
Entropy Compression Method

František Kardoš
LaBRI, Université de Bordeaux

0/34

Introduction

Entropy compression method
▶ analyze the performance of randomized algorithms
▶ prove that the algorithm eventually finds a solution

1/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

2

4

1

2

14

1

2
3

3

3

4 1

1
2

2/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

2

4

1

2

14

1

2
3

3

3

4 1

1
2

2/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

2

4

1

2

14

1

2
3

3

3

4 1

1
2

3/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

2

4

1

2

14

1

2
3

3

3

4 1

1
2

4/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

2

4

1

2

14

1

2
3

3

3

4 1

1
2

5/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

3

4

1

2

14

1

2
3

3

3

4 1

1
2

6/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

3

4

1

2

14

1

2
3

3

3

4 1

1
2

7/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

3

4

1

2

14

1

2
3

3

3

4 1

1
2

8/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

3

4

1

2

14

1

2
3

3

3

4 1

1
2

9/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

3

4

1

2

14

1

2
3

3

3

4 1

1
2

10/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

3

4

1

2

14

1

2
3

3

3

4 1

1
2

11/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

3

4

1

2

14

1

2
3

3

3

4 1

1
2

12/34

Acyclic edge coloring

Let G be a graph. A (proper) edge coloring

φ : E (G) → [1, k]

is acyclic if there is no bichromatic cycle.

3

4

1

2

14

1

2
3

3

3

4 1

1
2

13/34

Acyclic edge coloring

The smallest k such that G admits an acyclic edge coloring
with k colors is the acyclic chromatic index of G , denoted
χ′
a(G).

Clearly, for every graph G ,

χ′
a(G) ≥ χ′(G) ≥ ∆(G)

where χ(G) is the chromatic index of G and ∆(G) is the
maximum degree of G .

For Petersen graph P we have

χ′
a(P) = χ′(P) = 4.

14/34

Acyclic edge coloring

The smallest k such that G admits an acyclic edge coloring
with k colors is the acyclic chromatic index of G , denoted
χ′
a(G).

Clearly, for every graph G ,

χ′
a(G) ≥ χ′(G) ≥ ∆(G)

where χ(G) is the chromatic index of G and ∆(G) is the
maximum degree of G .

For Petersen graph P we have

χ′
a(P) = χ′(P) = 4.

14/34

Acyclic edge coloring

The smallest k such that G admits an acyclic edge coloring
with k colors is the acyclic chromatic index of G , denoted
χ′
a(G).

Clearly, for every graph G ,

χ′
a(G) ≥ χ′(G) ≥ ∆(G)

where χ(G) is the chromatic index of G and ∆(G) is the
maximum degree of G .

For Petersen graph P we have

χ′
a(P) = χ′(P) = 4.

14/34

Upper bounds: conjectured and known

Theorem (Vizing 1964)
χ′(G) ≤ ∆+ 1.

Conjecture (Fiamčík 1978, Alon et al. 2001)
χ′
a(G) ≤ ∆+ 2.

Theorem (greedy algorithm)
χ′
a(G) ≤ 2∆(∆− 1) + 1.

Theorem (Molloy and Reed 1998)
χ′
a(G) ≤ 16∆.

Theorem (Esperet and Parreau 2018)
χ′
a(G) ≤ 4∆− 4.

15/34

Upper bounds: conjectured and known

Theorem (Vizing 1964)
χ′(G) ≤ ∆+ 1.

Conjecture (Fiamčík 1978, Alon et al. 2001)
χ′
a(G) ≤ ∆+ 2.

Theorem (greedy algorithm)
χ′
a(G) ≤ 2∆(∆− 1) + 1.

Theorem (Molloy and Reed 1998)
χ′
a(G) ≤ 16∆.

Theorem (Esperet and Parreau 2018)
χ′
a(G) ≤ 4∆− 4.

15/34

Upper bounds: conjectured and known

Theorem (Vizing 1964)
χ′(G) ≤ ∆+ 1.

Conjecture (Fiamčík 1978, Alon et al. 2001)
χ′
a(G) ≤ ∆+ 2.

Theorem (greedy algorithm)
χ′
a(G) ≤ 2∆(∆− 1) + 1.

Theorem (Molloy and Reed 1998)
χ′
a(G) ≤ 16∆.

Theorem (Esperet and Parreau 2018)
χ′
a(G) ≤ 4∆− 4.

15/34

Upper bounds: conjectured and known

Theorem (Vizing 1964)
χ′(G) ≤ ∆+ 1.

