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Introduction

In this thesis, we discuss relationships between structure and certain combinatorial
invariants for specific classes of cubic graphs.
In the first chapter, we describe properties of so-called fullerene graphs—that

is, 3-connected cubic planar graphs whose faces are only of size 5 and 6—and how
their specific structure influences their combinatorial properties. Since the number of
pentagons is constant (twelve), a sufficiently large fullerene graph locally resembles a
cubic planar graph composed only of hexagonal faces—namely, the hexagonal grid.
Depending on the type of result or question at hand, various methods and tools can
be employed to tackle the problem. For instance, if we only seek to establish the
asymptotic behavior of a lower or upper bound, we can often disregard the pentagons
and focus instead on the seemingly endless sea of hexagons (see Section 1.3). In other
contexts, it may suffice to treat the pentagons approximately (see Section 1.4).
On the other hand, if all the faces must fit together in a precise way—as in the

search for a Hamiltonian cycle—the problem becomes significantly more difficult,
sometimes requiring computational assistance (see Section 1.5).
In the chapter on fullerene graphs, we present results published in [3, 43, 41, 42],

along with complete proofs. We also mention other related results from [44, 48, 24],
without providing further details.

In the second chapter, we explore the properties of perfect matchings in cubic
graphs. Here, it is not the structure that determines the property, but the property
that shapes the structure. In particular, to prove a statement about perfect match-
ings in cubic graphs by induction, one must find elementary local operations that
transform a given graph into one or more smaller graphs in a way that is compatible
with perfect matchings. Simply removing a vertex or an edge does not suffice. In
this context, we demonstrate how the operation of path splitting, combined with a
careful analysis of short edge-cuts, can be used to derive new and significant results.
In the chapter on perfect matchings, we present results published in [25, 26, 46,

45], together with complete proofs.
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Chapter 1

Fullerene graphs

1.1 Introduction and chemical background

Fullerene graphs, i.e., 3-connected cubic planar graphs with faces of size 5 and 6, are
used to capture the structure of fullerenes, all-carbon molecules of roughly spherical
shape, in which the atoms are arranged in a way that they form pentagonal and
hexagonal rings.
The existence of an all-carbon molecule with 60 atoms, realizing one of the

Archimedean solids, where each vertex of a polytope is incident with three faces
of sizes 5, 6, and 6, respectively, and presenting a third stable form of crystallic
carbon (besides the diamond and the graphite) had been discussed and conjectured
among chemists since the 60s [63].
The presence of molecules of this particular shape in the sooth residue created by

vaporising carbon under specific conditions (temperature, pressure) was first proved
in 1985 [51]. It was indeed a significant break-through, as the 1995 Nobel prize for
chemistry was awarded to Robert F. Curl Jr., Sir Harold W. Kroto and Richard E.
Smalley for the discovery of what we now call the fullerene.
The name buckminsterfullerene was first chosen for the C60 molecule by the dis-

coverers as an homage to American architect Buckminster Fuller for the vague simi-
larity of the structure to the geodesic domes which he popularized [66]. The shortened
name fullerene eventually came to be applied to the whole family.
Soon after the experimental discovery of the buckminsterfullerene, its existence

in the nature was confirmed along with similar structures having 70, 76, 78, 82,
84, 90, 94, or 96 carbon atoms. Each of these all-carbon molecules have polyhedral
structure, and all faces of the polyhedron are either pentagons or hexagons. The
discovery of the buckminsterfullerene marked the birth of fullerene chemistry and
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nanotechnology.
In fact, the C60-fullerene can now be commanded in the standard chemical sub-

stances catalogues, for a price similar to gold.

Let us recall some basic properties of fullerene graphs. It can be easily derived
from Euler’s formula that there are always twelve faces of size 5; the number of faces
of size 6 is illimited. A fullerene graph with h hexagonal faces has h + 12 faces in
total, 2h+ 20 vertices, and 3h+ 30 edges.
The smallest fullerene graph is the dodecahedron, only composed of twelve pen-

tagons. It is easy to check that there is no fullerene having exactly one hexagonal
face while all the remaining faces being pentagons. Starting from h = 2, there is at
least one fullerene graph with h hexagonal faces for every possible value of h [35].
Notice that as the number of vertices (hexagons) grows, the number of fullerenes

graphs increases as well. For example the fullerenes graphs on 20, 24 and 26 vertices
are unique, but there are 40 non-isomorphic fullerene graphs on 40 vertices, and
there are 1812 different fullerene graphs on 60 vertices (including the buckminster-
fullerene, which is the only among them without adjacent pentagons). Fowler and
Manolopoulos in [30] conjectured the following statement, which was confirmed by
Cioslowski [9] :

Theorem 1 (Cioslowski 2014) The number of fullerene graphs on n vertices is
of order Θ(n9).

Although the number of pentagonal faces is constant, and for graphs of large
sizem it seems to be negligible compared to the number of hexagonal faces, their
layout is crucial for the shape of the corresponding fullerene molecule, as it’s the
pentagons that bring curvature to the othewise perfectly plane hexagonal grid.
If the pentagons are far from each other, and distributed somehow uniformly,

a molecule of a spherical shape is obtained. On the other hand, pentagons might
form two clusters of six at large distance from each other, separated by a cylindrical
part comprised of hexagons only. In this case we speak about a nanotube (a precise
definition will be given below).

1.2 Structure of fullerene graphs

1.2.1 Cyclic edge-connectivity of fullerene graphs

Cyclic edge-connectivity is defined to refine the notion of edge-connectivity for classes
of cubic graphs, as the latter cannot exceed three. It will also play a substantial role
in the second chapter.
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Recall that an edge-cut (X, Y ) in a graph G is a set of the edges of the form xy
with x ∈ X and y ∈ Y , where X ⊂ V (G) and Y = V (G) \X. An edge-cut is cyclic
if both X and Y induce a graph containing a cycle. The cyclic edge-connectivity
is then defined as the smallest possible size of a cyclic edge-cut in G provided G
contains at least one. Actually, there are only two cubic graphs without a cyclic
edge-cut (three, if parallel edges are allowed): K4 and K3,3 (and K3

2 , the graph with
only two vertices joined by three parallel edges), their cyclic edge-connectivity being
defined as 3 and 4 (and 2, respectively).
A cyclic edge-cut (X, Y ) is trivial if G[X] or G[Y ] consists of a single cycle. Cyclic

edge-connectivity of fullerene graphs is therefore bounded above by five, since pen-
tagonal faces are always present. Rather surprisingly, fullerene graphs are actually
known to be cyclically 5-edge connected, as was proved by Došlić [16].
On the other hand, if faces of size larger than 6 were allowed, the property is no

more valid – examples of graphs with faces of sizes from 5 to 7 and with (non-trivial)
cyclic 3-edge-cuts are known, see Figure 1.1 for an illustration.

Figure 1.1: An example of a 3-connected cubic planar graph with faces of sizes five,
six, and seven, containing a non-trivial cyclic 3-edge-cut. Pentagonal faces are grey.

1.2.2 Goldberg vectors, Coxeter coordinates, and nanotubes

To define a particular fullerene graph, it suffices to specify the mutual position of its
twelve pentagonal faces. In order to do this, a specific language was developped.

Let f1 and f2 be two faces of an infinite hexagonal gridH. Then there is a (unique)
translation ϕ of H that maps f1 to f2. The vector u⃗ defining ϕ can be expressed as
an integer combination of two unit vectors – those that define translations mapping
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a hexagon to an adjacent one. Out of the six possible unit vectors, we choose a pair
u⃗1, u⃗2 making a 60◦ angle such that f2 is inside this angle starting from f1. Then the
coordinates (c1, c2) of u⃗ = c1u⃗1 + c2u⃗2 are non-negative integers, called the Coxeter
coordinates of ϕ [10].
We may always assume that c1 ≥ c2. The pair (c1, c2) determines the mutual

position of a pair of hexagons in a hexagonal grid. It is also called a Goldberg
vector. Observe that, for example, (1, 0) corresponds to a pair of adjacent faces,
(1, 1) corresponds to a pair of non-adjacent faces with an edge connecting them (and
thus having two distinct common neighboring faces), whereas (2, 0) corresponds to
a pair of non-adjacent faces with two paths of length 2 connecting them (and thus
sharing a single common neighboring face), etc.
The Coxeter coordinates are used to define nanotubical graphs in the following

way:
Let (c1, c2) be a pair of integers with c1 ≥ c2. Fix a pair of unit vectors u⃗1 and u⃗2

making a 60◦ angle. A graph obtained from an infinite hexagonal grid by identifying
objects (vertices, edges, and faces) whose mutual position is (an integer multiple of)
the vector c1u⃗1 + c2u⃗2 is the infinite nanotube of type (c1, c2).

A

A

B

B

C

C

c1~u1

c2~u2

c1~u1 + c2~u2

Figure 1.2: Construction of the infinite nanotube of type (4, 3). The pairs of hexagons
with the same name overlap.

If c1 + c2 ≤ 2 then the infinite nanotube is not 3-connected. Since nanotubes
with c1+ c2 ≤ 4 contain cyclic edge-cuts of size at most four and fullerene graphs are
cyclically 5-edge-connected, we will only be interested in nanotubes with c1+ c2 ≥ 5.
Let N be an infinite nanotube of type (c1, c2). Let f1 and f2 be two hexagons of

the hexagonal grid H at mutual position (c1, c2) corresponding to the same hexagon
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f of N . Let P be a dual path of length c1 + c2 connecting the vertices f ∗1 and f
∗
2 in

H∗. Then the edges corresponding to the edges of P form a cyclic edge-cut in N of
cardinality c1 + c2. A cyclic sequence of hexagonal faces of N corresponding to the
vertices of P is called a ring in N .
It is easy to see that if h1, . . . , hp is a ring in a nanotube of type (c1, c2), then

p = c1 + c2, moreover, among the p vectors hi+1 − hi (indices modulo p), exactly c1
are equal to u⃗1 and the remaining c2 are equal to u⃗2.
A finite 2-connected subgraph of an infinite nanotube is an open-ended nanotube

if it contains at least one ring. A fullerene graph is a nanotube if it contains an
open-ended nanotube of some type as a subgraph. Observe that the same graph
may be considered as a nanotube of more than one type.
Let G be a nanotube. We call a cap any of the two inclusion-wise minimal 2-

connected subgraphs of G that can be obtained as a component of a cyclic edge-cut
defined by a set of edges intersecting a line perpendicular to the vector defining the
corresponding open-ended nanotube. See Figures 1.17, 1.18, and 1.20 for illustration.
It is known that, for a given type (p1, p2), there is only a finite number of fullerene

caps possible [7].

Let G be a fullerene graph and let p1 and p2 be two pentagons of G. Suppose
that there exists an induced dual path P ∗ connecting p1 and p2 passing only through
hexagons. Then if we consider only faces of G corresponding to P ∗, and if we replace
the two pentagons by hexagons, we obtain a graph with a cannonical embedding into
an infinite hexagonal grid. The Goldberg vector (c1, c2) joining the first and the last
hexagon is uniquely determined. We will use this vector to characterize the mutual
position of p1 and p2 in G. Observe that the vector of two pentagons may depend
on the choice of the path joining them, see Figure 1.3 (left) for illustration.
Graver [34] used the Coxeter coordinates to describe the structure of fullerene

graphs. A given fullerene graph G is represented by a plane triangulation T , whose
vertices represent the pentagons of G, and each edge uv is labelled with a Goldberg
vector representing the mutual position of the faces represented by u and v. The
angle between face-adjacent edges (incident to the same triangle of T ) is well defined
and is determined by the labels of the three edges forming the triangle. For a vertex
of T representing a pentagon the angles around it sum up to 5π/3 = 300◦.
The existence of a triangulation T is guaranteed by a structural theorem of

Alexandrov (see e.g. [12], Theorem 23.3.1, or [59], Theorem 37.1), which states (in
a more general setting) that any 3-connected cubic planar graph with faces of size
at most 6 can be embedded onto the surface of a convex (possibly degenerate) poly-
hedron so that every face is isometric to a regular polygon with unit edge length; it
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p1

p2

p3
p4

p5
p6

p7p8

p9

p10p11
p12

p1 p2

p3

p4

p5

p6

p7p8p9

p10p11p12p7

p1 p4

p1

p7

p5

p8

p7p12

p11

Figure 1.3: An example of a fullerene graph (left). Pentagonal faces are denoted
by p1, . . . , p12. The mutual position of p1 and p9 is characterized by vectors (3, 3)
(dotted line) or (4, 2) (dashed line). The same graph embedded into a hexagonal
grid after being cut along a spanning tree of a triangulation capturing the mutual
position of all the small faces (right).

suffices then to triangulate the faces of this polyhedron.
Any spanning tree of T may be used to cut the graph G in order to obtain a graph

embeddable into the infinite hexagonal grid, see Figure 1.3 (right) for an illustration.
We say that a Goldberg vector u⃗ = (c1, c2) is shorter than u⃗′ = (c′1, c

′
2) if and only

if the Euclidean length of a segment determined by u⃗ is shorter than the Euclidean
length of a segment determined by u⃗′ when both embedded into the same hexagonal
grid.
Observe that the triangulation representing a Barnette graph is not unique: wher-

ever two adjacent triangles form a convex quadrilateral (once embedded into the
hexagonal grid), we may choose the other diagonal of the quadrilateral instead of
the existing one as an edge of the triangulation. For example, in the graph depicted
in Figure 1.3 we could have chosen the edge p3p10 instead of the edge p2p9, etc.
However, for a triangulation T representing a fullerene graph G, the operation

switching the diagonals of a convex quadrilateral eventually leads to a triangulation
minimal with respect to the sum of lengths of its edges. For example, the triangula-
tion depicted in Figure 1.3 is already minimal.

10



1.3 Perfect matchings in fullerene graphs

Since all carbon atoms are 4-valent, for every atom precisely one of the three bonds
should be doubled. Such a set of double bonds is called a Kekulé structure in a
fullerene. It corresponds to the notion of perfect matchings in fullerene graphs: a
matching in a graph G is a set of edges of G such that no two edges in M share an
end-vertex. A matching M is perfect if any vertex of G is incident with an edge of
M .
LetM be a perfect matching in a fullerene graph G. A hexagonal face is resonant

if it is incident with three edges in M . The maximum size of a set of resonant
hexagons in G is called the Clar number of G.
From the Four Color Theorem [4, 5, 62] one can easily derive the existence of a

proper edge coloring of a fullerene graph G using three colors – it means that the set
of edges of G can be decomposed into three pairwise disjoint perfect matchings (see
[49]).
In this section we will give a proof of the following result [43]:

Theorem 2 (Kardoš, Kráľ, Miškuf, Sereni 2009) Let G be a fullerene graph
with p vertices that has no non-trivial cyclic 5-edge-cut. The number of perfect
matchings of G is at least 2

p−380
61 .

All previously known general lower bounds for the number of perfect matchings in
fullerene graphs were linear in the number of vertices [14, 15, 70]. On the other hand,
the computation of the number of perfect matchings in typical fullerene graphs with
a small number of vertices [17] indicated that this number should grow exponentially
with p.
Before, several special classes of fullerene graphs with exponentially many perfect

matchings were known but a general result was missing. Such classes of fullerene
graphs either have the special structure of nanotubes [53], have high symmetry [17]
or are obtained using specific operations [18].
Let us note that Chudnovsky and Seymour [8] proved that every cubic bridgeless

planar graph has an exponential number of perfect matchings. In particular, they
proved that every such graph has at least 2

p
655978752 perfect matchings. This bound

is worse than our bound 2
p−380

61 but it applies to a larger class of graphs. We will
discuss perfect matchings in cubic graphs in general in the next chapter.
Proof. (of Theorem 2) The fullerene graphs with non-trivial cyclic 5-edge-cuts have a
special structure – they are nanotubes of type (5, 0) [48] – and the number of perfect
matchings in them is known to be exponential [53]. Hence, we focus on fullerene
graphs with no non-trivial cyclic 5-edge-cuts.
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For fullerene graphs with a small number of vertices, the earlier linear bounds
[70] provide the desired conclusion. Hence, we consider only fullerene graphs with
p > 380 vertices.
We find a perfect matching M in G such that there are at least p−380

61
disjoint

resonant hexagonal faces. Since in each such resonant hexagon we can switch the
matching to the other edges of the hexagon independently of the other resonant
hexagons, the bound will follow immediately.
The dual graph G∗ of the graph G is a plane triangulation with 12 vertices of

degree 5 and all other vertices of degree 6. Let U = {u1, . . . , u12} be the set of
vertices of degree 5. Our aim is to construct a set W of vertices of G∗ of degree 6
and such that:

� the distance between v and v′ in G∗ is at least 5 for all v, v′ ∈ W , v ̸= v′;

� the distance between v and u in G∗ is at least 3 for all v ∈ W and u ∈ U .

We present a greedy algorithm to construct such a setW . Initially, we setW0 = ∅,
and we color all the vertices at distance at most 2 from any ui by the white color.
The remaining vertices are colored black. White vertices cannot be chosen as vertices
of W . For each ui ∈ U there are at most 5 vertices at distance one and at most 10
vertices at distance two. Hence, there are at most 12 · (1 + 5 + 10) = 192 white
vertices initially.
Granted there are some black vertices, we choose a black vertex vk and add it to

the constructed set, i.e. Wk := Wk−1 ∪ {vk}. We recolor all vertices at distance at
most 4 from vk (including vk) white. Since for any vertex v of degree 6 there are at
most 6d vertices at distance d, there are at most 1+6+12+18+24 = 61 new white
vertices. This procedure terminates when there are no black vertices.
Let W be the resulting set Wk. The set W contains at least

f−192
61
vertices where

f is the number of faces of G. By Euler’s formula, f = p
2
+ 2 and thus |W | ≥ p−380

122
.

We next describe how to construct a matching in G with a lot of disjoint resonant
hexagons. Given a vertex v ∈ W , let R(v) be the set of vertices at distance at most
2 from v (see Figure 1.4). The vertices at distance 2 from v form a cycle of length
12 in G∗. This cycle is an induced cycle of G∗ since G∗ has no non-trivial cyclic
5-edge-cut. Let R∗(v) be the set formed by the 6 independent vertices of R(v) drawn
with full circles in Figure 1.4. Since G has no non-trivial cyclic 5-edge-cut, all the
vertices in R∗(v) are different and form an independent set in G∗.
The sets R∗(v) for v ∈ W are pairwise disjoint since W only contains vertices at

distance at least 5. We now modify the graph G∗ to planar graphs H0 and H. For
every vertex v ∈ W , delete v and the six neighbors of v. Let H0 be the resulting

12



v

Figure 1.4: The configuration R(v) and the six vertices in R∗(v).

