence processing.
• New architectures: recursive, parallel or quantum

algorithmics.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Computer Architecture

• At its core, two components :
1. Central Processing Unit
2. Memory storage

• CPU allows you to read, to write and to modify the memory
space.

• Data are 0 or 1 value - discrete/boolean.

Introduction Stacks and Queues Recursivity Linked Lists Trees

L1 cache
CPU 1 CPU 2

CPU 3 CPU 4 Ram GPU Video Memory

Video Controller

Screen

Electronic IO Memory

Keyboard Controller

Keyboard

Electronic Disk

Disk controller

Hard Disk

Communication bus

Figure : Computer Architecture

Introduction Stacks and Queues Recursivity Linked Lists Trees

Algorithm Principles

• An algorithm is step-by-step set of operations, or
instructions, which solve a problem.

• Algorithmics is a set of rules and methods used to define
and to design algorithms.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Abstract Data Types

• An abstract data type is a data type along with all the
operations which are allowed on the data of this type

• In other words, an abstract type is defined by:
1. a name,
2. some data, i.e. a set of values,
3. a set of functions, named primitives, operating on this

data.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Stacks and Queues

Introduction Stacks and Queues Recursivity Linked Lists Trees

Stacks and Queues

Outline :
1. Definitions.
2. Stack primitives and examples.
3. Queue primitives and examples.
4. Implementation of stacks.
5. Implementation of queues.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Stack Definition

• Stacks and queues are containers where only one object is
accessible at each time.

• Stack
• In a stack, the accessible object is the last inserted one.
• LIFO: last in - first out.
• Example: a stack of plates.

• Queue
• In a queue, the accessible object is the first inserted one.
• FIFO: first in - first out.
• Example: a queue to buy a cinema ticket.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Primitives of Stack

• Two operations are defined as stack primitives:
• push(P,e) to add an element e in P.
• pop(P) to suppress an element in P.

• Property : if an element f is pushed after an element e
then the element f is accessible before e.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Stack Implementation

def create_s tack () :
return []

def push (theStack , element) :
theStack . append (element)

def pop (theStack) :
return theStack . pop ()

The primitive pop() takes time : have to go through the whole
list.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Stack Implementation

To make pop() faster, it is necessary to use the class deque
belonging to the module collections:

import c o l l e c t i o n s

def create_s tack () :
return c o l l e c t i o n s . deque ()

def push (theStack , element) :
theStack . append (element)

def pop (theStack) :
return theStack . pop ()

Introduction Stacks and Queues Recursivity Linked Lists Trees

Queue

• A Queue F is a data structures containing elements and
having 2 operations :

• enqueue(F,e) which adds the element e into F ;
• dequeue(F) which suppresses an element from F ;

• Property : if an element f is added after an element e, then
the element e is accessible before f.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Queue Implementation

def create_queue () :
return []

def enqueue (theQueue , element) :
theQueue . append (element)

def dequeue (theQueue) :
return theQueue . pop (0)

The primitive enqueue() takes time : have to go through the
whole list.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Queue Implementation

• If we want to make things faster, we have to use the
module deque:

import c o l l e c t i o n s

def create_queue () :
return c o l l e c t i o n s . deque ()

def enqueue (theQueue , element) :
theQueue . append (element)

def dequeue (theQueue) :
return theQueue . p o p l e f t ()

Introduction Stacks and Queues Recursivity Linked Lists Trees

Recursivity

Introduction Stacks and Queues Recursivity Linked Lists Trees

Recursivity and everyday-life

Something that repeats itself within itself.
• Art : mise en abyme, fractals :

(a) (b)

Figure

• In computer science : when a function calls itself.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Call stack

• Call stack:
• The sequence of instructions in a function are stored in a

specific memory place called the call stack.
• The stack is dedicated to a program.
• When a function is called, all the variables, instructions and

return values are pushed in the stack.
• At the end of the function, only the return value is kept on

the stack, all the other elements are popped from the stack.
• The program resumes from the last instruction in the main

program (or function).