Conjecture (Fiamčík 1978, Alon et al. 2001)
χ′
a(G) ≤ ∆+ 2.

Theorem (greedy algorithm)
χ′
a(G) ≤ 2∆(∆− 1) + 1.

Theorem (Molloy and Reed 1998)
χ′
a(G) ≤ 16∆.

Theorem (Esperet and Parreau 2018)
χ′
a(G) ≤ 4∆− 4.

15/34

Upper bounds: conjectured and known

Theorem (Vizing 1964)
χ′(G) ≤ ∆+ 1.

Conjecture (Fiamčík 1978, Alon et al. 2001)
χ′
a(G) ≤ ∆+ 2.

Theorem (greedy algorithm)
χ′
a(G) ≤ 2∆(∆− 1) + 1.

Theorem (Molloy and Reed 1998)
χ′
a(G) ≤ 16∆.

Theorem (Esperet and Parreau 2018)
χ′
a(G) ≤ 4∆− 4.

15/34

Randomized algorithm

Let G be a graph, let e1, e2, . . . , em be the edges of G .
Let C be a set of colors, let |C | = K .

For a partially colored graph G and an edge e, let F (e) denote
the set of forbidden colors for e: the colors on the edges
adjacent to e.

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the first two

until the whole graph is colored.

16/34

Randomized algorithm

Let G be a graph, let e1, e2, . . . , em be the edges of G .
Let C be a set of colors, let |C | = K .

For a partially colored graph G and an edge e, let F (e) denote
the set of forbidden colors for e: the colors on the edges
adjacent to e.

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the first two

until the whole graph is colored.

16/34

Randomized algorithm

Let G be a graph, let e1, e2, . . . , em be the edges of G .
Let C be a set of colors, let |C | = K .

For a partially colored graph G and an edge e, let F (e) denote
the set of forbidden colors for e: the colors on the edges
adjacent to e.

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the first two

until the whole graph is colored.

16/34

Randomized algorithm

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

1

1 1

2

2 2

2

3

ei

17/34

Randomized algorithm

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

1

1 1

2

2 2

2

ei

18/34

Randomized algorithm

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

1

1

1

1

2

2 2

2

ei

19/34

Randomized algorithm

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

1

2

ei

20/34

Randomized algorithm
Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

Does the algorithm ever stop?

Suppose not. Consider all the possible runs of the algorithm.
For any N , each run does not stop even after N rounds.
Let’s try to encode a run in a log file. We need to encode
▶ the new color for ei
▶ (eventually) the path to uncolor.

21/34

Randomized algorithm
Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

Does the algorithm ever stop?

Suppose not. Consider all the possible runs of the algorithm.
For any N , each run does not stop even after N rounds.
Let’s try to encode a run in a log file. We need to encode
▶ the new color for ei
▶ (eventually) the path to uncolor.

21/34

Randomized algorithm
Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

Does the algorithm ever stop?

Suppose not. Consider all the possible runs of the algorithm.

For any N , each run does not stop even after N rounds.
Let’s try to encode a run in a log file. We need to encode
▶ the new color for ei
▶ (eventually) the path to uncolor.

21/34

Randomized algorithm
Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

Does the algorithm ever stop?

Suppose not. Consider all the possible runs of the algorithm.
For any N , each run does not stop even after N rounds.

Let’s try to encode a run in a log file. We need to encode
▶ the new color for ei
▶ (eventually) the path to uncolor.

21/34

Randomized algorithm
Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

Does the algorithm ever stop?

Suppose not. Consider all the possible runs of the algorithm.
For any N , each run does not stop even after N rounds.
Let’s try to encode a run in a log file.

We need to encode
▶ the new color for ei
▶ (eventually) the path to uncolor.

21/34

Randomized algorithm
Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

Does the algorithm ever stop?

Suppose not. Consider all the possible runs of the algorithm.
For any N , each run does not stop even after N rounds.
Let’s try to encode a run in a log file. We need to encode
▶ the new color for ei
▶ (eventually) the path to uncolor.

21/34

Entropy compression principle

Let the number of rounds N be fixed.

If at each round, we can choose one of (at least) k colors,
then there are at least kN different runs, none of which
succeeds to color the whole graph.

On the other hand, given a final coloring after N rounds and
the content of the log file, we can reconstruct the whole run.

If we can prove that the number of possible combinations of
{final coloring × log file} is in o(kN), then we get a
contradiction: a run that stops before round N must exist.

22/34

Entropy compression principle

Let the number of rounds N be fixed.

If at each round, we can choose one of (at least) k colors,
then there are at least kN different runs, none of which
succeeds to color the whole graph.