H0 H

Figure 1.5: The structure of the graphs H0 and H.

graph. Further identify the six vertices of R∗(v) (see Figure 1.5). The final plane
graph is denoted by H.
The Four Color Theorem [4, 5, 62] asserts the existence of a proper vertex coloring

of H using four colors. The coloring of H yields a precoloring of H0 such that the
six vertices of each set R∗(v) have the same color. Let c(v) be this color.
We extend the precoloring of H0 to a proper coloring of G∗. We first color

each vertex v by the color c(v). For each v ∈ W , there are only six uncolored
vertices inducing a 6-cycle (the vertices adjacent to v), and each such vertex has
three neighbours colored with c(v) and one vertex colored with a different color.
Therefore, for each such uncolored vertex, there are 2 available colors. Since every
cycle of length six is 2-choosable [23, 64], there is an extension of the coloring of H0

to G∗.
The 4-coloring of G∗ corresponds to a proper 3-edge coloring of G. To see this,

assume that the vertices of the graph G∗ are colored with colors 1, 2, 3, and 4. There
are edges of 6 different color types: 12, 13, 14, 23, 24, and 34. Color the edges of
G corresponding to the edges of G∗ of types 12 and 34 (which are pairwise disjoint)
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by the color a, the edges of G corresponding to the edges of G∗ of types 13 and 24
by the color b, and the remaining edges, i.e. the edges corresponding to the edges of
G∗ of types 14 and 23, by the color c. Since the graph G is cubic, each of the color
classes a, b, and c forms a perfect matching of G.
Let f be a face corresponding to a vertex w adjacent to v ∈ W in G∗. Since w has

three (non-adjacent) neighbors in G∗ colored with the color c(v), the corresponding
three non-adjacent edges incident with f are colored with the same color. Hence,
the face f is resonant in one of the three matchings formed by the edges of the color
a, the edges of the color b, and the edges of the color c.
There are 6 such resonant hexagons for the three matchings for each v ∈ W .

Altogether, there are 6|W | resonant hexagons. Therefore, one of the matchings has
at least 2|W | ≥ p−380

61
resonant hexagons. Observe that the resonant hexagons in one

color class are always disjoint: if they were not disjoint, they would correspond to
two adjacent neighbors w and w′ of some vertex v ∈ W . But the colors assigned to
w and w′ are different, in particular, the edges corresponding to vw and vw′ have
different colors. Hence, the hexagons corresponding to w and w′ are resonant for
different colors a, b, or c. The desired bound on the number of perfect matchings
readily follows. □

Theorem 2 combined with the bound 15 · 2 p
20 by Kutnar and Marušič [53] on the

number of perfect matchings in fullerene graphs with non-trivial cyclic 5-edge cuts
yields the following.

Corollary 1 Every fullerene graph with p vertices has at least 2
p−380

61 perfect match-
ings.

We do not claim that the constants in our lower bound are best possible. It is
clear that the constant 61 could be improved. For example, in the greedy algorithm
to construct the set W , if we considered a black vertex adjacent to a white one, we
could eliminate a smaller number of new white vertices.
We have included the proof here for two reasons. First, if a fullerene graph is

large enough, locally, it just looks as a hexagonal grid, and this property can be
properly exploited; Second, the four color theorem really is a powerful tool.

1.4 Saturation number of fullerene graphs

One very important question, a question that receives a lot of attention, is the
fullerenes stability. The aim is finding a graph theoretical invariant(s) closely re-
lated to the stability of fullerene molecules. Number of different graph invariants
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that correlate with the stability were studied. Among those invariant is the satura-
tion number s(G) – the cardinality of the smallest maximal matching in a fullerene
graph G. Note that it is equal to the cardinality of the minimum independent edge
dominating set.
Clearly, the set of vertices that is not covered by a maximal matching is indepen-

dent [21]. (A set of vertices I is independent if no two vertices from I are adjacent.)
This observation provides an obvious lower bound on saturation number of the graph
G, i.e. (n− |I|)/2 ≤ s(G), where G is graph of order n.
The saturation number has another meaning for the chemists: it corresponds to

the smallest possible number of large substituents/addents (those that occupy two
adjacent atoms) that saturate the molecule. Independent set is another parameter
of similar meaning: it is the maximum possible number of addents that cannot be
attached to adjacent atoms. Besides in chemistry the saturation number (smallest
independent edge dominating set) has a list of interesting applications in engineering,
networks, etc.
The saturation number of fullerene graph was studied in [2, 17], where the fol-

lowing bounds were established.

Theorem 3 (Andova et al. 2012) For any fullerene graph G on n vertices and
diameter d, it holds

3n

10
≤ s(G) ≤ n

2
− 1

4
(d− 2).

In particular,

s(G) ≤ n

2
−
√
24n− 15− 15

24
.

The saturation number and independent sets on fullerene graphs and triangle-free
cubic planar graphs are also studied in [29, 36]. The lower bound in the previous
theorem relies only on the 3-regularity of fullerenes. That makes us believe that this
bound is not that precise.
Zito [71] provided a probabilistic argument that almost all cubic graphs on n

vertices have saturation number at least 0.315812n . On the other hand there are
at least two fullerene graph on n vertices whose saturation number is 3n/10. Those
graphs are dodecahedron and buckminsterfullerene. These two fullerenes are the
only fullerenes with icosahedral symmetry whose saturation number satisfies the
lower bound of Theorem 3 [17].
In the following subsections we show that the saturation number of fullerenes on

n vertices is essentially n/3, as published in [3].
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1.4.1 Definitions and preliminaries

A patch is a 2-connected plane graph with only pentagonal or hexagonal faces, except
maybe one face – the outer face; all interior vertices are of degree 3, and all vertices
incident to the outer face (on the boundary of the patch), are of degree 2 or 3. A
patch with no pentagons is called a hexagonal patch. Note that by cutting along a
cycle in a fullerene graph we always obtain two patches.
Let the number of vertices of degree 2 incident to a face B be denoted by n2(B).

Similarly, let n3(B) denotes the number of vertices of degree 3 incident to the face
B.
In [48], the following lemma is proven.

Lemma 1 (Kardoš and Škrekovski 2008) Let G be a patch with p pentagons,
and an outer face B. Then,

n2(B)− n3(B) = 6− p .

It follows that a patch G has 6 pentagons if and only if n2(B) = n3(B).

1.4.2 Upper bound on the saturation number

In this subsection we provide an asymptotically tight upper bound on the saturation
number in fullerene graphs. We describe a construction to find a maximal matching
of size n/3 + C

√
n, where C is a constant.

First we define a maximal matching on an infinite (hexagonal) tube of type
(p1, p2), p1 ≥ p2 and p1 > 0.

Proposition 1 There is a maximal matching M0 on any infinite nanotube G0 such
that from each hexagon precisely two vertices are not covered by M0.

Proof. We provide a construction of a maximal matchingM0 of the infinite nanotube
G0 of the type (p1, p2), p1 ≥ p2, p1 > 0. We call the edges of M0 black edges; we also
call the vertices covered by M0 black vertices. The vertices not covered by M0 form
an independent set; we call them white vertices.
For each hexagon hi we call the common edges with the adjacent hexagons in the

direction a⃗1 and −a⃗1, an a1-edge and −a1-edge, respectively. Similarly, we name the
common edges with the adjacent hexagons in direction a⃗2 and−a⃗2 (see Figure 1.6(a)).
We choose a ring R1 : h0, h1, . . . , hp1+p2−1, hp1+p2 = h0 of G0. For each hexagon

hi we color the a1-edge black; white vertex will be the vertex incident to a a2- or
−a2-edge which is not black yet, see Figure 1.6(a). For the hexagons in the next
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ring R2 (the image of R1 under a translation by the vector a2 − a1) we propagate
similar pattern; for each hexagon we color black the a2-edge. White vertices are all
the remaining vertices of the ring that are not colored black yet, see Figure 1.6(b).

~a2~a1
~a2~a1

R � 1
R 0

R 1
R 2

R 3
R 4

R 5
R 6

(a) (b) (c)

Figure 1.6: Defining a matching on an infinite nanotube of type (4, 3). The dashed
lines are overlapping, a1 and a2 edges, named after the corresponding vectors. (a)
Defining a matching on the first ring (shaded). (b) Defining a matching on the
second ring (shaded). (c) Maximal matching covering exactly four vertices from
each hexagon. The rings are alternately white and shaded.

For a moment we skip defining a matching on the ring R3. Instead we define a
matching on the next ring R4, in the same fashion as the matching on R1. Now, the
matching on R2 and R4 defines the colors of all vertices incident to the faces of R3.
We extend this matching to the whole nanotube in the following way: the matching
on the ring Rk, k ∈ Z is defined in the same way as the matching on the ring Rj,
j = 0, 1, 2 if k ≡ j (mod 3).
This way we obtain a desired maximal matching on an infinite nanotube. See

Figure 1.6(c) for an illustration. □

Let us move on from nanotubes to fullerene graphs now.
In [19], Dvořák et al. were investigating how many edges must be removed from a

fullerene graph such that the new graph is bipartite. The cardinality of the smallest
such a set of edges is called the bipartite edge frustration of a graph G, denoted
by ζ(G). It is clear that from each pentagon of a fullerene graph an edge must
be removed, but that does not give a bipartite graph since odd cycles might still
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exist. They found out that at most O(
√
n) edges must be removed in order to get a

bipartite graph.

Theorem 4 (Dvořák, Lidický, Škrekovski 2012) If G is a fullerene graph with
n vertices, then ζ(G) = O(

√
n).

Even more, in the same paper they showed that for every pentagon in a fullerene
graph, there exist at least five other pentagons at total distance O(

√
n).

Lemma 2 (Six Pentagons Lemma (Dvořák, Lidický, Škrekovski 2012)) For
every pentagonal face f in a fullerene graph G with n vertices, there exist at least five
other pentagonal faces whose distance to f in the dual G∗ is at most

√
63n/2 + 14.

Using this result we prove the following.

Theorem 5 (Andova, Kardoš, Škrekovski 2015) Let G be a fullerene graph on
n vertices. Then

s(G) ≤ n

3
+O(

√
n).

Proof. Let G be a fullerene graph. On the set of the twelve pentagonal faces of G
we consider the transitive closure ∼ of the relation ”the distance between f1 and f2
in the dual is at most

√
63n/2+14”. By Six Pentagons Lemma, for each pentagonal

face f there are at least five other pentagonal faces f ′ such that f ∼ f ′. Therefore,
depending on the fullerene structure, two cases are possible:

(A) There are two equivalent classes with respect to ∼;

(B) There is just one class with respect to ∼ containing all the twelve pentagons of
F .

We first prove the theorem for case (A), and later we consider the case (B).

(A) There are two equivalent classes with respect to ∼. This means there are two
6-tuples of pentagons “far away” from each other. In this case we find two trees
T ∗1 and T

∗
2 in the dual G

∗ of G, each covering the corresponding six pentagonal
faces. Such a tree always exists: it suffices to choose one vertex of degree 5, and
to find the shortest paths to the other five vertices of degree 5 using breadth-
first search. The union of these is a desired tree in G∗. Let Ti be the set of edges
in G corresponding to the edges of G∗ with both endvertices in T ∗i , i = 1, 2.
Observe that Ti may contain (a bounded number of) edges corresponding to
edges in G∗ which are not edges of the tree T ∗i . Among all the trees possible,
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for T ∗i we choose one with as few edges in Ti as possible. The overall number
of vertices of T ∗1 ∪ T ∗2 by Lemma 2 is at most 10(

√
63n/2 + 14).

Let Qi be the graph obtained as a union of the boundary cycles for the faces
of G corresponding to the vertices of T ∗i . As T

∗
i covers exactly 6 vertices of

degree 5, Qi is a fullerene patch containing exactly 6 pentagons. Let Ci be the
boundary cycle of Qi (the binary sum of the boundaries of its faces). Observe
that Ci is connected since T ∗i is a tree in G

∗.

On the other hand, it is easy to see that each vertex of G is incident to 0, 1,
or 3 edges in Ti (otherwise there would be two vertices in T ∗i joined by an edge
not corresponding to an edge of Ti). Let Ri be the set of vertices incident to 3
edges in Ti. The graph Pi = G− (Ti∪Ri) is another fullerene patch containing
exactly 6 pentagons. Clearly, Pi∩Qi = Ci. See Figure 1.7 for an illustration of
Ti, Ci, Qi and Pi. Finally, let H = G− (T1 ∪R1)− (T2 ∪R2) be the subgraph
of G not containing any pentagons. Clearly all the faces of H but two are
hexagons.

C1 C2

C1

C2

Figure 1.7: An example of a fullerene graph in which the pentagonal faces form two
clusters of six. The boundary of the union of faces corresponding to the dual tree Ti

is the cycle Ci, i = 1, 2 (left). The patch P2 contains the patch Q1 (right).

For each vertex v of Ci, either dPi
(v) = 2 and dQi

(v) = 3 (if v is incident to
an edge of Ti), or dPi

(v) = 3 and dQi
(v) = 2 (if v is not incident to any edge

of Ti). Let ni,2 and ni,3 be the numbers of vertices from Ci of degree 2 and 3
in Qi. Since both Pi and Qi have exactly six pentagons, by Lemma 1 we have
ni,2 = ni,3.
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The patch (with six pentagons) Qi is a cap of some nanotube. The type of
the nanotube having Qi as a cap can be determined in the following way:
Let v1, v2, . . . , vk be the vertices of Ci in a cyclic order (vk+1 = v1, v0 = vk).
If dQi

(vj) = 2, then the edges vj−1vj and vjvj+1 are incident to two different
added hexagons; towards the tube they form a 240 degree angle. If dQi

(vj) = 3,
then the edges vj−1vj and vjvj+1 are incident to the same added hexagon; they
form a 120 degree angle. Informally speaking, for each vertex, the direction
difference between the vectors vj−1vj and vjvj+1 is either a ‘left turn’ or a ‘right
turn’.

If we choose the first edge v1v2 on the infinite hexagonal grid, the sequence of
degrees of vertices of Ci fully determines the position of all the other vertices.
Since there is the same number of vertices of degree 2 and 3 on Qi, there is
the same number of left and right turns, so the edges v0v1 and vkvk+1 are
equally oriented. Since on the tube v0 = vk and vk+1 = v1, the difference
vk−v0 = vk+1−v1 on the infinite hexagonal grid determines the characterizing
vector of the tube, see Figure 1.8 for an illustration.

v1 vk
C1

C2

Figure 1.8: The graph from Figure 1.7 drawn in such a way that the part containing
only hexagons separating the two patches Q1 and Q2 containing pentagons is em-
bedded into a nanotube (left). The difference vk − v0 on an infinite hexagonal grid
determines the type of the nanotube. This graph is a nanotube of type (9, 2). The
matchingM1 inherited from the infinite nanotube (right). The dashed line represents
a nanotube ring.

Since C1 is the boundary of both P1 and Q1, and the type of the nanotube is
determined solely by C1, they can be considered as two different caps of the
same nanotube.

Since Q1 ⊂ P2 (and Q2 ⊂ P1), after removing sufficiently large number of
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hexagons from P2 (resp. P1) one can obtain Q1 (resp. Q2). The symmetric
difference H = G− (T1 ∪R1)− (T2 ∪R2) does not contain any pentagons, and
therefore Q1 is a cap for the same nanotube as P2 (Q2 as for P1).

Once the type of the tube is determined, we embed H into infinite tube H0

with the predefined matching. By Proposition 1, there is a maximal matching
M0 on H0 such that from each hexagon precisely two vertices are white (not
covered by the matching M0). All the vertices of H inherit the colors from the
corresponding vertices of G0.

Let nB and nW be the numbers of black and white vertices in G, respectively,
let r = |R1| + |R2|. Then n = nB + nW + r. Let b2 and b3 (w2 and w3) be
the numbers of black (white, respectively) vertices of degree 2 and 3 incident
to one of the exceptional faces of H. Since both Q1 and Q2 contain exactly 6
pentagons, we have

b2 + w2 = b3 + w3. (1.1)

Let h be the number of hexagonal faces of H, let t be the total number of faces
of Q1 and Q2. Then by double counting the vertices on the patches Q1 and Q2

we get
6t− 12 = 3r + 2b2 + b3 + 2w2 + w3,

which combined with (1.1) gives

2t− 4 = r + b2 + w2. (1.2)

Then, by double counting the face-vertex incidences in H we get

3(nB − b2 − b3) + b2 + 2b3 = 4h and 3(nW − w2 − w3) + w2 + 2w3 = 2h,

which together with (1.1) implies

3nB = 2n− 2r + b2 − w2 − w3.

Some of the edges of the matching M0 defined on the infinite tube H0 can
have only one endvertex in H and the other one not. This can only happen
for black vertices of degree 2 in H; let b′2 be the number of them. We recolor
those vertices white temporarily. Observe that for each such vertex, its two
neighbors in H are both incident to the same exceptional face. Let M1 be the
matching of G obtained this way. Clearly, |M1| = (nB − b′2)/2. See Figure 1.8
for an illustration.
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The matching M1 is not necessarily a maximal matching of G, however, two
white vertices can only be adjacent in G if they are both incident to the same
exceptional face of H. We make the matching M1 maximal by adding an
arbitrary maximal matching of the subgraph of G induced by the white vertices
incident to the two exceptional faces of H and the vertices from R1 ∪R2. This
way we obtain a matching M of size

|M | ≤ nB − b′2
2

+
r + w2 + w3 + b′2

2
=

2n+ r + b2 + 2w2 + 2w3

6
. (1.3)

In order to determine the upper bound we used the fact that w2+w3 ≤ b2+ b3,
since in H0, the white vertices of each cycle Ci induce an independent set and
relation (1.1). Now, we have w2 + 2w3 ≤ b2 + b3 + w3 ≤ 2b2 + w2 ≤ 2b2 + 2w2,
and therefore r + b2 + 2w2 + 2w3 ≤ 3(r + b2 + w2). Plugging the last relation
and relation (1.2) into (1.3), we infer

|M | ≤ n

3
+ t− 2 .