Introduction Stacks and Queues Recursivity Linked Lists Trees

Call stack
Consider the following program :
def g (a) ;

pr in t (" g (" + st r (a) + ") ")
return 1000

def h (a) ;
pr in t (" h (" + st r (a) + ") ")
return 2000

def f (a) :
pr in t (" f (" + st r (a) + ") ")
v = g (a+1)
pr in t (v)
v = h (a+2)
pr in t (v)

f (1)
pr in t (" f i n ")

The following result is displayed on the terminal :
f (1)
g (2)
1000
h (3)
2000
f i n

Your turn : Draw each step in the call stack resulting from the
call to f(1).

Introduction Stacks and Queues Recursivity Linked Lists Trees

Visualizing the stack in Python

Try this Python program

import i nspec t

def f (a , b) :
g (a+1 , b+1)

def g (c , d) :
pr in t (" the stack i s : ")
pr in t (i nspec t . s tack ())
pr in t (" ")

pr in t (" Data o f the f u n c t i o n s i t u a t e d a t the top o f the stack are : ")
pr in t (i nspec t . s tack () [0])
pr in t (" ")

pr in t (" unc t ion v a r i ab l e s a t the top o f the stack are : ")
pr in t (i nspec t . getargva lues (inspec t . s tack () [0] [0]))

f (1 , 2)

Introduction Stacks and Queues Recursivity Linked Lists Trees

Visualizing the stack in Python

The following result is obtained when you run the program :
1 the stack is :
2 [
3 (< frame object at 0x7f59363a6938 > , ’ prog . py ’ , 8 , ’ g ’ , [’ p r i n t (i nspec t . s tack ()) \ n ’] , 0) ,
4 (< frame object at 0x7f59363a93f0 > , ’ prog . py ’ , 4 , ’ f ’ , [’ g (a+1 , b +1) \ n ’] , 0) ,
5 (< frame object at 0x7f59364f6050 > , ’ prog . py ’ , 18 , ’ <module> ’ , [’ f (1 , 2) \ n ’] , 0)
6]
7
8 Data o f the f u n c t i o n s i t u a t e d a t the top o f the stack are :
9 (< frame object at 0x7f59363a6938 > , ’ prog . py ’ , 12 , ’ g ’ , [’ p r i n t (i nspec t . s tack () [0]) \ n ’] , 0)

10
11 Funct ion va r i a b l e s a t the top o f the stack are :
12 Arg In fo (args =[’ c ’ , ’ d ’] , varargs=None , keywords=None , locals ={ ’ c ’ : 2 , ’ d ’ : 3 })

Introduction Stacks and Queues Recursivity Linked Lists Trees

Recursivity

• Definition
• If an algorithm - a function - calls itself, it is called

recursive.
• In other words, a function is recursive if it is found at least

twice in the call stack during its execution.

• Complexity
• A recursive algorithm needs to store the calling context of

each call.
• Recursivity can lead to a memory complexity bigger than

iterative algorithm.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Recursivity : example

• It is possible to write a recursive power function :
pow(x ,n) = xn.

• In Python :

def power (x , n) :
i f (n == 0) :

return 1
i f (n == 1) :

return x
return power (x , n−1) * x

Introduction Stacks and Queues Recursivity Linked Lists Trees

Linked Lists

Introduction Stacks and Queues Recursivity Linked Lists Trees

Linked Lists
Description

• Linked list = Data structure where ach element is nested
into a cell.

• A cell contains :
1. a value;
2. a way to access the next cell

Definition

• In the list l the element sequence l1, l2, ..., ln are nested
into c1, c2, ..., cn cells.