On the other hand, given a final coloring after N rounds and
the content of the log file, we can reconstruct the whole run.

If we can prove that the number of possible combinations of
{final coloring × log file} is in o(kN), then we get a
contradiction: a run that stops before round N must exist.

22/34

Entropy compression principle

Let the number of rounds N be fixed.

If at each round, we can choose one of (at least) k colors,
then there are at least kN different runs, none of which
succeeds to color the whole graph.

On the other hand, given a final coloring after N rounds and
the content of the log file, we can reconstruct the whole run.

If we can prove that the number of possible combinations of
{final coloring × log file} is in o(kN), then we get a
contradiction: a run that stops before round N must exist.

22/34

Entropy compression principle

Let the number of rounds N be fixed.

If at each round, we can choose one of (at least) k colors,
then there are at least kN different runs, none of which
succeeds to color the whole graph.

On the other hand, given a final coloring after N rounds and
the content of the log file, we can reconstruct the whole run.

If we can prove that the number of possible combinations of
{final coloring × log file} is in o(kN), then we get a
contradiction: a run that stops before round N must exist.

22/34

Log file: which edges are colored and which are not

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

If we know the set of colored edges before round j , we know
which edge will be colored at round j .
To know the set of colored edges after round j , it suffices to
know which (if ever) path is uncolored.
To encode a path of length ℓ starting at ei , we can use a word
of length ℓ over [1,∆].

23/34

Log file: which edges are colored and which are not

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

If we know the set of colored edges before round j , we know
which edge will be colored at round j .

To know the set of colored edges after round j , it suffices to
know which (if ever) path is uncolored.
To encode a path of length ℓ starting at ei , we can use a word
of length ℓ over [1,∆].

23/34

Log file: which edges are colored and which are not

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

If we know the set of colored edges before round j , we know
which edge will be colored at round j .
To know the set of colored edges after round j , it suffices to
know which (if ever) path is uncolored.

To encode a path of length ℓ starting at ei , we can use a word
of length ℓ over [1,∆].

23/34

Log file: which edges are colored and which are not

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

If we know the set of colored edges before round j , we know
which edge will be colored at round j .
To know the set of colored edges after round j , it suffices to
know which (if ever) path is uncolored.
To encode a path of length ℓ starting at ei , we can use a word
of length ℓ over [1,∆].

23/34

Log file: which edges are colored and which are not

If we know the set of colored edges before round j , we know
which edge will be colored at round j .
To know the set of colored edges after round j , it suffices to
know which (if ever) path is uncolored.
To encode a path of length ℓ starting at ei , we can use a word
of length ℓ over [1,∆].

1

1

1

1

2

2 2

2

ei

24/34

Log file: which edges are colored and which are not

If we know the set of colored edges before round j , we know
which edge will be colored at round j .
To know the set of colored edges after round j , it suffices to
know which (if ever) path is uncolored.
To encode a path of length ℓ starting at ei , we can use a word
of length ℓ over [1,∆].

1

2

ei

25/34

Log file: what else?

Given
▶ the coloring after round j
▶ the information whether a path was uncolored or not
▶ (eventually) the uncolored path
we can determine the coloring before round j .

1

2

ei

In particular, we can determine the color assigned to ei .

26/34

Log file: what else?

Given
▶ the coloring after round j
▶ the information whether a path was uncolored or not
▶ (eventually) the uncolored path
we can determine the coloring before round j .

1

2

ei

In particular, we can determine the color assigned to ei .

26/34

Log file

Log file contains
▶ for each round, a boolean to know whether there was
a conflict or not; and eventually

▶ the number of edges to uncolor, and
▶ for each uncolored edge, a value from [1,∆].

Alternatively, log file can contain
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].

27/34

Log file

Log file contains
▶ for each round, a boolean to know whether there was
a conflict or not; and eventually

▶ the number of edges to uncolor, and
▶ for each uncolored edge, a value from [1,∆].

Alternatively, log file can contain
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].

27/34

Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].

1 2 3 4 5 6 7

28/34

Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].

1 2 3 4 5 6 7

28/34

Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].

N + N − m 0

m

m 0

29/34

Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].

2N2N − m 0

m

m 0

30/34

Dyck words

A Dyck word of length 2N is a word over {↗,↘} representing
a path from (0, 0) to (2N , 0) never crossing the zero line.

It is known that the number of Dyck words of length 2N is the
N-th Catalan number

CN =
1
N + 1

(
2N
N

)
∼ 4N

N3/2
√
π

31/34

Dyck words

A Dyck word of length 2N is a word over {↗,↘} representing
a path from (0, 0) to (2N , 0) never crossing the zero line.