(B) There is just one class with respect to ∼ containing all the twelve pentagons of
G. In this case we find a subtree T ∗ of G∗ containing all the vertices correspond-
ing to pentagonal faces ofG. Let T be the set of edges inG corresponding to the
edges of G∗ with both endverities in T ∗. The graph H = G− T is a hexagonal
patch. The overall number t of vertices of T ∗ is at most 11(

√
63n/2+ 14). We

embed H into an infinite tube of the type (p1, p2) with p1+p2 sufficiently large,
and follow the same procedure as in the previous case. Observe that here the
patch Q (it is only one) has precisely 12 pentagons, and instead (1.1), now we
have b2+w2 = b3+w3−6. Similarly (1.2) in this case is 2t−4 = r+b2+w2+2.
Applying these changes into (1.3), we can use analogous calculations to prove
that this way we find a maximal matching of size at most n/3 + t − 4, what
concludes the proof of the theorem.

In all the cases we managed to find a maximal matching of size at most n/3 +
11(

√
63n/2 + 14)− 2, as desired. □

1.4.3 Lower bound on the saturation number

In this subsection, we provide a lower bound on the saturation number of fullerene
graphs, matching asymptotically the upper bound above. We show that every max-
imal matching of a fullerene graph contains at least n/3 − 2 edges, using a global
discharging argument.
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Theorem 6 (Andova, Kardoš, Škrekovski 2015) Let G be a fullerene graph on
n vertices. Then,

s(G) ≥ n

3
− 2.

Proof. Let M be a maximal matching in G. Let vertices covered by M be black,
edges of M black as well, remaining vertices and edges white. Let B (resp. W ) be
the set of all black (resp. white) vertices.
In order to prove the theorem, we use the discharging method. We set the charges

to vertices and pentagonal faces as follows:

� Let the initial charge of each black vertex be 3;

� Let the initial charge of each white vertex be −6; and,

� Let the initial charge of each pentagonal face be 3.

We will prove that the total sum of the charge in the graph 3|B| − 6|W | + 36 is
non-negative. In other words,

3|B| ≥ 2|B|+ 2|W | − 12,

and it implies

|M | = |B|
2
≥ |B|+ |W | − 6

3
=

n− 6

3
,

as desired. The initial charge is redistributed by the following rule:

(R1). Each white vertex sends −2 of charge to each adjacent black vertex.

Since M is a maximal matching, W is an independent set in G, i.e., no two white
vertices are adjacent. After applying (R1), the white vertices have charge zero.
Let v be a black vertex. It is adjacent to at least one black vertex, hence, it is

adjacent to at most two white vertices. Let ev be the black edge incident with v, and
let fv be the face incident with v, but not with ev. After having received 0, −2, or
−4 of charge by (R1), according to the number of white neighbors, v has charge 3,
1, or −1.

(R2). Each black vertex v sends all its remaining charge to fv.

All the charge initially present at vertices of G is now at its faces. The only case
when a face was given some negative charge, is when a black vertex v with two white
neighbors sends −1 of charge to the face fv. Therefore, if a face is incident with at
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−1

1 1

(a) (b)

Figure 1.9: (a) All the possible types of pentagonal faces of G incident to one white
vertex. The initial charge of the pentagons is 3, and its incident black vertices send
charge 0, 1 or 3, as shown in the figure. In all the situations the charge of the
pentagon after applying (R2) is at least 3. (b) Pentagonal faces of G incident to two
white vertices. After applying (R2) the charge of the pentagon is at least 2.

−1

1
3

1 1

1 1

1 1

1
−1

1

−1

−1

−1

(a) (b) (c) (d)

Figure 1.10: All the possible situations of hexagonal faces of G incident to at least
two white vertices. The hexagons in (a) have positive charge; the hexagons in (b)
and (c) have charge zero; and the hexagon in (d) has charge −3.
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most one white vertex, its charge is non-negative. Moreover, if a pentagon is incident
with exactly one white vertex, its charge is at least 3, see Figure 1.9(a). Similarly, if
a hexagon is incident with exactly one white vertex its charge is at least 1.
If a pentagonal face is incident with two white vertices, its charge is at least 2,

see Figure 1.9(b). If a hexagonal face h is incident with two white vertices as in
Figure 1.10(a), it will have a positive charge. If the hexagon h is as in Figure 1.10(b)
or (c), then its charge is zero. Let us call these two types of hexagons of charge zero
neutral and transition faces, respectively. The hexagonal face having three white
neighbors (Figure 1.10(d)) has charge −3. Let call this type of hexagons bad. All
the other hexagons, as well as all the pentagons, have positive charge, and we call
them good.
Let f be a transition hexagonal face. It is incident to two white vertices, two

black vertices forming a black edge, and two other black vertices. Let the white
vertex adjacent to the two other black vertices be called incoming, let the other one
(adjacent to an endpoint of the black edge incident with f) be called outgoing.
The next steps of the discharging are given with the following rules:

(R3). Each good face sends charge 1 to each incident white vertex;

(R4). Each bad hexagonal face sends charge −1 to each incident white vertex.

(R5). Each transition hexagonal face sends charge −1 to the incoming incident white
vertex, and it sends charge 1 to the outgoing incident white vertex.

It is clear that after applying these three rules there is no negative charge at the
faces of G. The only elements of the graph that can contain some negative charge
are the white vertices incident to a bad or transition hexagon.
Let v be a white vertex that was sent charge −1 from a hexagon h by (R4) or

(R5). Let w1 and w2 be the black vertices adjacent to v incident with h. The black
edge incident to wi is not incident to h, i = 1, 2. Let u be the neighbor of v not
incident with h. Clearly, u is black. Let f1 and f2 be the two faces incident with
v different from h. Without loss of generality we may assume that the black edge
incident with u is incident with f1. Then f1 is good or neutral, so it does not send
negative charge to v.
Clearly, f2 cannot be a bad hexagon, nor a neutral one. If f2 is not incident to

other white vertex but v, it is a good hexagon. If f2 is incident to another white
vertex at distance 3 from v, it is a good hexagon as well. If f2 is incident to another
white vertex at distance 2 from v, then it is a transition hexagon, moreover, v is the
outgoing white vertex for f2. In all the cases, f2 has sent charge 1 to v by (R3) or
(R5), see Figure 1.11.
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h

f1

f2

v u

Figure 1.11: For a white vertex v which receives charge −1 from a bad or transition
hexagon h, there is always another hexagon, which sends positive charge to v.

Since there is no negative charge in the graph, the total sum of charge is non-
negative, as desired. □

1.4.4 Concluding remarks

We managed to prove a lower and an upper bound on the saturation number of
fullerene graphs, which are asymptotically equal.
The bound proved in Section 1.4.3 turns out to be tight. There are infinitely

many fullerene graphs with the saturation number equal to n/3 − 2: for example,
a nanotube of type (8, 0) with 3k + 1 rings of hexagons and with caps depicted in
Figure 1.12 has 48k + 60 vertices and admits a maximal matching of size 16k + 18.
We are aware of other examples, even without adjacent pentagons.

Figure 1.12: A cap of an (8, 0)-nanotube with saturation number n/3− 2.

Comparing the newly established lower bound n/3− 2 with the previous bound
3n/10 we find that a fullerene graph can only admit a maximal matching of size
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exactly 3n/10 if it has at most 60 vertices. Moreover, this can only occur for fullerene
graphs having exactly 20, 30, 40, 50, or 60 vertices.

Figure 1.13: Fullerenes on n = 40, 50, 60 with saturation number 3n/10.

Since there are only finitely many such graphs and the lists of those graphs are
known, we can find easily those that admit a maximal matching of size 3n/10 by
inspecting each of them by a computer check. The dodecahedron (the only fullerene
graph on 20 vertices) admits a maximal matching of size 6; none of the three fullerene
graphs on 30 vertices does admit a maximal matching of size 9; there is exactly one
fullerene graph on 40 and 50 vertices having a maximal matching of size 12 and
15, respectively; there are 7 fullerene graphs on 60 vertices admitting a maximal
matching of size 18, including the buckminsterfullerene (the only fullerene graph on
60 vertices without adjacent pentagons).
The question to determine the exact value of the saturation number remains still

open. Here we pose a conjecture concerning the problem.

Conjecture 1 There is a constant C such that

s(F ) ≤ n

3
+ C

for any fullerene graph F on n vertices.

The problem of finding a minimum independent dominating set is NP-complete [67].
This problem is NP-complete even when restricted to planar or bipartite graphs of
maximal degree three [67], and remains NP-complete for planar cubic graphs [37].
These results imply the next question.

Problem 1 Is the problem to determine the saturation number for the class of
fullerene graphs NP-complete?

27



1.5 Hamiltonicity of fullerene graphs

Tait conjectured in 1880 that all cubic polyhedral graphs (i.e., 3-connected planar
cubic graphs) are Hamiltonian (i.e., contain a cycle passing through every vertex
exactly once). The first counterexample to Tait’s conjecture was found by Tutte in
1946; later, many others were found, see Figure 1.14. Had the conjecture been true,
it would have implied the Four-Color Theorem.
However, each known non-Hamiltonian cubic polyhedral graph has at least one

face of size 7 or more [1, 68]. It was conjectured that all cubic polyhedral graphs
with maximum face size at most 6 are Hamiltonian. In the literature, the conjecture
is usually attributed to Barnette (see, e.g., [54]), however, Goodey [33] stated it in
an informal way as well.
All cubic polyhedral graphs having only faces of sizes 3 and 6 or 4 and 6 are

known to be Hamiltonian [33, 32]. Exhaustive generation has shown that

Lemma 3 (Brinkmann, Goedgebeur, McKay 2012 [6]) Every cubic polyhedral
graph with faces of size at most 6 on at most 316 vertices is Hamiltonian.

Figure 1.14: Tutte’s first example of a non-Hamiltonian cubic polyhedral graph (left);
one of the minimal examples on 38 vertices (right).

The conjecture of Barnette and Goodey covers in particular the class of fullerene
graphs. Jendrol’ and Owens proved that the longest cycle of a fullerene graph of order
n covers at least 4n/5 vertices [39], the bound was later improved to 5n/6− 2/3 by
Král’ et al. [52] and to 6n/7+2/7 by Erman et al. [24]. Marušič [55] proved that the
fullerene graph obtained from another fullerene graph with an odd number of faces
by the so-called leapfrog operation (truncation of the dual; replacing each vertex by
a hexagonal face) is Hamiltonian. In fact, Hamiltonian cycle in the derived graph
corresponds to a decomposition of the original graph into an induced forest and a
stable set. We will use similar technique to prove the conjecture in the general case.
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In this section we prove

Theorem 7 Let G be a 3-connected planar cubic graph with faces of size at most 6.
Then G is Hamiltonian.

In the next subsections, we reduce the main theorem to Theorem 8 and further
to Theorem 10 and we introduce terminology and techniques used in the proof of
Theorem 10.

1.5.1 Preliminaries

A Barnette graph is a 3-connected planar cubic graph with faces of size at most 6,
having no triangles and no two adjacent quadrangles. If we denote f4 and f5 the
numbers of quadrangular and pentagonal faces, then

2f4 + f5 = 12,

generalizing the observation on the number of pentagonal faces for fullerene graphs.
We will call those faces of size smaller than 6 small.

1.5.1.1 Cyclic edge-connectivity of Barnette graphs

Lemma 4 Let G be a Barnette graph. Then G is cyclically 4-edge-connected.

Proof. Suppose that G contains a cyclic 3-edge-cut (X, Y ). Choose X inclusion-wise
minimal. It is easy to see that the cut-edges are pairwise non-adjacent. Let x1, x2,
x3 be the vertices of X incident to the cut-edges. We prove that they are pairwise
non-adjacent: Suppose that two of them, say x1 and x2, are adjacent. Then, by
minimality of X, X ′ = X \ {x1, x2} is acyclic with (X ′, V (G) \X ′) being a 3-edge-
cut, and hence, |X ′| = 1, X ′ = {x3}, so thus G[X] is a triangle, which is impossible
in a Barnette graph.
Let yi be the other endvertex of the cut-edge incident to xi, i = 1, 2, 3. We prove

that these three vertices are also pairwise non-adjacent: Since G has no triangles,
G[{y1, y2, y3}] has at most two edges. If it had exactly two edges, then G would
contain a 2-edge-cut, which is impossible since G is 3-connected and cubic. Suppose
now that y1 and y2 are adjacent, but y3 is not adjacent to any of them. Each of the
two faces incident to the edge x3y3 has at least three incident vertices in both X and
Y , therefore, it is a hexagon, and there are exactly three incident vertices in both X
and Y . Let zi be the common neighbor of y3 and yi, i = 1, 2. Then z1 and z2 are
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adjacent, otherwise there would be a 2-edge-cut in G. But then y3z1z2 is a triangle
in G, a contradiction.
As y1, y2, y3 are pairwise non-adjacent, for each face incident to any cut-edge,

there are at least three incident vertices in both X and Y , therefore, each such
face is a hexagon having three incident vertices in both X and Y . Let xij be the
common neighbor of xi and xj, 1 ≤ i < j ≤ 3. By minimality of X, X ′ = X \
{x1, x2, x3, x12, x13, x23} is a single vertex, and so G[X] is the union of three 4-faces
pairwise adjacent to each other, which is impossible in a Barnette graph. □

1.5.1.2 First reduction

We reduce Theorem 7 to the case of Barnette graphs:

Theorem 8 Let G be a Barnette graph on at least 318 vertices. Then G is Hamil-
tonian.

Lemma 5 Theorem 8 implies Theorem 7.

Proof. Suppose Theorem 8 is true. Let G be a smallest counterexample to Theorem
7. We know that G has at least 318 vertices, since Theorem 7 has already been
verified for all cubic planar graphs with faces of size at most 6 on at most 316
vertices (see Lemma 3; the number of vertices of a cubic graph is always even.)
Assume f = v1v2v3 is a triangle in G. If one of the faces adjacent to f is a triangle,

then, by 3-connectivity, G is (isomorphic to) K4, a Hamiltonian graph. Therefore, all
the three faces adjacent to f are of size at least 4. Let G1 be a graph obtained from
G by replacing v1v2v3 by a single vertex v. It is easy to see that G1 is a 3-connected
cubic planar graph with faces of size at most 6, moreover, every Hamiltonian cycle of
G1 can be extended to a Hamiltonian cycle of G, see Figure 1.15 for an illustration.
From this point on we may assume that G contains no triangles. Let f1 and f2

be two adjacent faces of size 4 in G. Let v1 and v2 be the vertices they share; let
f1 = v1v2u3u4, let f2 = v1v2w3w4. We denote by f3 (resp. f4) the face incident to
u3 and w3 (u4 and w4, respectively). If both f3 and f4 are quadrangles, then, by
3-connectivity, G is the graph of a cube, which is Hamiltonian. Suppose d(f4) ≥ 5
and d(f3) = 4. Let G2 be a graph obtained from G by collapsing the faces f1, f2, f3
to a single vertex. Again, G2 is a 3-connected cubic planar graph with faces of size at
most 6, moreover, every Hamiltonian cycle of G2 can be extended to a Hamiltonian
cycle of G, see Figure 1.15.
Finally, suppose that both f3 and f4 are of size at least 5. We remove the vertices

v1 and v2, identify u3 with w3 into z3 and u4 with w4 into z4; in this way we obtain
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←→ ←→

Figure 1.15: A triangle, as well as three quadrangles sharing a vertex, can be reduced
to a single vertex.

a graph G3. Clearly G3 is a cubic planar graph with all the faces of size at most 6.
Every Hamiltonian cycle of G3 can be extended to a Hamiltonian cycle of G, as seen
on Figure 1.16. It suffices to prove that G3 is 3-connected, or, equivalently, that G3

has no 2-edge-cuts.

←→ ←→ ←→

Figure 1.16: A pair of adjacent quadrangles can be reduced to a single edge.

Suppose G3 has a 2-edge-cut. Then one of the cut-edges is e = z3z4 (since G
is 3-connected); let e′ be the other cut-edge. Then X = {u4u3, v1v2, w4w3, e

′} is a
4-edge-cut in G. Besides f1 and f2, there are exactly two other faces destroyed when
removing the four edges from X, say fu (incident to e′ and u4u3) and fw (incident
to e′ and w4w3).
For i = 1, 2, let zi be the endvertex of e′ belonging to the same component of

G \ X as vi. If z1 was adjacent to u4, then {z1, w4} would be a 2-cut in G, unless
z1 and w4 are adjacent, but that would mean the size of f4 is four, a contradiction.
By the same argument we obtain that z1 is not adjacent to w4 either; similarly, z2
is adjacent neither to u3 nor to w3. Since the size of fu and fw is at most six, they
are both hexagons and z1 (z2) is at distance two from both u4 and w4 (u3 and w3,
respectively). But then the two neighbors of z1 form a 2-cut in G, unless they are
adjacent, in which case there is a triangle in G, a contradiction. □

1.5.1.3 Barnette nanotubes

Lemma 6 Let G be a Barnette graph which is a nanotube of type (p1, p2) with p1 +
p2 = 4. Then (p1, p2) = (4, 0).

We omit the details of the proof, as it is similar to the proof of Lemma 4: It
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suffices to prove that every (potential) cap of a nanotube of type (3, 1) or (2, 2)
contains a triangle or a pair of adjacent quadrangles.

Lemma 7 Let G be a Barnette graph which is a nanotube of type (p1, p2) with
(p1, p2) ∈ {(4, 0), (5, 0), (4, 1), (5, 1), (3, 2), (4, 2), (3, 3), (4, 3)}. Then G is Hamilto-
nian.