• One more cell, cn+1, is used to specify the end of the list.
• Even if two values are similar, the cells nesting them are

different.
• A reference to the next cell is given for all i ≤ n.
• The last cell points to None.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Linked Lists

• The list is empty if it contains only one cell.
• Representation of the list [1,2,4,2] :

Introduction Stacks and Queues Recursivity Linked Lists Trees

Primitives of Linked Lists

• The linked list type provides the following functions.

c r e a t e _ l i s t (l)
push_f ront (l , e)
f i r s t (l)
end (l)
next (l , c e l l)
value (c e l l)

where l is a list, e an element of the list and cell a cell.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Primitives of Linked Lists

• create_list create an empty list with a single end cell.;
• push_front adds the element e at the beginning of the list

(and increases the size by one);
• Primitives first , end and next all return cells;
• The primite end(l) returns the cell cn+1 at the end of the

list ;
• The primitive first(l) returns the first cell c1 belonging to the

list;
• For each integer i ∈ [1,n] the function next(l , ci) returns

the successor of ci which is ci+1 ;
• For each integer i ∈ [1,n], the function value(ci) returns

the value of ci , denoted li ;

Introduction Stacks and Queues Recursivity Linked Lists Trees

Primitives of Linked Lists

• In Python

def c r e a t e _ l i s t () :
return { ’ f i r s t ’ : None , ’ end ’ : None }

def add_to_beginning (l , e) :
l [’ f i r s t ’] = { ’ value ’ : e , ’ next ’ : l [’ f i r s t ’] }

def next (l , e) :
return e [’ next ’]

def f i r s t (l) :
return l [’ f i r s t ’]

def end (l) :
return l [’ end ’]

def value (l , e) :
return e [’ value ’]

Introduction Stacks and Queues Recursivity Linked Lists Trees

Primitives of Linked Lists

• List can be used as in the following example :

l = c r e a t e _ l i s t ()
add_to_beginning (l , 3)
add_to_beginning (l , 5)
add_to_beginning (l , 2)

i t = f i r s t (l)
while (i t != end (l)) :

pr in t (value (l , i t))
i t = next (l , i t)

Introduction Stacks and Queues Recursivity Linked Lists Trees

Double Linked List

• A double linked list is a linked list with an additional
information : the precursor.

• Precursor is a reference to :
1. ci−1 if 2 ≥ i ≥ n + 1
2. to the end list cell cn+1 if i = 1
3. else to None

• The list [1,2,4,2] could be represented by :

Introduction Stacks and Queues Recursivity Linked Lists Trees

Double Linked List

• Two primitives functions are defined for the list l and the
cell cell :

push_back (l , e)
prev (l , c e l l)

• push_back adds the element e at the end of the list (and
increases the size by one).

• For all integers i ∈ [2,n + 1] the function prev(l , ci) returns
the precursor of ci .

• For all integers i ∈ [1,n], the function value(ci) returns the
value of ci which is li ;

Introduction Stacks and Queues Recursivity Linked Lists Trees

Complexity

• Evaluation of time and memory space to execute a
program.

• Mathematic formula to obtain it from initial data and
executing time (and memory).

• Caution : difficult to obtain in practice.
• Suppose the time of each operation is constant and

counting how many operations are done for each program.
• Notation : complexity of the function fct is noticed C(fct)

Introduction Stacks and Queues Recursivity Linked Lists Trees

Complexity - Example

• The following program :

def f c t (n) : # i n i t i a l i s a t i o n de n : 1 opéra t ion
r = 0 # 1 opéra t ion
for i in range (n) : # n * (incrément + corps de boucle) = n * (1 + 2)

r = r + 1 # | 2 opera t ions
return r # 1 opéra t ion

realize 3 + 3n operations, its complexity is C(fct) = 3 + 3n.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Complexity - Example

def max(T) : # i n i t . : 1 opéra t ion
res = T [0] # 1 opéra t ion
for i in range (len (T)) : # C1

i f res < T [i] : # | C2
res = T [i] # | | 2 opera t ions

return res # 1 opéra t ion

• Let n the size of the array T .
• Complexity C2 of the conditional jump if is equal to 3

operations plus the operations of the if core.
• The core of if adds 2 or 0 supplementary operations

depending on the test value.
• Result : 3 ≤ C2 ≤ 5.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Complexity - Example

• Complexity of C1 - for loop - is

n × (incrément + loop core)

Then :

C1 =

{
n(1 + 3) if false;
n(1 + 5) if true.