It is known that the number of Dyck words of length 2N is the
N-th Catalan number

CN =
1
N + 1

(
2N
N

)
∼ 4N

N3/2
√
π

31/34

Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].

How many different log files and different final colorings can
there be?

Let K be the total number of colors, let m be the number of
edges of G . The number of outcomes is at most

Km · 4N

N3/2
√
π
·∆N =

Km

N3/2
√
π
· (4∆)N = o((4∆)N)

32/34

Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].
How many different log files and different final colorings can
there be?

Let K be the total number of colors, let m be the number of
edges of G . The number of outcomes is at most

Km · 4N

N3/2
√
π
·∆N =

Km

N3/2
√
π
· (4∆)N = o((4∆)N)

32/34

Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].
How many different log files and different final colorings can
there be?

Let K be the total number of colors, let m be the number of
edges of G . The number of outcomes is at most

Km · 4N

N3/2
√
π
·∆N =

Km

N3/2
√
π
· (4∆)N = o((4∆)N)

32/34

Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].
How many different log files and different final colorings can
there be?

Let K be the total number of colors, let m be the number of
edges of G . The number of outcomes is at most

Km · 4N

N3/2
√
π
·∆N

=
Km

N3/2
√
π
· (4∆)N = o((4∆)N)

32/34

Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].
How many different log files and different final colorings can
there be?

Let K be the total number of colors, let m be the number of
edges of G . The number of outcomes is at most

Km · 4N

N3/2
√
π
·∆N =

Km

N3/2
√
π
· (4∆)N

= o((4∆)N)

32/34

Log file

Log file contains
▶ a series of booleans, indicating whether an edge is colored
or uncolored; and

▶ for each uncolored edge, a value from [1,∆].
How many different log files and different final colorings can
there be?

Let K be the total number of colors, let m be the number of
edges of G . The number of outcomes is at most

Km · 4N

N3/2
√
π
·∆N =

Km

N3/2
√
π
· (4∆)N = o((4∆)N)

32/34

How many different colorings?

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

For an edge ei , there are at most 2∆ forbidden colors.

There are at least (K − 2∆)N different runs,
but only o((4∆)N) different outcomes.

As long as K ≥ 6∆, the algorithm must find a valid coloring.

33/34

How many different colorings?

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

For an edge ei , there are at most 2∆ forbidden colors.

There are at least (K − 2∆)N different runs,
but only o((4∆)N) different outcomes.

As long as K ≥ 6∆, the algorithm must find a valid coloring.

33/34

How many different colorings?

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

For an edge ei , there are at most 2∆ forbidden colors.

There are at least (K − 2∆)N different runs,

but only o((4∆)N) different outcomes.

As long as K ≥ 6∆, the algorithm must find a valid coloring.

33/34

How many different colorings?

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

For an edge ei , there are at most 2∆ forbidden colors.

There are at least (K − 2∆)N different runs,
but only o((4∆)N) different outcomes.

As long as K ≥ 6∆, the algorithm must find a valid coloring.

33/34

How many different colorings?

Repeat
▶ pick the first uncolored edge, say ei
▶ choose a random color from C \ F (ei)
▶ if a bicolored cycle appears, uncolor ei together with all
the edges of the cycle but the last two

until the whole graph is colored.

For an edge ei , there are at most 2∆ forbidden colors.

There are at least (K − 2∆)N different runs,
but only o((4∆)N) different outcomes.

As long as K ≥ 6∆, the algorithm must find a valid coloring.

33/34

Conclusion

Entropy compression: the history of a given process can be
recorded in an efficient way – the amount of additional
information that is recorded at each step of the process is
(on average) less than the amount of new information
randomly generated at each step.

Used to prove the existence of a solution in various settings:
graph colourings, formula satisfiability, combinatorics of words,
etc.

Thank you for your attention!

34/34

Conclusion

Entropy compression: the history of a given process can be
recorded in an efficient way – the amount of additional
information that is recorded at each step of the process is
(on average) less than the amount of new information
randomly generated at each step.

Used to prove the existence of a solution in various settings:
graph colourings, formula satisfiability, combinatorics of words,
etc.

Thank you for your attention!

34/34

Conclusion

Entropy compression: the history of a given process can be
recorded in an efficient way – the amount of additional
information that is recorded at each step of the process is
(on average) less than the amount of new information
randomly generated at each step.

Used to prove the existence of a solution in various settings:
graph colourings, formula satisfiability, combinatorics of words,
etc.

Thank you for your attention!

34/34