Proof. We may suppose that G has at least 318 vertices (at least 161 faces). For
each of the types considered here we have generated all possible caps by hand, and
checked the completeness of the list by a computer.
Since the caps of the tube are of bounded size (at most 5, 10, 6, 11, 5, 10, 10, 14

faces, respectively, each), the tubical part of G contains a large number of disjoint
rings.
We provide a construction of a Hamilton cycle in such graphs: First, we find a

pair of paths covering the vertices of the tubical part of G; then, we verify that for
each possible cap it is always possible to connect the two paths in a way that all the
vertices of the cap are covered as well.
In a nanotube of type (p, 0), p ≥ 4, for each p-edge-cut corresponding to a ring, we

construct the two paths tranversing the tube in a way that each path contains one cut-
edge incident to the same hexagonal face. Let us call this hexagon a transition face.
For two consecutive rings, the transition faces are adjacent and once the transition
face is fixed for one ring, we are free to choose any of the two adjacent hexagons in
the next one to be the transition face, see Figure 1.17 for an illustration.
To complete the proof for (4, 0)- and for (5, 0)-nanotubes, it suffices to verify that

for every possible cap, there exists a path covering all the vertices of the cap and
leaving the cap by two edges adjacent to the transition hexagonal face of the first
ring of the tube. Since the tubical part of G is sufficiently long, we can choose a
transition face in the first and the last ring of hexagons regardless of the relative
position of the two caps.
For nanotubes of type (3, 3), the construction is described in Figure 1.18.
For nanotubes of type (p1, p2) with p1 > p2 > 0, we provide a repetitive pattern

to cover the tubical part (see Figure 1.19) and, for every cap and for every position
of the cap with respect to the pattern, a path covering the vertices of the cap (see
Figure 1.20 for the first two types of nanotubes; we omit the details for the remaining
three types). □
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Figure 1.17: Two ways to cover the 2p vertices separated by two consecutive cyclic
p-edge-cuts in a (p, 0)-nanotube by two paths (top left for p = 5, one of the two paths
drawn by thick lines, the other by double lines; transition faces are marked with an
asterisk). A path joining two consecutive pending edges covering all the vertices,
for every possible cap of (p, 0)-nanotubes for p = 4 (top right line) and for p = 5
(bottom line).

Figure 1.18: For each possible cap of a (3, 3)-nanotube, a path leaving the cap by a
prescribed pair of edges is given (first two rows). For the last cap, we added three
hexagons of the tube to make the construction work. To connect the two caps and
to cover the tubical part of the graph, it suffices to combine an appropriate number
of the first two patterns of the last row (and/or their mirror images) and finish by
the third one.
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Figure 1.19: Two paths covering all the vertices of a (potentially infinite) open-ended
nanotube of type (3, 2), (4, 1), (5, 1), (4, 2), and (4, 3), respectively. For each end of
the tube, the two dashed lines separate the smallest period of the covering.

1.5.1.4 Structure of Barnette graphs

Observe that we can use Goldberg vectors to represent the mutual position of small
faces in a Barnette graph in the way as it was explained in subsection 1.2.2 for
fullerene graphs. The structure of a given Barnette graphG can thus be captured by a
plane triangulation T whose vertices represent small faces of G and edges are labelled
with the Goldberg vectors representing the mutual position of the corresponding
small faces in G.
Let us note that for a vertex of T representing a pentagon the angles around

it sum up to 5π/3 = 300◦, whereas for a vertex representing a quadrangle it gives
4π/3 = 240◦.

Lemma 8 Let G be a Barnette graph, let T be a minimal triangulation represent-
ing G. Then either T is Hamiltonian, or T can be transformed to a Hamiltonian
trangulation by a single diagonal switch.

Proof. T is a planar triangulation on at most 12 vertices. There are exactly three
non-Hamiltonian planar triangulations T on at most 12 vertices (one on 11 vertices
and two on 12 vertices) [13], with the following structure: T contains a triangular
bipyramid B (which has 5 vertices and 6 triangular faces) as a subgraph. T \B then
either consists of a set of 6 isolated vertices (each dividing one face of B into three
triangles), or is composed of 5 isolated vertices and an isolated edge (i.e., 5 faces of
B are divided into three triangles, the reamining one is divided into five triangles;
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Figure 1.20: For every cap of a nanotube of types (3, 2) (first two columns) and (4, 1)
(the rest), and for every position of the cap relative to the two paths covering the
tubical part of the graph, a completion of the Hamilton cycle in the cap is given. In
the first row, the caps are drawn together with the first ring of the tube.
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up to symmetry of B there are only two different ways this can be performed). It
means T has five vertices of degree at least 6 (those of B), six vertices of degree 3,
and eventually a vertex of degree 4.
Let e = uv be an edge of B. It is incident to two triangles, each incident to a

different component of T \B. Let x and y be the vertices of T \B such that uvx and
uvy are triangles of T . If the quadrilateral uxvy is convex, then the triangulation T ′

obtained from T by switching uv to xy has at most five vertices of degree 3, so T ′

has to be Hamiltonian.
It remains to consider the case when for each edge e of B, the union of the two

incident triangles is a non-convex quadrilateral, meaning that at one of its endver-
tices, the sum of the angles in the incident triangles is greater than 180◦. Since B
has five vertices and nine edges, there is at least one vertex of B with two (disjoint)
pairs of incident triangles whose union gives a non-convex angle. But then the sum
of the angles around this vertex is greater than 360◦, a contradiction. □

Observe that no matter whether a diagonal switch is necessary or not, for each
edge uv of a Hamilton cycle C of a triangulation T given by Lemma 8, the edge uv
is the shortest straight line segment joining u and v within the quadrangle obtained
as a union of the two triangles incident to the edge uv.
In Figure 1.21, an example of a Barnette graph on 322 vertices is depicted, along

with the corresponding triangulation and a shortest Hamilton cycle in it.

1.5.1.5 Second reduction

Let H be a plane cubic graph. We denote H∥ the 6-regular multigraph obtained from
H by replacing each edge by a pair of parallel edges, equipped with the following
black-and-white face-coloring: We color the 2-gons between pairs of parallel edges
white and we color the faces of H∥ corresponding to the faces of H black. It is easy
to see that this is a proper face-coloring of H∥.
Let G be a Barnette graph and let M be a perfect matching of G. Then F =

E(G) \M is a 2-factor of G. A hexagonal face of G incident to three edges of M is
called resonant.
There is a canonical face-coloring of G with two colors, say black and white,

such that each edge of F is incident to one black and one white face. Let h be a
white resonant hexagon. Since it is incident to three edges from M , the colors of its
neighboring faces are alternating black and white.
We transform F into a 6-regular plane pseudograph in the following way: First,

inside each white resonant hexagon h of G we introduce a new vertex vh. We remove
the three edges incident to h from F and we replace them by six new edges, joining
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Figure 1.21: An example of a Barnette graph on 322 vertices (top left). A trian-
gulation capturing the mutual position of all the small faces with a Hamilton cycle
(top right). Another (tubular) drawing of the same graph (bottom); the three edges
sticking to the north (to the south) are incident to an omitted vertex at the north
(south) pole.
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vh to all the six vertices incident to h. In G, the hexagon h is partitionned into six
triangles; each of them receives the color of the corresponding face adjacent to h in
G it is merged with in F . This way we obtain a black-and-white face-colored plane
graph with two types of vertices: vertices of degree 2 are the vertices of the underlying
Barnette graph, vertices of degree 6 correspond to white resonant hexagons.
Finally, we suppress all vertices of degree 2. This operation may create loops,

parallel edges, and even circular edges incident to no vertex, see Figure 1.22 for an
illustration. Let GM be the resulting black-and-white face-colored plane 6-regular
pseudograph.

Figure 1.22: An example of a black-and-white face-colored 6-regular pseudograph
(right) corresponding to a 2-factor of a Barnette graph (left).

A 2-factor F is called odd if it consists of an odd number of (disjoint) cycles;
otherwise it is even. The same applies to the corresponding perfect matching.
A 2-factor F (as well as the corresponding perfect matching M = E(G) \ F ) is

called simple if GM has no circular edges and GM ∼= H∥ for some cubic planar graph
H. If this is the case, H is called the residual graph.

Lemma 9 Let F be a simple 2-factor of a Barnette graph G. Let n be the number
of vertices of the corresponding residual graph H. If F is odd, then n = 4k + 2 for
some k ≥ 1; otherwise n = 4k for some k ≥ 1.

Proof. The number of vertices of a residual graph is always even, since it is a cubic
graph. Moreover, the number of cycles in F , say c, is equal to the number of faces
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of the residual graph. By Euler’s formula,

c = 2 + |E(H)| − |V (H)| = 2 +
3n

2
− n =

n+ 4

2
,

so if c = 2k + 1, then n = 2c− 4 = 4k − 2; if c = 2k, then n = 4k − 4. □

We will make use of the following classical result:

Theorem 9 (Payan and Sakarovitch [60]) Let H be a cubic graph on n = 4k+2
vertices (k ≥ 1). If H is cyclically 4-edge-connected, then V (H) admits a partition
into two sets, say B and W , such that H[B] is a stable set and H[W ] is a tree.

Observe (by double-counting white-white and black-white edges) that the divisi-
bility condition is a necessary condition for such a partition to exist. That’s why we
will only be interested in odd 2-factors.

Lemma 10 Let G be a Barnette graph and let M be an odd simple perfect matching
of G. If the residual graph is a cyclically 4-edge-connected, then G is Hamiltonian.

Proof. Let H be a cyclically 4-edge-connected cubic planar graph on 4k+2 vertices
(k ≥ 1) such that GM = H∥. Let F = E(G)\M . Recall that vertices ofH correspond
to white resonant hexagons in G with respect to a fixed cannonical face-coloring of
F . Let (B,W ) be a partition of V (H) into an induced (black) stable set B and an
induced (white) tree W given by Theorem 9.
We transform the 2-factor F and the black-and-white face-coloring of G in the

following way: For each resonant hexagon h corresponding to a black vertex b of H,
replace the three edges from F incident to h in G by the other three edges; recolor the
hexagon h black. Since B induces a stable set in H, this operation can be carried
out independently for all black vertices of H at once. For each such vertex, the
number of edges from F incident to any vertex of G remains unchanged, therefore,
F becomes a 2-factor of G, say F ′.
We claim that it consists of a single cycle. To prove that, it suffices to observe

that the graph (V (G), F ′) has a single white face (as H[W ] is connected) and a single
black face (as H[W ] is acyclic). See Figure 1.23 for an illustration. □

It remains to prove that such a situation occurs for at least one perfect matching
for any Barnette graph not known to be Hamiltonian yet.

Theorem 10 Let G be a Barnette graph on at least 318 vertices. Then there exists
an odd simple perfect matching M of G such that the residual graph H is cyclically
4-edge-connected, unless G is a nanotube of type (4, 0), (5, 0), (4, 1), (5, 1), (3, 2),
(4, 2), (3, 3), or (4, 3).
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Figure 1.23: Clockwise, starting from upper left: An example of a simple 2-factor F
of a Barnette graph G; the corresponding planar 6-regular pseudograph GM which is
a double of a cyclically 4-edge connected cubic graph H; A decomposition of H into
a (black) stable set and a (white) induced tree; the corresponding Hamilton cycle in
G.
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In the rest of the chapter, we prove Theorem 10. We describe the general approach
in Subsection 1.5.2, and we specify the computer-assisted part in Subsection 1.5.3.
We claim (without proof) that in order to prove Theorem 10 it suffices to consider

a simple odd 2-factor maximizing the number of white resonant hexagons.

1.5.1.6 Generalized 2-factors

We will call a 2∗-factor of a Barnette graph G any spanning subgraph F of G such
that each component of F is a connected regular graph of degree 1 or 2 – an isolated
edge or a cycle. For a 2∗-factor F of a Barnette graph G, let F (0) be the set of
isolated edges of F ; let G(2) be a plane graph obtained from G by replacing each
edge of F (0) by a 2-gon; let F (2) be the set of edges of G(2) corresponding to those
from F . Then F (2) is a 2-factor of G(2) in the common (strict) sense.
Given a 2∗-factor F of a Barnette graph G, there are two cannonical black-

and-white face-colorings of G(2) (complementary to each other) with the following
property: an edge e of G(2) is incident to a white and a black face if and only if e
belongs to F (2).
A 2∗-factor F of a Barnette graph G is called quite good if for each of the two

canonical black-and-white face-colorings of G(2) induced by F (2) the 2-gons corre-
sponding to the edges of F (0) have all the same color. Given a quite good 2∗-factor
of a Barnette graph G, we will always assume that a canonical coloring of G(2) such
that all the 2-gons of G(2) are black is given along.
A quite good 2∗-factor F of a Barnette graph G is called good if, after having

fixed a planar embedding of G such that the outer face is a white one, no cycle of F
is inside another.
Observe that given a good 2∗-factor F of G, for any planar embedding of G with

a white outer face, the set of faces inside a fixed cycle C of F is always the same and
these faces correspond to a sub-tree of the dual graph G∗ (empty if C is a 2-cycle).

Lemma 11 Let F be a good 2∗-factor of a Barnette graph G. Let f be the number
of all the faces of G, let qk be the number of non-resonant white faces of size k in G
(k = 4, 5, 6), and let c be the number of components of F . Then q5 is even, moreover,
f + q4 + q5/2 + c ≡ 0 (mod 2).

Proof. Let n be the number of vertices of G, let fk be the number of all the faces
of size k in G, let xk be the number of black faces of size k in G. Euler’s formula
yields n = 8 + f5 + 2f6. If the inside of a cycle contains c4 ≥ 0 quadrangles, c5 ≥ 0
pentagons, and c6 ≥ 0 hexagons, then its length is 2 + 2c4 + 3c5 + 4c6.
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Clearly, each vertex is covered by exactly one cycle, thus we have

8 + f5 + 2f6 = n = 2c+ 2x4 + 3x5 + 4x6 = 2c+ 2(f4 − q4) + 3(f5 − q5) + 4x6,

since only hexagons can be resonant, and thus fk = xk + qk for k = 4, 5. Therefore,

8 + q5 + 2f6 = 2c+ 2(f4 − q4) + 2(f5 − q5) + 4x6,

so q5 is even. By dividing by two and rearranging the terms we obtain

4 + f4 + f5 + f6 + q4 + q5/2 + c = 2c+ 2f4 + 2f5 − q5 + 2x6,

the claim immediately follows. □

Let F be a good 2∗-factor in a Barnette graph G. Let us consider the structure of
the graph G(2). We introduce an auxiliary graph Γ = ΓG(F ), defined in the following
way: V (Γ) is the set of the white non-resonant faces of G (as of G(2)). The edges of
Γ are defined in the next two paragraphs.
Let C be the facial cycle of a (black) 2-gon f0 in G(2). Let f0 be incident to

vertices u and v and adjacent to two (white) faces f and f ′. Then each of u and v is
incident to one more face (which has to be white), say fu and fv, respectively. Since
f0 only shares a vertex with fu and with fv (but not an edge), the faces f and f ′ are
two consecutive white neighbors of fu (fv). Therefore, the faces fu and fv cannot be
resonant. We add the edge fufv to E(Γ); we call this type of edge of Γ white.
Let C be a cycle of F (and of F (2)) which is not a facial cycle of a face of G(2).

It means that C is a boundary of a union of at least two faces of G. We consider
every pair of adjacent faces inside C. Let f and f ′ be such a pair of faces. Let u and
v be the endvertices of the edge incident to both f and f ′. Then each of u and v
is incident to a third face (which has to be white), say fu and fv, respectively. The
faces f and f ′ are two consecutive black neighbors of fu (fv) in G. Therefore, the
faces fu and fv cannot be resonant. We add the edge fufv to E(Γ); we call this type
of edge of Γ black.
Observe that for each edge of Γ, its endvertices are two faces of G at mutual

position (1, 1). Each edge of Γ covers two vertices of G and these pairs of vertices
are pairwise disjoint. Therefore, Γ is a planar graph.
Let f be a white pentagon of G(2). It cannot be resonant, so f is a vertex of Γ.

Let f1, . . . , f5 be the faces adjacent to f (sharing an edge with f) in G(2). (Observe
that some fi can be a 2-face: if it is the case, then there is another face f ′i adjacent
to f in G, and adjacent to fi in G(2).) Since the size of f is odd, the number of pairs
(fi, fi+1) (with f6 = f1) of the same color (both black or both white) has to be odd.
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If both fi and fi+1 are black, then none of them can be a 2-face, and thus there is a
black edge incident to f in Γ. If both fi and fi+1 are white, then again none of them
can be a 2-face, and the vertex incident to f , fi, and fi+1 is (in G(2)) covered by a
2-cycle adjacent both to fi and fi+1, and thus there is a white edge incident to f in
Γ. Altogehter, f is a vertex of odd degree in Γ.
Similarly, for each non-resonant white hexagon f , there is an even number of

pairs of consecutive adjacent faces of the same color, hence f is a vertex of non-zero
even degree in Γ.
A white quadrangle f is always considered non-resonant. Its degree in Γ is also

always even, however, it can be equal to 0 if the neighboring faces are colored alter-
natively black and white.
As a result of these local observations, the graph Γ can always be edge-decomposed

into a set of paths with endvertices at the white pentagons of G, a set of cycles, and,
eventually, a set of isolated vertices (corresponding to white quadrangles). The num-
ber of paths in the decomposition is equal to q5/2, where q5 is the number of white
pentagons.

1.5.2 Proof of Theorem 10: Finding a 2-factor

In this section we explain the general procedure in the case when the small faces of
G are far from each other. We will deal with the case when some small faces of G
are close to each other in Section 1.5.3.

1.5.2.1 Phase 1: Cut the graph and fix a coloring

Let G be a Barnette graph, let T be a Hamiltonian triangulation capturing the
mutual position of the small faces of G, whose existence is given by Lemma 8. Let
CT be a Hamiltonian cycle in T such that the sum of the lengths of the corresponing
Goldberg vectors is minimal. Then there exists a cycle C∗ in G∗ including all the
small vertices of G∗ in the same order as the corresponding vertices on CT .
A cycle in G∗ corresponds to an edge-cut in G. We cut the graph G along C∗.