Program complexity is :

3 + 4n ≤ C(max) ≤ 3 + 6n.

• The lower bound is reached if the element is at the first
position in the array.

• The upper bound is reached if all element are distint and
sorted by ascendant order in the array.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Complexity - Example

• Another stupid implementation of the program :

def max2(T) : # i n i t . : 1 opéra t ion −− on pose n= len (T)
T = l i s t (T) # = + Copie de tab leau : 1+n opéra t ions
for i in range (len (T)) : # C1

for j in range (len (T)) : # | C2
i f T [i] < T [j] : # | | C3

T [i] = T [j] # | | | 3 opéra t ions
return T [len (T)−1] # 3 opéra t ions

By analogy to the previous one, one can compute :

3 ≤ C3 ≤ 6,
n(1 + 3) ≤ C2 ≤ n(1 + 6),

n(1 + 4n) ≤ C1 ≤ n(1 + 7n).

The complexity is :

5 + 2n + 4n2 ≤ C(max2) ≤ 5 + 2n + 7n2.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Trees

Introduction Stacks and Queues Recursivity Linked Lists Trees

Trees

• A tree is a data structure A containing elements named
vertex.

• Primitive functions are :
• Child(A,p) return the list of vertex accessible from p.
• parent(A,f) return the vertex of A which is the

ascendant of f or None.
• root(A) return the vertex of A which is the root of the tree.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Tree Properties

• A root has no parent : parent(A, root(A)) = None
• All vertex, except the root, have a parent (and only one) :

∀s ∈ A ⊂ {root(A)}, parent(A, s) ∈ A

• From each vertex, root is accessible by using parent
relationship.

∀s ∈ A,∃k ∈ N,parentk (A, s) = None;

where parentk is recursively defined by : parent0(A, s) = s
and parentk+1(A, s) = parent(A,parentk (A, s)) for k ≥ 1.

• The childs of a vertex s have as s as parent:

∀s ∈ A, ∀f ∈ child(A, s), parent(A, f) = s.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Labeled Trees
• A labeled tree is a tree A with one operation label(A, s)

which returns an element named label of s for each vertex.
• It is possible to draw a tree like that :

Introduction Stacks and Queues Recursivity Linked Lists Trees

Binary Trees

• A binary tree is a data structure A containing elements
named vertex.

• The primitive functions are :
• left_child(A,p) takes as parameters a tree A, a vertex p

and returns a vertex of A named left child of p or None if p
has no left child.

• right_child(A,p) takes as parameters a tree A, a vertex p
and returns a vertex of A named right child of p or None if p
has no right child.

• parent(A, f) takes as parameter a tree A , a vertex f and
returns a vertex of A or None; this vertex is called the
parent of f ;

• root(A) takes as paremeter a tree A and returns a vertex of
A named the root of the tree.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Primitives of Binary Trees - Properties

• a root has no parent : parent(A, root(A)) = None;
• From any vertex, it is possible to reach the root by using

parent relationship :

∀s ∈ A,∃k ∈ N, root(parentk (A, s));

where parentk is recursively defined by : parent0(A, s) = s
and parentk+1(A, s) = parent(A,parentk (A, s)) for k ≥ 1.

• The left child of a vertex s have as parent s :

∀s ∈ A, if left_child(A, s) 6= None then parent(A, left_right(A, s)) = s;

• The right child of a vertex shave as parent s :

∀s ∈ A, if right_child(A, s) 6= None then parent(A, right_child(A, s)) = s.

Introduction Stacks and Queues Recursivity Linked Lists Trees

Labeled Binary Trees
• A labeled binary tree is a tree A with one operation

label(A, s) which returns an element named label of s for
each vertex.

• It is possible to draw a tree like that :

	Introduction
	Stacks and Queues
	Recursivity
	Linked Lists
	Trees

