TD 1 - Stacks and Queues

Exercise 1: Implementation of a stack or a queue
Propose an implementation of a stack and a queue by writting following functions:

def create stack():
Return a new empty stack.
def push(P, e):
Push an element ‘e’ in a stack ’'P’.
def pop(P):
Pop an element from the stack ’'P’ and return this element.
def create queue():
Return a new empty queue.
def enqueue(F, e):
Enqueue the element ’e¢’ in the queue ’'F’.
def dequeue(F):
Dequeue an element from the queue 'F’ and return this element.

Draw the stack and queue contents during the run of the following programs. You will give

the contents of the terminal also.

theStack=create stack ()
push (theStack , 1)

push (theStack , 2)

push (theStack , 3)

print (pop (theStack))
print (pop(theStack))
print (pop (theStack))

theQueue = create queue()
enqueue (theQueue , 1))
enqueue (theQueue ,2))
enqueue (theQueue ,3))
print (dequeue (theQueue))
print (dequeue (theQueue))
print (dequeue (theQueue))

Exercise 2

Suppose we cannot create or manipulate lists, dictionaries or tuples. Suppose one give you

the following primitives to manipulate stacks:

def create stack ()
def push(P, e)
def pop(P)

1) Propose an implementation of queues by only using stacks, i.e. the previous primitives. To

do that, implement the following primitives:

def create queue ()
def enqueue(F, e)
def dequeue(F)

Evaluate the complexity of these functions.

2) Propose an implementation of arrays by only using previous primitives. To do that , imple-
ment the following primitives:

def create array ():
Create et return an empty array.
def insert element(T, id, e):
Insert a new element ’e’ to the position ’id’ in the array.
°T’. The array size is increased by 1.
def suppress element(T, id):
Suppress the element at the position ’itd’ in the array ’T°.
The size of the array is decreased by 1.
def replace element(T, id, e):
Replace the element at the position ’id’ in T’ by ’e’.
The size of the array has not changed.
def get element(T, id):
Return the element into the position ’td’ in the array.

Evaluate the complexity of each function.

3) Propose an implementation of dictionaries by only using previous primitives. To do that,
implement the following primitives:

def create dictionary ():

Create and return a new dictionary.
def insert association(D, key, value):

Add a new association (’key’, ’value’) in the

dictionary D.

If an association (’key’, ’'OtherValue’) already ezists in D,

this association is replaced by (’key’, ’value’) .
def suppress association(D, key):

Suppress the association with the key ’key’ from D.
def is in dictionary(D, key):

Return True if ’key’ is a key in the dictionary D.
def get_ value(D, key):

Return the wvalue associated to the key in D.

Evaluate the complexity of each function.