We obtain two graphs, say G1 and G2, containing only hexagons as internal faces,
and with semi-edges and partial faces on the boundary.
Both G1 and G2 are subgraphs of the hexagonal grid, hence, there is a canonical

face coloring using three colors for each of them. We will use colors 1, 2, 3 for one
and colors A, B, C for the other. We color the partial faces in both graphs too.
We choose one color in each graph, say 1 and A (there are 9 color combinations

in total), and recolor black all the faces of G1 and G2 colored 1 or A; we color white
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Figure 1.24: Three of the nine black-and-white colorings of the graph in Figure 1.3,
(combinations of three different colorings of G1 and three different colorings of G2)
corresponding to the given order of pentagons.

the other faces. (Later we will inspect all the nine colorings.) This gives a black-
and-white face-coloring ϕi inducing a 2-factor Fi in Gi, i = 1, 2. The 2-factor Fi

is composed of cycles and paths. Each cycle is the boundary of an internal face of
Gi, hence a 6-cycle; each path has both ends at partial edges leaving Gi and it is a
boundary of a partial face of Gi.
Observe that for any choice of a color in Gi (i = 1, 2), the edges incident to one

face of the other two colors each form a matching Mi such that G
Mi
i = H

∥
i , where

Hi is the graph whose vertices are the centers of the faces of the other two colors
(including the partial faces).
We merge the two black-and-white face-colorings ϕ1 and ϕ2 of G1 and G2, re-

spectively, into an intermediate black-and-white (multi-)face-coloring ϕ∼ of G in the
natural way: A face not corresponding to a vertex of C∗ inherits a color from either
G1 or G2; A face which is cut by the cycle C∗ is divided into two partial faces, one
inheriting a color from G1 and the other from G2, see Figure 1.24 for an illustration.

Active and inactive segments

The cycle C∗ can always be decomposed into a sequence of ℓ ≤ 12 subpaths
P ∗1 , . . . , P

∗
ℓ joining consecutive pairs of small vertices. Let us call these subpaths

segments.
We may suppose that a segment only contains hexagons with a non-empty inter-

section with the straight line joining the end-vertices of the segment.
For each segment P ∗i , the two face-colorings of G1 and G2 meet along P ∗i , and

there is a unique canonical bijection φi : {1, 2, 3} → {A,B,C} between the two sets
of colors.
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If φi(1) = A then the two black-and-white colorings coincide along Pi, we say
that the segment Pi is inactive; otherwise it is active. Out of the nine colorings,
each segment is active in precisely six of them. For example, the segments p6p7 and
p12p1 are inactive in all the three colorings depicted in Figure 1.24, the segment p4p5
is active in all the three colorings, whereas the segment p9p10 is inactive in the first
coloring and active in the other two.
When switching from P ∗i to P

∗
i+1, if the i-th small face is a quadrangle, we have

φi = φi+1. If the i-th small face is a pentagon, the difference φi+1 ◦ φ−1i is a permu-
tation of the colors {A,B,C} such that the color of the pentagon is stable and the
two other colors are switched – a transposition. See Figure 1.25 for an illustration.
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A

1

1

A

1

C

B

3

2

B

2

3

B

2

C

3

3

C

2

Figure 1.25: A pentagon always causes a single switch of colors – the two colors
different from its color are switched.

Let pi be a pentagonal face of G such that the segments P ∗i−1 and P
∗
i meet at pi.

Then exactly one of the following happens:

(i) if φi−1(1) = φi(1) = A, then both P ∗i−1 and P ∗i are inactive, pi generates a
switch of B and C, thus it is colored 1 and A and it is black in both subgraphs;

(ii.a) if φi−1(1) = A and φi(1) ̸= A, then P ∗i−1 is inactive and P
∗
i is active, pi generates

a switch of A and φi(1), thus it is colored neither A nor 1, so it is white in
both subgraphs;

(ii.b) if φi−1(1) ̸= A and φi(1) = A, then P ∗i−1 is active and P
∗
i is inactive, pi generates

a switch of A and φi−1(1), thus it is colored neither A nor 1, so it is white in
both subgraphs;

(iii.a) if φi−1(1) = φi(1) ̸= A, then both P ∗i−1 and P
∗
i are active, pi generates a switch

of A and the color in {B,C}\{φi−1(1)}, thus it is colored φi−1(1), so it is black
in G1 and white in G2;
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(iii.b) if {φi−1(1), φi(1)} = {B,C}, then both P ∗i−1 and P ∗i are active, pi generates a
switch of B and C, thus it is colored A, so it is white in G1 and black in G2.

In order to transform ϕ∼ into a black-and-white face-coloring ϕ ofG corresponding
to a good 2-factor of G, we reroute slightly the cut C∗ in a way described in the
following subsection.

1.5.2.2 Phase 2: Approximate the cut by Γ-paths

Let P ∗i be an active segment, let φi(1) = B. Suppose without loss of generality that
φ−1i (A) = 2. Then all the faces of Pi colored A (and 2) or 1 (and B) are partially
black and partially white; both parts of each face of P ∗i colored C and 3 are white.
In the subgraph of G corresponding to the two triangles of T incident to the edge

of T corresponding to P ∗i , the centers of faces colored C and/or 3 form a subgraph
H+

i of a regular hexagonal grid, the unit edge of which corresponds to a (1, 1)-vector
in G.
We approximate the dual path P ∗i by a sequence Qi of faces colored C and/or 3,

each consecutive pair of faces in a mutual position (1, 1), in the following way:
The first (the last) face of Qi is the pentagon pi (pi+1) if and only if the segment

P ∗i−1 (P
∗
i+1) is inactive; otherwise the first (the last) face of Qi is a hexagon adjacent

to pi (pi+1) and it is the last (the first) face of Qi−1 (Qi+1, respectively).
Let the first and the last face of Qi be f0 and f ′0. Then Qi is defined as the

sequence of faces corresponding to such shortest path joining f ∗0 and f
′∗
0 in H

+
i that

it approximates the straight line segment joining pi and pi+1 the best. (This is
analogous to tracing a diagonal in a pixelized image of rectangular shape). If a face
cut by P ∗i is colored C and 3, then it becomes part of Qi; if P ∗i passes through a
sequence of several A- (and 2-) and B- (and 1-)faces, then some C- or 3-faces adjacent
to these faces are chosen into Qi.
The segment P ∗i is approximated by a series of H

+
i -edges joining consecutive

faces of the sequence Qi. We approximate the decomposition of G into G1 and G2

accordingly. Each face previously cut by P ∗i and having been colored partially black
and partially white thus now belongs to just one of the two colorings, and therefore
has just one color. The only faces cut by the new cut (and so having a color (white)
in both colorings) are the faces of Qi.
Let f be a white (C- and 3-colored) hexagonal face of Qi. Then the set of

its neighbors is partitioned into a cyclic sub-sequence of A- and B-faces colored
alternatively black and white, and another cyclic sub-sequence of 1- and 2-faces
colored alternatively black and white, with the coloring being the opposite of the
first one. Therefore, there are exactly two pairs (not necessarily disjoint) of adjacent
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neighboring faces of the same color: each pair is either a black A-face adjacent to a
black 1-face, or a white B-face adjacent to a white 2-face. Therefore, f is a white
non-resonant hexagon, corresponding to a vertex of degree 2 in the auxiliary graph
Γ being constructed – we will call f a Γ-face.
Let f and f ′ be two consecutive Γ-faces of Qi. If the two faces adjacent both to

f and f ′ are black, then the paths belonging to the 2-factors F1 and F2 in G1 and
G2 are merged into a single cycle. If the two faces adjacent both to f and f ′ are
white, then a new 2-cycle of the 2∗-factor is created. In the first case, the Γ-edge ff ′

is black, in the second case it is a white Γ-edge. In both cases ff ′ is a Γ-edge for
every pair of consecutive Γ-faces of Qi, therefore, Qi can be considered as a Γ-path.
Two consecutive Γ-edges of Qi of the same color always form a 180◦ angle, other-

wise it could be possible to simplify Qi by removing a face from Qi. (A shortest path
joining two vertices in a hexagonal grid never makes a sharp (±60◦) turn.) Similarly,
two consecutive edges of Qi of different colors always form an angle of ±120◦.

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Figure 1.26: Two hexagonal patterns meeting along an active segment P ∗i . Faces
labeled × are the faces colored with the corresponding colors which are chosen to be
white in both colorings (left). A Γ-path (a sequence of Γ-faces) Qi that approximates
P ∗i together with the corresponding 2

∗-factor (middle). The corresponding auxilliary
graph H∼ (right).

The resulting structure of ϕ∼ along P ∗i is the following: All vertices are covered
by cycles of length 6 (single faces), 10 (two adjacent black hexagons, both incident
to a black Γ-edge), or 2 (white Γ-edges). A Γ-path Qi separates the two subgraphs
of regular coloring.
White non-resonant hexagons where two consecutive sequences Qi−1 and Qi meet
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are the only occasion where two Γ-edges of the same color might form a 60◦ angle –
if only they are both incident to the same pentagon.
Let us explicit the structure of H∼ = H1 ∪ H2 and of Γ now: Vertices of H∼

are all the vertices corresponding to faces of G white in G1 or in G2; each vertex of
Γ where two black edges meet corresponds to a 2-vertex in H∼ (the corresponding
face of G is a non-resonant white hexagon adjacent to four black faces belonging to
two different components of the 2∗-factor); each vertex of Γ where two white edges
meet corresponds to a 4-vertex in H∼ (the corresponding face of G is incident to
four different compents of the 2∗-factor, including two 2-cycles); each vertex of Γ
where a black and a white edge meet at a 120◦ angle corresponds to a 3-vertex in H∼

(the corresponding face of G being incident to one, two, and three vertices belonging
to three different components of the 2∗-factor: a 2-cycle, a 6-cycle and a 10-cycle,
respectively).
If there are q5 white pentagons, then Γ is composed of q5/2 paths. A white

quadrangle is either an isolated vertex of Γ (if both incident segments are inactive)
or it is an internal vertex of a path (otherwise).

1.5.2.3 Phase 3: Change the parity of the 2∗-factor

It follows from Lemma 11 that whenever we want to transform an even 2∗-factor into
an odd one, it suffices either to increase or decrease the number of black quadrangles
by 1 (or, equivalently, increase or decrease the number of non-resonant white quad-
rangles by 1), or to increase or decrease the number of black pentagons (and white
pentagons) by 2. In other words, it suffices either to change the number of isolated
vertices in Γ by 1 or change the number of Γ-paths by 1.

Changing the parity using a quandrangle

Let q be a quadrangular face of G. For three of the nine colorings of G1 and G2,
both segments incident to q are inactive; moreover, for two out of the three q is a
white face. In Phase 1, we choose one of these two.
If the good 2∗-factor obtained in Phase 2 is even, it can be transformed into an

odd one by recoloring q black. This way an isolated vertex of Γ is transformed into
a cycle of length 2, see Figure 1.27 for an illustration.

Changing the parity using two pentagons

From this point on we may assume that G has no quadrangular faces – it is a
(fullerene) graph having 12 pentagonal faces.
Suppose first that some pair of consecutive pentagons pi and pi+1 (consecutive

along the cut C) are in the mutual position (c1, c2), c1 ≥ c2 ≥ 0, with 3 | (c1 − c2).
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× −→ ××

Figure 1.27: We can use a white quadrangle to change the parity of a 2∗-factor. The
times sign marks non-resonant faces – vertices of Γ; edges of Γ are drawn using a
thick grey line.

Then in the coloring of G1 with colors 1, 2, 3 (and of G2 with A, B, C) the partial
faces corresponding to the pentagons pi and pi+1 have the same color. Therefore,
for two of the nine colorings the segment Pi joining pi and pi+1 is active whereas the
neighboring segments Pi−1 and Pi+1 are inactive.
For both such colorings, after Phase 2 there is a Γ-path with endvertices at pi and

pi+1, and the vertex set of this path can be chosen to be the same in both colorings.
Each Γ-edge white in one coloring is black in the other and vice versa. Among the
two colorings, we may fix the one where the number of white Γ-edges is maximised.
We transform the Γ-path into a Γ-cycle, increasing the number of black pentagons

by 2, in the following way: For each black Γ-edge, we recolor both black hexagons
forming a black 10-cycle white; then we recolor all faces corresponding to the vertices
of the Γ-path black, including the first and the last one (pi and pi+1). We will denote
this operation O1. See Figure 1.28 for an illustration.

pi pi+1
O1−−→ pi pi+1

Figure 1.28: Operation O1: The parity of a 2∗-factor can be changed by modifying
a Γ-path joining two consecutive pentagons into a Γ-cycle.

From this point on we may assume that there is no pair of consecutive pentagons
with the same color in G1 (or in G2). Then for every pair of consecutive pentagons
the nine colorings look like depicted in Figure 1.29.
Let ϕj

i be the angle between the two segments meeting at pentagon pi in Gj,
j = 1, 2. Clearly, ϕ1

i +ϕ2
i = 300◦. When following the segments composing the cut in

an ascending order, say G1 is to the left and G2 to the right. If ϕ1
i > 150◦ > ϕ2

i , then
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Figure 1.29: A schematic drawing of the position of the Γ-paths in the neighborhood
of two consecutive pentagons of different colors.

there is a right turn at pi when switching from Pi−1 to Pi. If ϕ1
i < 150◦ < ϕ2

i , then
there is a left turn at pi when switching from Pi−1 to Pi. The value ϕ1

i = ϕ2
i = 150◦

means that the segment Pi continues in the same direction as Pi−1.
Let ϕi = ϕ1

i − ϕ2
i for i = 1, . . . , 12. It is easy to see that

∑12
i=1 ϕi = 0, since∑12

i=1 ϕ
1
i =

∑12
i=1 ϕ

2
i = 1800◦. Therefore, there exist i such that ϕi · ϕi+1 ≤ 0 (indices

modulo 12). We fix i such that ϕi · ϕi+1 ≤ 0 and the difference |ϕi − ϕi+1| is as big
as possible.
Without loss of generality we may assume that ϕi ≥ 0 and ϕi+1 ≤ 0. In other

words, there is a right turn at pi followed by a left turn at pi+1. There are two
colorings in which all the segments Pi−1, Pi, and Pi+1 are active; among them we
choose the one where pi is black in G2 and pi+1 is black in G1.
We can now change the parity of the 2∗-factor (if needed) by decreasing the

number of black pentagons by 2 in the following way: For each black Γ-edge of Qi,
we recolor both black hexagons forming a black 10-cycle white; then we recolor all
faces corresponding to the vertices of the Γ-subpath Qi black, including the first and
the last one (those adjacent to pi and pi+1, respectively); we recolor pi and pi+1 white.
As the last step, we simplify unnecessary 60◦ turns. We will denote this operation
O2. See Figures 1.30, 1.31 and 1.32 for an illustration.

O2−−→

Figure 1.30: A schematic drawing of the operation O2.

1.5.2.4 Phase 4: Transform a good odd 2∗-factor into a simple 2-factor

It suffices now, as the last phase, to transform a good odd 2∗-factor into a simple
(odd) 2-factor. We do it in the following way:
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pi+1

pi

−→ pi+1

pi

−→ pi+1

pi

Figure 1.31: Operation O2: The parity of a 2∗-factor can be changed by transforming
a Γ-path passing by two consecutive black pentagons pi and pi+1 into two different
Γ-paths starting at pi and pi+1, respectively. The modification from the middle to
the right corresponds to removing unnecessary sharp turns.

In a good 2∗-factor, each 2-cycle corresponds to a white Γ-edge ff ′, incident to
two white resonant hexagons h1 and h2 (one in each of G1 and G2). We can choose
either h1 or h2, say hi, and recolor it black: By doing this, the 2-cycle is merged with
two other cycles in Gi; the other face f0 incident to both cycles being merged loses
its resonantness, it becomes another Γ-face inserted to the Γ-path between f and f ′,
joint now to f and f ′ by two black Γ-edges forming a 60◦ angle and replacing the
original white Γ-edge. In H∼, a vertex of degree 3 is removed, and thus the degree
of three other vertices is decreased by 1: one of them corresponds to f0, the other
two correspond to f and f ′.
Observe that this operation decreases the number of components of the factor by

2, therefore, starting with an odd factor we can only obtain odd factors.
We make a decision for all white Γ-edges sequentially according to their order

along Qi, according to the following rules: If a white Γ-edge ej forms a 180◦ angle
with ej−1 (which has to have been white in this case) and that we have decided to
recolor black a hexagon in Gi, i = 1, 2, incident to ej−1, then we decide to recolor
black a hexagon in G3−i incident to ej. If a white Γ-edge ej forms a 120◦ angle with
a black ej−1, we decide to recolor black a hexagon incident to ej in such a way that
one of the new black Γ-edges forms a 180◦ angle with ej−1.
The resulting structure in G is the following: All the Γ-paths and Γ-cycles are

formed of black Γ-edges only. Each vertex of Γ of degree 1 or 2 corresponds to a
2-vertex in H∼.
Finally, to obtain H, we suppress all the 2-vertices in H∼; for each Γ-edge we

merge the incident partial faces of H∼. In other words, every white face is either
resonant (and hence corresponds to a 3-vertex of H), or corresponds to a vertex of
Γ.
To describe the structure of H, we introduce the following notation: A vertex of

Γ is called direct if it corresponds to a pentagon or if the two incident (black) Γ-edges
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Figure 1.32: The good 2∗-factor induced by one of the nine possible black-and-white
face-colorings of the graph in Figure 1.21 (top). It is already an odd 2∗-factor; there
are several pairs of pentagons for which the operation O2 is admissible. Another
good 2∗-factor of the same graph obtained by two applications of O2 at two different
pairs of pentagons marked with the same sign (bottom).
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form a 180◦ degree; otherwise it is called sharp.
We claim that there cannot be three consecutive sharp Γ-vertices along any Qi:

Suppose some Qi contains a subpath f0f1f2f3f4 with all of f1, f2, and f3 sharp and f0
direct (see Figure 1.33). If f1f3 had been a white Γ-edge after Phase 2, we would not
have decided to choose f2. Therefore, f2 was a Γ-vertex already after Phase 2, which
means that f0f2 was a white Γ-edge after Phase 2. If f2f4 was also a white Γ-edge
after Phase 2, we would have decided one of them in the other way. Therefore, f3
was a Γ-vertex already after Phase 2, but not f4, which means that f4 is sharp. As
f1 must have been chosen because of the other Γ-edge incident to f0, f4 should never
have been chosen, a contradiction.

f0

f1

f2

f3

f4

Figure 1.33: An illustration of a sequence of several sharp Γ-vertices along a Γ-path.

A (black) Γ-edge joining two direct Γ-vertices f and f ′ completes the boundary
of two partial faces in H1 and H2, each having three incident 3-vertices. After the
suppression of 2-vertices in H∼, in H these two partial faces are merged into a
hexagon.
The 60◦ angle at a sharp Γ-vertex f contains a partial face of H∼ having one

3-vertex, which is to be merged with (at least) two other partial faces.
If both Γ-vertices adjacent to f in Γ are direct, then a face of size 7 is created

in H by merging two partial faces each having three incident 3-vertices in Hi with
a partial face having one incident 3-vertex in H3−i. On the other hand, opposite to
this one, there is a face of H∼ whose size is decreased by 1 by the suppresion of the
2-vertex f – a pentagonal face is created in H.
If one of the vertices adjacent to a sharp vertex in Γ is a sharp one, they are

transformed into a face of size 8 and two pentagons in H. See Figures 1.34 and 1.35
for an illustration.
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Figure 1.34: The simple 2-factor obtained by the general procedure from the good 2∗-
factor in Figure 1.32, depicted together with the residual graph H and the auxilliary
graph Γ (top). Another simple 2-factor obtained from the previous one by ”flipping
out” unnecessary zig-zags of sharp Γ-vertices (bottom). Observe that for the latter,
the residual graph H has faces of size 5, 6, and 7 only and it is cyclically 5-edge-
connected.
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Figure 1.35: Two different simple odd 2-factors of the graph in Figure 1.21 with the
largest number of vertices of the residual graph H (82) we were able to find.
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1.5.3 The computer-assisted part: Checking the correctness
of the algorithm in the neighborhood of small faces
close to each other

Let G be a Barnette graph. Let S(G) be the set of the small faces (faces of size 4 or
5) of G. Recall that 2f4 + f5 = 12, where f4 and f5 are the numbers of quadrangles
and pentagons in G, respectively.

1.5.3.1 Patches

A patch is a 2-connected subcubic plane graph P , having at most one face of size
different from 4, 5 and 6, and such that all vertices of P of degree 2 are incident
to this special face, often referred to as the outer face of the patch; moreover, P
contains no pair of adjacent 4-faces. When a patch is depicted, there are additional
pending half-edges at vertices of degree 2 towards the outer face.
The curvature of a patch P , denoted by µ(P ), is equal to 2f4(P ) + f5(P ), where

f4(P ) and f5(P ) are the numbers of quadrangles and pentagons in P (distinct from
the outer face of P ), respectively.
We denote ∂(P ) the boundary of a patch P – the facial cycle of the outer face of

P ; we denote δ(P ) the perimeter of a patch P , the number of 2-vertices in P .
The boundary vector σ(P ) of a patch P is a cyclic sequence of distances between

consecutive 2-vertices on the boundary cycle of P . The length of σ(P ) is equal to
δ(P ) and its sum is equal to the length of ∂(P ). When expliciting elements of a
cyclic sequence σ, we write xk as a shortcut for k consecutive occurences of a value
x in σ.
Each vertex of ∂(P ) is either a 2-vertex or a 3-vertex in P . The proportion of

2-vertices along ∂(P ) is determined by the curvature of P , as is stated explicitely in
the following lemma, which is a generalisation of an observation from [48] and can
be derived directly from Euler’s formula by the same double-counting arguments.

Lemma 12 Let P be a patch of curvature µ. Then

2δ(P )− |∂(P )| = 6− µ.

Observe that for patches of curvature (greater than, less than) six, the average value
of σ(P ) is (greater than, less than, respectively) two.
LetX = (x1x2 . . . xℓ) be a cyclic sequence of integers. Let µ(X) = 6+

∑ℓ
i=1(xi−2)

be the curvature of X. A cyclic sequence X of curvature six is called convex if
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1 ≤ xi ≤ 3 for all i ≤ ℓ and if it contains neither 32j3 nor 12j1 for any j ≥ 0. (How-
ever, the absence of one implies the absence of the other.) A cyclic sequenceX of cur-
vature µ ≤ 5 is called convex if it is composed of 6−µ convex segments. Here a con-
vex segment is a sequence of the form 2a132b1132b2 . . . 132bs(13)c12d1312d2 . . . 312dt31
where s, t, a, b1, b2, . . . , bs, c, d1, d2, . . . , dt are non-negative integers, and moreover,
b1 ≥ b2 ≥ · · · ≥ bs and d1 ≤ d2 ≤ · · · ≤ dt. A cyclic sequence X = (x1x2 . . . xℓ) of
curvature µ ≥ 7 is called convex if the sequence Y = (2− xi)

ℓ
i=1 is convex.

A patch P is called convex if its boundary vector σ(P ) is convex.
Note that, in particular, a patch P of curvature µ ≤ 5 with a boundary vector of

the form (12k112k2 . . . 12kt) where t = 6 − µ, k1, k2, . . . , kt ∈ N0, is convex, and that
k1 + k2 + · · ·+ kt = δ(P )− t.
We denote by P i←j a patch obtained from P by adding a face of size j to P along

the path corresponding to the i-th element of σ(P ), if such a patch exists, see Figure
1.36 for an illustration.

σi

P1 P i←6
1 P i←5

1 P i←4
1

σi

P2 P i←6
2 P i←5

2 P i←4
2

Figure 1.36: Two different examples of three different patches obtained from a given
patch (on the left) by inserting a new face at the element σi of its boundary vector.

It may happen that while adding a new face to a patch, we have to identify some
elements (vertices/edges/faces) of the patch, as in the second row of Figure 1.36. It
may even happen that adding a new face of some desired size to a specific place of
a patch is not possible, since the faces to be identified are not of the same size.
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Patches in Barnette graphs

Let G be a Barnette graph. We say that a patch P is contained in G if there is a
graph homomorphism φ : P → G such that all faces of the patch (except for the outer
face) are also faces of G. We say that a patch P is realizable if it is contained in some
Barnette graph. The homomorphism φ restricted to the set of vertices (edges, inner
faces) of P does not have to be injective; if it is not, we say that P is self-overlapping
in G.
Observe that a patch P of perimeter 0 is contained in a Barnette graph G if and

only if P = G and the outer face of P is a face of G. Similarly, a patch P of perimeter
2 is contained in a Barnette graph G if and only if P = G \ e for some edge e of
G and the outer face of P is the union of the two faces incident to e in G. Finally,
since Barnette graphs are cyclically 4-edge-connected, a patch P of perimeter 3 is
contained in a Barnette graph G if and only of P = G \ v for some vertex v of G
and the outer face of P is the union of the three faces incident to v in G. On the
other hand, no patch of perimeter 1 can be realizable, since it would correspond to
a cut-edge in a Barnette graph.
Some (but not all) realizable patches can be obtained in the following way: For

any induced cycle C of a Barnette graph G, there are two distinct (but not disjoint)
patches P and P̄ contained in G such that ∂(P ) = ∂(P̄ ) = C. It is easy to see that
we have µ(P ) + µ(P̄ ) = 12 and that δ(P ) is equal to the number of edges of the cut
separating P from G \ P .
Moreover, as each vertex of C is either a 2-vertex in P or a 2-vertex in P̄ ,

δ(P ) + δ(P̄ ) is equal to the length of ∂(P ).
As a direct consequence of Lemma 12 we obtain the following observation.

Lemma 13 Let C be an induced cycle in a Barnette graph and let P and P̄ be the
two corresponding patches. Then

δ(P )− δ(P̄ ) = 6− µ(P ) = 6 + µ(P̄ ).

However, there are patches contained in Barnette graphes which cannot be obtained
this way: it is not always true that the facial cycle of the outer face of a patch
corresponds to an induced cycle of the host Barnette graph – a patch can even be
self-overlapping. There also exist patches that are not realizable at all, see Figure
1.37 for an example.

Lemma 14 Let P be a realizable patch of perimeter at least 2. For every element
σi of its boundary vector there exists j ∈ {4, 5, 6} such that P i←j is also a realizable
patch, moreover, it is contained (at least) in the same Barnette graph as P .
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σi

Figure 1.37: An example of a patch that is not realizable at all: Any attempt to
insert a new face of size 4, 5 or 6 at σi leads always to a contradiction.

Proof. Let P be contained in a Barnette graph G. Each element of σ is a path
contained in a facial cycle of some face of G of a certain size j ∈ {4, 5, 6}. Therefore,
the face added to the patch corresponds to a face of G. □

Note that in the proof of Lemma 14, even if the embedding of P in G is injective,
the embedding of P i←j does not have to be injective. Later, we are going to define
a way to avoid this situation as much as possible, by carefully choosing the element
σi to add a new face at.

Primitive patches

A convex patch of curvature µ ≤ 5 is primitive if the mutual position of its small
faces is the same as in one of the patches depicted in Figure 1.38 or it has no small
faces at all (for µ = 0).
Observe that each convex patch with at most one small face is primitive.

Lemma 15 Let P be a convex patch of curvature µ ≤ 5 which is not primitive.
Then there exists another patch P ′ with the same curvature and the same boundary
vector as P on a bigger number of vertices.

Proof. Suppose that there exists a convex patch of curvature µ ≤ 5 which is not
primitive, and all the convex patches of given curvature and boundary vector have
at most as many vertices as P .
If P has at most one small face, then it is primitive by definition, a contradiction.

Therefore, we may assume that P has at least two small faces.
If all the small faces of P are pairwise adjacent to each other, then P has at

most three small faces, moreover, if it has three small faces, at most one of them is
a quadrangle. In all the cases the patch is primitive, a contradiction.
We may suppose that P has two small faces f1 and f2 which are not adjacent

to each other. We claim that f1 and f2 are at mutual position (1, 1) and the edge
connecting them is incident to a quadrangle:
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Figure 1.38: Mutual position of small faces in primitive patches for different values
of curvature 1 ≤ µ ≤ 5.

Suppose f1 and f2 are two small faces in mutual position (c1, c2) such that c1 ≥
c2 ≥ 1 and c1 ≥ 2. Then there exists a new patch P ′ with the same boundary vector
and the same curvature, but with a bigger number of vertices: P ′ can be found by
inserting two pentagons and c1 + c2 − 3 hexagons along a shortest path joining f1
and f2. (The path is in P due to convexity of P .) By applying this operation, the
size of f1 and f2 is increased by one; the mutual position of the two new pentagons
is (c1 − 1, c2 − 1), see Figure 1.39(a) for an illustration. The patch P ′ is indeed a
patch of a Barnette graph, since no pair of adjacent quadrangles can be created this
way.
Similarly, if c1 ≥ 3 and c2 = 0, then there is a sequence h1, . . . , hc1−1 of hexagons

forming a dual path joining f1 and f2. We subdivide the edge between f1 and h1

and the edge between hc1−1 and f2 once; we subdivide each edge between hi and hi+1

(1 ≤ i ≤ c1 − 2) twice; we join the new vertices in such a way that h1 and hc1−1 are
split into a pentagon and a hexagon and that all other hexagons in the sequence are
split into two new hexagons. Again, the size of f1 and f2 is increased by one and a
new pair of pentagons at mutual position (c1−2, 1) is created, see Figure 1.39(b) for
an illustration.
Analogously, if (c1, c2) = (2, 0), then there is a hexagon h adjacent to both f1 and

f2. (If the face h adjacent to both f1 and f2 was a pentagon, then f1 and f2 would
rather be in a mutual position (1, 1).) To obtain P ′, it suffices to subdivide the two
edges h shares with f1 and f2, respectively, and join the two new vertices by a new
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Figure 1.39: If a patch contains at least two non-adjacent small faces, it can be
transformed to another one with more vertices, unless the two small faces are in
position (1,1) and the edge connecting them is incident to a quadrangle: Two generic
cases (a,b) and two special cases (c,d). The size of the two small faces is always
increased by one (so if they were pentagons, they are no more small); two new
pentagons or one new quadrangle are created.

edge. This way h is split into two pentagons and the size of f1 and f2 is increased
by one, see Figure 1.39(c) for an illustration.
Finally, let (c1, c2) = (1, 1). Then f1 and f2 are connected by an edge e. If the

edge e is not incident to any quadrangle, then new patch P ′ can be obtained by
replacing e by a quadrangle, see Figure 1.39(d) for an illustration. Since the size of
f1 and f2 is increased by one, there can not be two adjacent quadrangles in the patch
P ′.
To conclude, for every pair of non-adjacent small faces of P , there is a quadrangle

adjacent to both of them, so both of them are pentagons, and so µ ≥ 4 and P contains
a quadrangle adjacent to two pentagons (which are not adjacent to each other). If
µ = 4, then P has no other small faces, so it is primitive, a contradiction. If µ = 5,
then P contains an additional pentagon, which, due to the previous observations,
has to be adjacent to (the only) quadrangle – again we obtain a primitive patch, a
contradiction. □

Corollary 2 For a given curvature µ ≤ 5 and a given convex boundary vector, a
(convex) patch with maximal number of vertices has to be a primitive one.

Lemma 16 Let P be a convex patch of curvature µ ≤ 5 and boundary vector σ.
Then there exists a unique primitive patch P̄ (µ, σ) with the same curvature and the
same boundary vector.

Proof. The existence is given by the previous lemma. The uniqueness can be proven
by induction, by adding/removing rows of hexagons from a patch, or, alternatively,
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by considering embeddings of patches onto infinite hexagonal cones. We omit the
details. □

Lemma 17 Let P be a convex patch of perimeter p and curvature µ ≤ 5. Then P
has at most p2

6−µ vertices.

Proof. It suffices to count the numbers of vertices of primitive convex patches. We
omit the details. □

It is worth mentioning that the bound from Lemma 17 is tight only if µ(P ) ≤ 2
and the patch contains at most one small face.

Corollary 3 Let P be a convex patch of curvature µ ≥ 7. Then P can be realized
only in finitely many Barnette graphs.

The largest Barnette graph containing a given realizable convex patch of curva-
ture µ ≥ 7 can be found by adding the corresponding (unique) primitive patch of
curvature 12− µ.

Patch closure and essential patches

A k-disc centered at a face f of a plane graph G, denoted by Bk(f), is a subgraph
of G composed of facial cycles of faces at (dual) distance at most k from the face f .
Note that if k is large enough, then Bk(f) = G for any f .
A patch P ′ is called a closure of a patch P , if

1. P is contained in P ′,

2. every small face of P ′ corresponds to a small face of P ,

3. P ′ contains the 2-discs centered at the small faces of P , and

4. P ′ is convex.

A patch P is called closed if it is a closure of itself.
Clearly, if P ′ is a closure of P , then P ′ can be obtained from P by adding a finite

number of hexagons.
Let P be a patch with boundary vector σ(P ) = σ1σ2 . . . σk. The small face

distance of a value σi is equal to the minimum of the distances d(f ∗, g∗), where f is
the new face of the patch P i←j (for some j sufficiently big), g runs the set of small
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faces of P , and the distances are taken in the inner dual (dual without the vertex
representing the outer face) of P i←j.
Let P be a patch which is not convex. Then we set all the values of its boundary

vector as admissible.
Let P be a convex patch with boundary vector σ(P ) = σ1σ2 . . . σk. A value σi is

called admissible, if the small face distance of σi is at most 2.
Observe that boundary vectors of closed patches have no admissible values.
Let P be a patch with boundary vector σ(P ) = σ1σ2 . . . σk which is not closed.

A critical element of the boundary vector of P is an admissible value σi such that

� σi is maximal, and then

� the sum σi−1+σi+1 (incides taken modulo k) is maximal, unless µ(P ) ≤ 6 and
maxki=1 σi = 3; in which case we choose σi = 3 contained in a subsequence 32j3
of minimum length, and then

� the small face distance of σi is minimal.

The definition of a critical element may seem technical and unnecessarily com-
plicated, however, it was optimised during the developpement of the program that
generates the patches in order to avoid situations where existing faces of a patch
ought to be identified (as in the lower line of Figure 1.36) and to avoid considering
patches that are not realizable at all (cf. Figure 1.37.)

Lemma 18 Let G be a Barnette graph and let f be a small face of G. Then there
exists a finite sequence of patches {Pk}tk=1 contained in G such that

� P1 is a cycle of length equal to the size of f ;

� Pk+1 = P i←j
k , where j ∈ {4, 5, 6} and σi is a critical element of σ(Pk);

� for each k, in the embedding of Pk into G, the face f corresponds to a face of
Pk;

� either Pt is the first closed patch of the sequence or Pt = G.

Proof. The existence of the sequence is guaranteed by Lemma 14. Either adding
faces one by one yields a closed patch, or all the faces of G are eventually added. In
both cases the sequence is finite. □
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Observe that the sequence {Pk}tk=1 of patches contained in a Barnette graph G
starting with a fixed small face f of G given by Lemma 18 is not unique – it may
depend on the choice of a critical element.
Let f be a small face of a Barnette graph G and let P be a patch. If P = Pt for

some sequence described in Lemma 18 starting with f , then we call P an essential
patch for f in G.

Patches as nanotube caps

Lemma 19 Let P be a convex closed patch of curvature µ = 6. If P is realized in a
Barnette graph G, then G is a nanotube, the type of which is determined by σ(P ).

Proof. Let σ = σ(P ). By convexity of P , σ only contains 1s, 2s and 3s. Since µ = 6,
the number of 1s and 3s in σ is the same, and, again by convexity of P , σ contains
neither 12k1 nor 32k3 as a (cyclic) subsequence.
Since P is closed, all the faces of P adjacent to the outer face are hexagons. If

σ = 2p for some p, then those faces form a ring of type (p, 0) in P .
If σ = 12k132l1 · · · 12kt32lt (up to a cyclic permutation), then the faces adjacent

to the outer face form a ring in P of type (p1, p2), where {p1, p2} = {t+
∑t

i=1 ki, t+∑t
i=1 li}.
It remains to observe that the ring in P corresponds to a ring in G – that the

embedding of P restricted to the set of faces of the ring is injective. □

Note that the set of faces of the dual distance 2 from the outer face of a convex
closed patch of curvature 6 is a ring of a nanotube as well – a convex closed patch
of curvature 6 thus contains two disjoint rings of the same type.

1.5.3.2 Patches and the general procedure

Let P be a patch essential for some small face of a Barnette graph G. Then the
Hamiltonian cycle CT of the triangulation T capturing the mutual position of small
faces of G enters and leaves P at least once.
We will modify the general procedure in order to ensure that we can choose a

cycle CT entering and leaving P exactly once: For essential patches of curvature at
least 6 this is automatically true due to convexity of the patch and minimality of the
cycle. For each essential patch P of curvature at most 5 we can temporarily replace
P by the corresponding primitive patch P̄ ; in the resulting graph we find the cycle
C∗ visiting each small face exactly once. Since in P̄ each small face is adjacent to
some other small face, the small faces of P̄ are consecutive along C∗ by minimality
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of C∗. When replacing back the primitive patches by the actual patches, we keep the
order in which the (primitive) patches were covered by C∗ and we keep the position
of the segments joining different patches. We disregard the way how C∗ visits the
small faces inside each essential patch, since we will inspect that in details later.
From this point on we may assume that for each essential patch P there are

exactly two segments leaving P , say P ∗i and P ∗j . For any position of the segments
P ∗i+1, . . . , P

∗
j−1 inside P , the difference φj ◦ φ−1i is a permutation of three elements

which is even if and only if µ(P ) is even (each pentagon of P contributes with a
single transposition).
If µ(P ) is odd, then the difference φj◦φ−1i is an odd permutation – a transposition.

Therefore, among the nine choices of colorings of G1 and G2, for one choice both
segments leaving P are inactive, for four choices one of them is active and the other
one is inactive, and for the remaining four both segments are active – the patch
behaves like a pentagon. We will call these patches type 1.
If µ(P ) is even and the difference φj ◦ φ−1i is the identity, then among the nine

choices of colorings of G1 and G2, for three of them both segments are inactive and
for the remaining six both segments are active – the patch behaves like a quadrangle.
We will call these patches type 0.
If µ(P ) is even and the difference φj ◦ φ−1i is an even permutation different from

the identity, then it has to be a cycle of length three. Therefore, among the nine
choices of colorings of G1 and G2, for three of them both segments are active and for
the remaining six there is one active and one inactive segment – the patch behaves
like a pair of pentagons of different colors. We will call these patches type 2.

Let P be a patch essential for some small face of a Barnette graph G. Let the
position of two segments leaving P and all the segments inside P be fixed. Let one
of the nine colorings of G1 and G2 be chosen. Let the procedure described in Section
1.5.2 be applied. We first obtain a 2∗-factor, which is then transformed into at most
two 2-factors (depending on the order of decisions at 2-cycles of the 2∗-factor).
Let H0

P be the subgraph of the residual graph H induced by the vertices cor-
responding to the faces of P and faces adjacent to faces of P in G. There can be
vertices of degree 1 or 2 in H0

P . We add 3 − d new vertices adjacent to each vertex
of degree d in H0

P inside the outer face; we then connect all these new vertices by a
new cycle. This way we obtain a plane cubic graph HP , we call it partial residual
graph.
Let f ∗ be a vertex of HP corresponding to a face f of P . The face f is a white

resonant hexagon. If we recolor f black, then three different components of the
underlying 2-factor are merged into a single cycle; the vertex f ∗ is deleted from HP

and the three resulting 2-vertices are suppressed. We call this operation elimination
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of f ∗.
We say that a plane cubic graph is strongly essentially 4-edge-connected, if it is

cyclically 3-edge-connected, and every cyclic 3-edge-cut separates a triangle adjacent
to the outer face from the rest of the graph.
We say that a plane cubic graph is essentially 4-edge-connected if it can be trans-

formed into a strongly essentially 4-edge-connected plane graph by a vertex elimina-
tion.
We say that a patch P is regular, if for every possible position of a pair of segments

leaving P and for every choice of the colors of G1 and G2, there is a permutation
of small faces of P such that for each of the (at most) two 2-factors obtained by
the general procedure the corresponding partial residual graph is essentially 4-edge-
connected. See Figures 1.40 and 1.41 for an illustration.
We say that a patch P is weakly regular, if for every possible position of a pair of

segments leaving P there exists a choice of the colors of G1 and G2 such that there
is a permutation of small faces of P such that for at least one 2-factor obtained by
the general procedure the corresponding partial residual graph is essentially 4-edge-
connected.
We say that a patch P is parity-switching if for every possible position of a pair

of segments leaving P there exists a choice of the colors of G1 and G2 such that there
exists a permutation of small faces of P such that one of the operations O1 and O2 can
be applied inside P ; for both 2∗-factors (before and after the operation), for at least
one 2-factor the corresponding partial residual graph is essentially 4-edge-connected.

1.5.3.3 Generation of patches

Theorem 11 There exists a finite set P of patches such that for every Barnette
graph G on at least 318 vertices and every small face f of G, there exists a patch
P ∈ P essential for f in G.

Proof. We prove the claim by construction. We used Algorithm 1 to generate all
the patches in P , by two calls of the procedure Generate(), passing as a parameter
first a 4-cycle and then a 5-cycle, with the database of patches containing initially the
closures of the two initial patches. The procedure uses Algorithm 2 as a subroutine
to calculate a closure of a given patch.
If the insertion at lines 6, 11, or 16 of Algorithm 1 fails, it means that there is no

Barnette graph containing the current patch P such that the element σi corresponds
to a j-face for j = 4, 5, or 6, respectively. If this is the case, the following lines are
ignored until the next insertion. Similarly for the insertion at line 6 of Algorithm 2.
□
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Figure 1.40: For a patch P with four pentagons and a fixed position of two segments
leaving P , for each of the nine colorings of G1 and G2 the 2∗-factor and (at most) two
simple 2-factors obtained by the general procedure are depicted. The third drawing
in the third column of the second row proves that for this position of the segments
leaving P the patch P is parity-switching.
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Figure 1.41: For a few patches with many small faces adjacent to each other, the first
outcome of the general procedure is a 2-factor such that the corresponding partial
residual graph is not strongly essentially 4-edge-connected (left). However, to obtain
a strongly essentially 4-edge-connected graph, it suffices to eliminate a vertex incident
to a short cycle (right).

Algorithm 1 Generation of all closed patches containing a given patch
1: procedure Generate(patch P )
2: if µ(P ) ≥ 7 and the largest graph containing P has at most 316 vertices then
return

3: else
4: let σi be a critical element of the boundary of P
5: if the path along σi is not adjacent to a 4-face then
6: P ′ ← P i←4

7: P ′′ ←Closure(P ′)
8: if P ′′ is not in the database of patches then
9: Add P ′′ to the database of patches
10: Generate(P ′)

11: P ′ ← P i←5

12: P ′′ ←Closure(P ′)
13: if P ′′ is not in the database of patches then
14: Add P ′′ to the database of patches
15: Generate(P ′)

16: P ′ ← P i←6

17: P ′′ ←Closure(P ′)
18: if P ′′ ̸= P ′ then
19: Generate(P ′)
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Algorithm 2 Computation of a closure of a given patch
1: procedure Closure(patch P )
2: if P is closed then
3: return P
4: else
5: let σi be a critical element of the boundary of P
6: P ′ ← P i←6

7: return Closure(P ′)

The counts of patches generated in the proof of Theorem 11 are depicted in Table
1.1.

f4 \ f5 1 2 3 4 5 6 7

0 1 3 11 69 450 4184 1
1 3 26 240 2789
2 23 423

Table 1.1: Numbers of essential patches in P , given number of pentagons and quad-
rangles. Amongst the patches of curvature greater than 6, only patches contained in
at least one graph on at least 318 vertices are counted.

1.5.3.4 Analyse of patches

The following statements were checked by computer:

Theorem 12 There is no patch P ∈ P with µ(P ) ≥ 8.

This means that for every patch P of curvature at least 8 considered by the
generating algorithm, the largest graph containing P has less than 318 vertices. See
line 2 of Algorithm 1 and the remark after Corollary 3.

Theorem 13 There is a unique patch P7 ∈ P with µ(P7) = 7.

Moreover, amongst the Barnette graphs containing P7, all but one have less than
318 vertices. The unique graph on (at least) 318 vertices realizing P7 contains, besides
P7, the primitive patch of curvature five. See Figure 1.42 for an illustration.
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Figure 1.42: The unique graph on at least 318 vertices containing an essential patch
of curvature larger than six.

Theorem 14 Every patch P ∈ P with µ(P ) ≤ 5 is regular. Every patch P ∈ P
with µ(P ) ∈ {6, 7} is weakly regular, unless µ(P ) = 6 and P contains a cap of a
nanotube of type (p1, p2) with (p1, p2) ∈ {(4, 0), (5, 0), (4, 1), (5, 1), (3, 2), (4, 2), (3, 3),
(4, 3)}.

Theorem 14 guarantees the existence of a simple 2-factor such that the residual
graph is cyclically 4-edge-connected. The only missing part is that we cannot be
sure that this 2-factor is odd.
We do not need to check for regularity of patches of curvature 6 and 7, weak reg-

ularity suffices instead: If a Barnette graph contains an essential patch of curvature
µ = 7, then it only contains one. Therefore, we can chose the coloring of G1 and G2

such that no segment leaving P is active.
If a Barnette graph G contains an essential patch P of curvature µ = 6, then,

by Lemma 19, G is a nanotube. We can choose the coloring of G1 and G2 such that
the tubical part of G is traversed by at most one active segment (one if P is type
2, none if P is type 0). Moreover, we may choose the direction in which the active
segment traverses the tubical part of G.
If G is a nanotube of type (c1, c2), c1 ≥ c2 ≥ 0, and the caps are (contained in)

patches of type 0, then 3 | (c1 − c2), so we can write (c1, c2) = (3a + b, b) for some
integers a, b ≥ 0. If we choose any of the three colorings of G1 and G2 such that
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no active segment traverses the tubical part of G, then the residual graph H is a
nanotube of type (a+ b, a).
If G is a nanotube of type (c1, c2), c1 ≥ c2 ≥ 0, and the caps are (contained in)

patches of type 2, then 3 ∤ (c1 − c2), so we can write (c1, c2) = (3a + b, b + 1) or
(c1, c2) = (3a + b + 1, b) for some integers a, b ≥ 0, or (c1, c2) = (3a + 2, 0) for some
integer a ≥ 1. If we choose a coloring of G1 and G2 such that one active segment
traverses the tubical part of G, then the residual graph H is a nanotube of type
(a+ b, a) (in the first two cases) or (a+ 1, a) (in the third case). See Figure 1.43 for
an illustration.

Figure 1.43: Clockwise, starting from top left: If G is a nanotube of type (7, 1), (7, 2),
(8, 1) or (8, 0), respectively, then the residual graph is a nanotube of type (3, 2).

This is the reason for excluding the aforementioned eight types of nanotubes.
The following claim was verified by a computer.

Theorem 15 Let P ∈ P. Then P is parity-switching, unless P is one of the fol-
lowing exceptional patches:

� the patch P1 of curvature 1 having one pentagon,

� the patch P2 of curvature 2 containing two adjacent pentagons,

� the patch P3 with three pentagons sharing a common vertex,
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� two patches P4 and P5 with four pentagons, depicted in Figure 1.44,

� four patches P6, P7, P8, P9 with six pentagons, depicted in Figure 1.44.

P4 P5 P6

P7 P8 P9

Figure 1.44: Patches with 4 and 6 pentagons for which it is not always possible to
increase or decrease the number of black pentagons by 2.

Observe that P4 and P5 are both type-0 patches.
There is a combinatorial reason for the patches P3-P9 not to be parity-switching:

if three pentagons share a vertex, either one or two of them have to be black, so we
do not have the freedom to change their colors independentely.
As a consequence of Theorem 15, if a Barnette graph contains at least one parity-

switching essential patch, we choose the coloring of G1 and G2 that allows to change
the parity of the 2-factor inside the patch, and, by regularity, we are done.
It remains to consider Barnette graphs (in fact, fullerene graphs) only containing

patches P1-P9 and verify that we can use parity-switching operations using pentagons
from different patches.
If a fullerene graph contains P6, it is a nanotube of type (5, 0), and it is known to

be Hamiltonian [53]. If a fullerene graph contains P7 (P8, P9, respectively), then it
is a nanotube of type (4, 2) (of type (6, 2), (8, 0)) – the patch itself already contains
a corresponding ring. Out of all the possible patches (caps) to close the other end of
the tube, P7 (P8, P9) is the only one that is not parity-switching, as it was verified
by a computer. However, if both caps of a nanotube are P7 (P8, P9), then it has an
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even number of hexagons and exactly 6 black and 6 white pentagons, so by Lemma
11 the number of cycles in the 2-factor is odd.
It remains to consider fullerene graphs only having patches P1, P2, P3, P4, and

P5.
It was verified by computer (and also checked by hand) that for each of the five

patches, for each active segment leaving the patch, the Γ-path can be transformed
into a pair of Γ-paths (interconnected inside the patch or not) – it is nothing else
than applying a half of one of the operations O1 and O2 (or its inverse) inside the
patch and the other half inside another one. See Figure 1.45 for an illustration.
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Figure 1.45: An example of a position of two segments leaving the patch P5 (top
left). For a fixed coloring of G1 and G2 (second column), for any active segment
leaving the patch, a half of the operation O1 or O2 can be carried out inside the
patch, changing (increasing or decreasing) the number of black pentagons by one
(third and fourth column).

In each of the patches this modification corresponds to increasing or decreasing
the number of black pentagons by one. In most of the cases both are possible. More
precisely, for each segment leaving P1, P2, P4 or P5, out of the nine possible colorings,
for three colorings the segment is inactive, for at least two colorings it is possible to
increase the number of black pentagons by one, and for at least four colorings it is
possible to decrease the number of black pentagons by one. It means that if two of
these patches are consecutive along C∗, then there exists a coloring such that we can
decrease the number of black pentagons in each of them by one. See Figure 1.46 for
an illustration.
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Figure 1.46: If two of the patches P1, P2, P4, P5 (here P4 and P2) are consecutive
along C∗, then there exists a choice of coloring of G1 and G2 such that it is possible
to decrease the number of black pentagons by one in each patch by applying the
operation O1 or O2 involving one pentagon from each patch.

On the other hand, for P3, it is possible to increase the number of black pentagons
by one for four colorings and decrease it for two of them. Again, if there are two such
patches consecutive along C∗, then there exists a coloring such that we can increase
the number of black pentagons in each of them by one.
It remains to consider fullerene graphs such that along C∗, the patches P3 al-

ternate with other types of patches among {P1, P2, P4, P5}. Since each P3 contains
three pentagons and there are twelve pentagons altogether, it is easy to see that the
number of P3 patches is either 2 or 3.
If there are two P3 patches, the other two patches have six pentagons, and hence

one of them is P2 and the other one is either P4 or P5. The patch with four pentagons
has to be far from each of the P3 patches, otherwise the graph would have at most
316 vertices (see Lemma 17). The patches P4 and P5 are both type 0. That is why
we may omit the four-pentagon patch (P4 or P5) and search only for a cycle passing
through the eight pentagons of the other three patches; we consider P4 or P5 as if no
segment leaving it was active. As a consequence, we find two P3 patches consecutive
along C∗.
If there are three P3 patches, the other three patches can only have one pentagon

each. Moreover, the condition that for each segment joining a P3 to a P1 the two
colorings allowing to decrease the number of black pentagons in P3 correspond to the
two colorings allowing to increase the number of black pentagons in the other patch
implies that out of the nine colorings, there is one with no active segment joining
a P3 to a P1, there are four colorings with three active segments and three inactive
segments alternating, and there are four colorings with all the six segments active. In
all the cases there are three Γ-paths in G. (In the case of no active segments joining
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different patches, there is still a Γ-path joining different pentagons inside each P3.)
If we replace a vertex incident to three pentagons inside each P3 by a triangle

temporarily, then the graph will contain three pentagons and three triangles (and all
the other faces will be hexagons). Moreover, in the coloring of G1 and G2 all the six
small faces have the same color.
By the structural theorem of Alexandrov (see e.g. [12], Theorem 23.3.1, or [59],

Theorem 37.1), such a graph can be isometrically embedded onto a surface of a
(possibly degenerate) convex polyhedron, say P . The polyhedron P has six vertices,
and the cycle C∗ is a Hamiltonian cycle in some triangulation of P .
The cycle C∗ cuts the polyhedron P into two hexagons. In the two hexagons the

angles at a fixed P3-vertex (center of a triangle) sum up to 180◦, and hence they are
both always convex (i.e. smaller than 180◦). For the angles at the P1-vertices (centers
of isolated pentagons), in at least one hexagon the angle is convex. Therefore, it is
always possible to permute a P1 patch with a P3 patch to obtain a new cycle with
two consecutive patches of the same type, which gives us a possibility to change the
parity of the number of cycles. See Figure 1.47 for an illustration.
This concludes the proof of Theorem 10.

1.5.4 Concluding remarks

Similar technique could be used to prove Hamiltonicity of related graph classes:
planar cubic graphs with only a few faces of size larger than six; projective-planar
graphs with faces of size at most six (except, of course, for the Petersen graph), etc.
Let us recall that if G is a fullerene graph with an odd number of faces, then

L(G), the leapfrog of G, is a fullerene graph again. If Lemma 10 is applied to L(G)
with M being the complement of the 2-factor consisting of the disjoint union of the
facial cycles corresponding to the faces of G, then the residual graph is nothing else
but G. Clearly, G is cyclically 4-edge-connected (fullerene graphs are known to be
cyclically 5-edge-connected), and so in this case, L(G) is Hamiltonian.
Moreover, if we do not take Theorem 9 for granted, we can show that there are

exponentially many decompositions of a given fullerene graph G with an odd number
of faces into an induced tree and a stable set, providing an exponential lower bound
on the number of Hamilton cycles in L(G). More details can be found in [47].
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Figure 1.47: Top to bottom, left to right: An exemple of a fullerene graph on 198
vertices containing three patches P3 and three patches P1. An even 2-factor with
three Γ-paths without a possibility to apply O1 or O2. Another even 2-factor obtained
by switching the order of the patches. An odd 2-factor after applying O1.
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Chapter 2

Perfect matchings in cubic graphs

One of the oldest results in graph theory is a theorem of Petersen, stating that
every bridgeless cubic graph has a perfect matching. The original Petersen’s proof
is rather complicated; modern textbooks usually give a straightforward proof using
Tutte theorem.
Why bridgeless? Clearly, by the handshaking lemma, if a cubic graph with a

bridge admits a perfect matching, the bridge has to be included in the perfect match-
ing. Therefore, it is very easy to find cubic graphs without a single perfect matching
– it suffices to make two bridges adjacent, for instance.
On the other hand, being bridgeless seems to be a fundamental structural prop-

erty of cubic graphs, since there are many open questions and conjectures about
bridgeless cubic graphs which become false when the condition of bridgelessness is
omitted. Several of them speak about interactions between perfect matchings. Let
us recall a couple of the most famous ones.

Conjecture 2 (Berge-Fulkerson 1971 [31]) Let G be a bridgeless cubic graph.
Then there exists a collection of six perfect matchings, covering every edge exactly
twice.

The statement is trivially true for 3-edge-colorable graphs (it suffices to consider
two copies of each color class). In particular, by the Four Color Theorem, all planar
graphs satisfy Berge-Fulkerson Conjecture.
If Berge-Fulkerson conjecture is true, then it directly implies

Conjecture 3 (Fan-Raspaud 1994 [28]) Let G be a bridgeless cubic graph. Then
there exists a collection of three perfect matchings with empty intersection.
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These two conjectures on perfect matchings interactions were indirectly supported
by yet another one, saying, informally speaking, that there is a big chance to find
some perfect matchings with desired properties as long as there are plenty of them:

Conjecture 4 (Lovász-Plummer 1986 [61]) Let G be a bridgeless cubic graph.
Then G has exponentially many perfect matchings.

While the first two conjectures remain open, the last one was settled by a group
of five authors including myself in 2011.
As a special case, Voorhoeve [65] proved already in 1979 that Lovász-Plummer

conjecture is true for bipartite bridgeless cubic graphs. In his proof, he uses an
elegant elementary operation of splitting a path (to be defined below).
In this chapter, we will explain two main results. First, we will show that it is

possible to use the path splitting (together with some careful analysis of short edge-
cuts) beyond bipartite graphs (and so to prove the Lovász-Plummer conjecture for
all bridgeless cubic graphs). Second, we will indicate how path splitting (again with
some careful analysis of short edge-cuts) can be adapted to serve to approach the
conjectures of Berge-Fulkerson and Fan-Raspaud.

All the graphs considered in this chapter are loopless. On the other hand, par-
allel edges are allowed, unless stated otherwise (or they are eliminated by stronger
connectivity assumptions).
Let us introduce the main character of this chapter, namely the operation of

splitting a path now.
Let u1v1v2u2 be a path in a cubic graph G. Let w1 (w2) be the third neighbor of v1

(v2, respectively). Suppose that the vertices u1 and w1 are distinct from the vertices
u2 and w2. Let G′ be the cubic graph obtained from G by deleting the vertices v1
and v2 together with all incident edges, and by adding the edges u1u2 and w1w2. We
say that G′ is obtained by splitting the edge v1v2. More precisely, if needed, we will
also say that G′ is obtained after a (u1u2 : w1w2)v1v2-reduction.
It is a known fact [26] that when applying this operation, the cyclic edge-connect-

ivity of a cubic graph can drop by at most 2.
Note that if G is bipartite, then G′ is bipartite too. Observe that two distinct

graphs (usually non-isomorphic) can be obtained by splitting the same edge – in the
definition, the vertices u2 and w2 might interchange their roles.

78



2.1 Counting perfect matching in bridgeless cubic
graphs

Let us focus now on bounding the number of perfect matchings in bridgeless cubic
graphs from above.
Throughout this section, we will use the following common notation.
Let m(G) denote the number of perfect matchings of a graph G. Let me(G)

denote the number of perfect matchings of a graph G avoiding an edge e of G.

2.1.1 Bipartite cubic graphs and beyond

As a warmup, and also to appreciate how useful the edge splitting can be, let us
start by reproving Voorhoeve’s result.

Theorem 16 (Voorhoeve 1979 [65]) Let G be a bipartite cubic graph on n ver-
tices. Then

m(G) ≥ 9

4

(
4

3

)n/2

.

We will prove a stronger statement.

Theorem 17 (Voorhoeve 1979 [65]) Let G be a bipartite cubic graph on n ver-
tices and let e be an edge of G. Then

me(G) ≥ 3

2

(
4

3

)n/2

.

Let us prove first that the latter implies the former. Let {e1, e2, e3} be three edges
incident with the same vertex. Then every perfect matching of G is counted exactly
twice in the numbers me1(G), me2(G), and me3(G). Therefore,

m(G) =
1

2
(me1(G) +me2(G) +me3(G)) ≥ 3

2
· 3
2

(
4

3

)n/2

=
9

4

(
4

3

)n/2

.

Proof. (of Theorem 17) We do it by induction. There is only one bipartite cubic
graph on 2 vertices, a graph that consists of three parallel edges. Clearly,

2 = me(G) ≥ 3

2

(
4

3

)2/2

= 2
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for every edge e, and so the claim holds.
Let G be a bipartite cubic graph on n ≥ 4 vertices. If G is disconnected, let

G1 be the connected component of G containing e and let G2 = G \ G1. We may
apply induction on G1 (with e) and on G2 (with an arbitrary edge e′). Every perfect
matching of G1 avoiding e combines with every perfect matching of G2 avoiding e′

into a perfect matching of G avoiding e. Therefore,

me(G) ≥ me(G1) ·me′(G2) ≥
3

2

(
4

3

)n1/2

· 3
2

(
4

3

)n2/2

>
3

2

(
4

3

)n/2

where n1 and n2 are the orders of G1 and G2, respectively.
We may assume that G is connected. In particular, there are no three parallel

edges in G. Consider an edge e in a pair of parallel edges e, e′ connecting two vertices
u and v; let eu and ev be the third edge incident with u and v, respectively. Let G′

be the graph obtained by deleting the edge e and suppressing the vertices u and v
of degree two. Clearly, G′ is a bipartite cubic graph on n− 2 vertices. By induction,
using the same argument as above, m(G′) ≥ 9

4

(
4
3

)(n−2)/2
. Moreover, every perfect

matching of G avoiding e corresponds to a unique perfect matching of G′. Therefore,

me(G) = m(G′) ≥ 9

4

(
4

3

)(n−2)/2

=
27

16

(
4

3

)n/2

>
3

2

(
4

3

)(n−2)/2

.

Consider now an edge e adjacent to a pair of parallel edges f, f ′. Let e′ be the
other edge adjacent to both f and f ′. Let G′ be the graph obtained by deleting f and
suppresing two vertices of degree two. Clearly, G′ is a bipartite cubic graph on n− 2

vertices. By induction, me(G
′) ≥ 3

2

(
4
3

)(n−2)/2
. Moreover, every perfect matching of

G′ avoiding e extends to two distinct perfect matchings of G. Therefore,

me(G) = 2 ·me(G
′) ≥ 2 · 3

2

(
4

3

)(n−2)/2

=
9

4

(
4

3

)n/2

>
3

2

(
4

3

)(n−2)/2

.

It remains to consider the case when neither e nor any of its adjacent edges belong
to a pair of parallel edges. Consider a bipartite graph G′ on n − 2 edges obtained
from G by splitting an edge adjacent to e. Let e denote the edge of G′ corresponding
to e (the one of the two added edges incident with an endvertex of e in G). It is easy
to see that every perfect matching of G′ avoiding e can be uniquely extended to a
perfect matching of G.
Consider all four different graphs G′1, G

′
2, G

′
3, and G

′
4 obtained by splitting one of

the two edges adjacent to e incident with the same end-vertex. Then every perfect
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mathing of G avoiding e is obtained by extending a perfect matching avoiding e
in precisely three out of the four smaller graphs, see Figure 2.1 for an illustration.
Therefore,

me(G) =
1

3

4∑
i=1

me(Gi) ≥
4

3
· 3
2

(
4

3

)(n−2)/2

=
3

2

(
4

3

)n/2

as desired. □

e

G4G3

G2G1

e

G

e e

e

Figure 2.1: Splitting one of the two edges adjacent to e at the same end-vertex of G,
in two different ways each, gives four different graphs G1, . . . , G4.

Vorhoeve’s trick with splitting a path cannot be applied directly in the general
case, since splitting an edge in a bridgeless cubic graph might lead to a graph contain-
ing a bridge. Moreover, there are examples of bridgeless cubic graphs G containing
an edge e with only a constant number of perfect matchings avoiding the edge e.
(We will meet some of them later in the second part of this chapter when we will
deal with Klee graphs.)

2.1.2 The general case: the context

Various different methods and tools had been used to find general lower bounds on
the number of perfect matchings in bridgeless cubic graphs. Edmonds, Lovász and
Pulleyblank [22] proved that any cubic bridgeless G contains at least 1

4
|V (G)| + 2

perfect matchings (see also [58]); this bound was later improved to 1
2
|V (G)| [50] and

then 3
4
|V (G)| − 10 [27]. The first bound, proved in 1982, is a direct consequence

of a lower bound on the dimension of the perfect matching polytope, while the
more recent bounds combine polyhedral arguments with analysis of brick and brace
decompositions.
The fact that a progress on the constant in front of the linear term was considered

as a significant progress and published in prestigious journal shows how difficult it
seemed to grasp the conjecture at that time.
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We started to work on this problem first with Louis Esperet and Dan Kráľ and we
revisited the path-splitting method of Vorhoeve. The crucial observation that lead to
a first super-linear lower bound on the number of perfect matching is the following:
By splitting a path, the cyclic edge-connectivity cannot drop by more than 2; even
if this is the case, it can only happen in at most one out of the four graphs obtained
this way. Therefore, it suffices to find ad hoc arguments that yield a lower bound on
the number of perfect matchings avoiding a given edge in cubic bridgeless graphs of
low edge-connectivity (containing many 3- and 4-edge-cuts).
Finally, after Andrew King and Sergey Norine joined the team, we added a couple

more ingredients: For graphs of low cyclic edge-connectivity the idea of counting
perfect matchings avoiding a given edge was completely abandoned, and tools for
finding linearly many disjoint alternating cycles are developped instead; for graphs
with high cyclic edge-connectivity the perfect matchings containing a given edge
are counted instead of those avoiding a given edge. To make the two approaches
collaborate at the transition of the two states, probabilistic tools are introduced.
Letm⋆(G) denote the minimum, over all edges e ∈ E(G), of the number of perfect

matchings containing e. Our result is the following:

Theorem 18 For every cubic bridgeless graph G we have m(G) ≥ 2|V (G)|/3656.

We actually prove that at least one of two sufficient conditions applies:

Theorem 19 For every cubic bridgeless graph G, at least one of the following holds:

[S1] m⋆(G) ≥ 2|V (G)|/3656, or

[S2] there exist M,M ′ ∈M(G) such that M△M ′ has at least |V (G)|/3656 compo-
nents.

To see that Theorem 19 implies Theorem 18, we can clearly assume that [S2] holds
since m⋆(G) ≤ m(G). Choose M,M ′ ∈ M(G) such that the set C of components of
M△M ′ has cardinality at least |V (G)|/3656, and note that each of these components
is an even cycle alternating between M and M ′. Thus for any subset C ′ ⊆ C, we
can construct a perfect matching MC′ from M by flipping the edges on the cycles in
C ′, i.e. MC′ = M△⋃

C∈C′ C. The 2
|C| perfect matchings MC′ are distinct, implying

Theorem 18.
We cannot discard either of the sufficient conditions [S1] or [S2] in the statement

of Theorem 19. To see that [S2] cannot be omitted, consider the graph depicted
in Figure 2.2 and observe that each of the four bold edges is contained in a unique
perfect matching. To see that [S1] cannot be omitted, it is enough to note that there
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Figure 2.2: A graph cubic bridgeless graph G with m⋆(G) = 1.

exist cubic graphs with girth logarithmic in their size (see [38] for a construction).
Such graphs cannot have linearly many disjoint cycles, so condition [S2] does not
hold.

2.1.2.1 Definitions and notation

For a graph G and a set X ⊆ V (G), G|X denotes the subgraph of G induced by
X. For a set X ⊆ V (G), let δ(X) denote the set of edges with exactly one endpoint
in X, and let EX denote the set of edges with at least one endpoint in X, i.e.
EX = E(G|X)∪δ(X). The set C = δ(X) = E(X, Y ) with Y = V (G)\X is an edge-
cut, or a k-edge-cut, where k = |C|, and X and Y are the sides of C. A k-edge-cut
is said to be even (resp. odd) if k is even (resp. odd). Observe that the parity of an
edge-cut δ(X) in a cubic graph is precisely that of |X|. An edge-cut δ(X) is cyclic
if both G|X and G|(V (G) \X) contain a cycle. Observe that every 2-edge-cut in a
cubic graph is cyclic. If G contains no edge-cut (resp. cyclic edge-cut) of size less
than k, we say that G is k-edge-connected (resp. cyclically k-edge-connected).
Observe that the number of perfect matchings of a graph is the product of the

number of perfect matchings of its connected components. Hence, in order to prove
Theorem 18, we restrict ourselves to connected graphs for the remainder of this
thesis (this means, for example, that we can consider the terms 2-edge-connected
and bridgeless to be interchangeable, and the sides of a cut are well-defined).
For a matching M and vertex set X, we say that M covers X or that X is M-

covered if every vertex in X is an endpoint of an edge in M . Further, we use M |X
to denote the set M ∩ E(G|X).

2.1.2.2 Constants

Let x := log(4
3
)/ log(2). The following constants appear throughout the section:

α := x
314

, β1 :=
154x
314

, β2 :=
74x
314

, γ := 312x
314

.
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We avoid using the numerical values of these constants for the sake of clarity.
Throughout the section we make use of the following inequalities, which can be
routinely verified:

0 < α ≤ β2 ≤ β1, (2.1)

1/3656 ≤ α

9β1 + 3
, (2.2)

β2 + 6α ≤ β1, (2.3)

74α ≤ β2, (2.4)

146α ≤ β1, (2.5)

β2 + 80α ≤ β1, (2.6)

6α + γ ≤ log(6)/ log(2), (2.7)

γ + 2β1 + 7α− β2 ≤ 1, (2.8)

6α + 2β1 ≤ log(4
3
)/ log(2), (2.9)

2β1 + 4α ≤ γ. (2.10)

The integer 3656 is chosen minimum so that the system of inequalities above has a
solution. Inequalities (2.4), (2.6), (2.9), and (2.10) are tight.

2.1.3 Proof overview

In this section we sketch the proof of Theorem 19, postponing the proofs of two
main lemmas until later sections. Our general approach to Theorem 19 is to reduce
on cyclic 2-edge-cuts and cyclic 3-edge-cuts and prove inductively that either [S1]
or [S2] holds. Dealing with [S1] is relatively straightforward – perfect matchings
containing a given edge behave well with reductions on a cut, which is our main
motivation for considering m⋆(G). To deal with [S2], we do not directly construct
perfect matchings M and M ′ for which M△M ′ has many components. Instead,
we prove the existence of a vector w in the perfect matching polytope that in turn
guarantees the existence of such perfect matchings M and M ′. In order to do this,
we define a special type of vertex set in which a given random perfect matching
admits an alternating cycle with high probability (i.e. at least 1

3
). We call these

sets burls and we call a set of disjoint burls a foliage – a large foliage will guarantee
the existence of two perfect matchings with many components in their symmetric
difference. In the end, the vector w we seek in the perfect matching polytope will
be uniformly valued 1

3
except inside the burls.
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2.1.3.1 Alternating sets and the perfect matching polytope

To define burls properly, we must first define three notions of a vertex set X being
alternating. The first is simple. Given a matching M such that X is M -covered,
we say that X is M-alternating if there is another matching M ′ such that X is
M ′-covered and M△M ′ ⊆ (G|X). The other two notions require consideration of
random variables inM(G).
Let M be a random perfect matching, i.e. a random variable M in M(G), and

let w be a real edge weighting in RE(G). We say that M corresponds to w (and
vice-versa) if for every edge e, we have Pr[e ∈ M] = w(e). The perfect matching
polytope PMP(G) is the set of edge weightings w with at least one corresponding
random variable Mw onM(G). The second notion of an alternating set involves a
weighting w ∈ PMP(G). For such w we say that X is w-alternating if for every
Mw corresponding to w, we have

Pr[X is Mw-alternating] ≥ 1/3.

If {X1, . . . , Xk} is a collection of disjoint w-alternating sets, then for a random
variableMw inM(G) corresponding to w, the probability thatMw is Xi-alternating
for at least k/3 values of i is non-zero. Thus [S2] is satisfied as long as we have a
vector w ∈ PMP(G) and a collection of at least 3

3656
· |V (G)| disjoint w-alternating

sets. Unfortunately the notion of w-alternating sets has a troublesome shortcoming:
When deciding whether or not X is a w-alternating set, we want the freedom to
ignore the weighting w on edges not intersecting X.
Thus for the third notion of an alternating set, we look at partial edge weightings.

Given a vertex set X, let wX be a weighting on the edges of EX , i.e. those edges with
at least one endpoint in X. LetM(G,X) denote the set of matchings contained in
EX and covering X. As with edge weightings in RE(G), we say that a random variable
MX

w ∈ M(G,X) corresponds to wX (and vice-versa) if for every edge e ∈ EX , we
have Pr[e ∈ M] = w(e). We say that the set X is strongly wX-alternating if for
every random variable MX

w onM(G,X) corresponding to wX , we have

Pr[X is MX
w-alternating] ≥ 1/3.

Given an edge weighting w and an edge set E ′ such that w gives each edge in E ′ a
weight, let w|E ′ denote the restriction of w to E ′. Clearly, if we have a total edge
weighting w ∈ PMP(G) such that a vertex set X is strongly (w|EX)-alternating,
then X is w-alternating.
We now extend this idea. We wish to take a collection of disjoint vertex sets

{X1, . . . , Xk} and partial edge weightings wXi
such that each Xi is strongly wXi

-
alternating, and construct from them a total edge weighting w such that each Xi
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is w-alternating. To do this as simply as possible we want w, which must be in
PMP(G), to agree with each wXi

. Thus we certainly want the partial weightings
to agree – this only concerns edges on the boundaries of the vertex sets – but we
need more restrictions. To determine a sufficient set of restrictions for wXi

, we use
Edmonds’ characterization of the perfect matching polytope:

Theorem 20 (Edmonds [20]) Let G be a graph and let w be a vector in RE(G).
Then w is in PMP(G) precisely if the following hold:

(i) 0 ≤ w(e) ≤ 1 for each e ∈ E(G),

(ii) w(δ({v})) = 1 for each vertex v ∈ V , and

(iii) w(δ(X)) ≥ 1 for each X ⊆ V of odd cardinality.

This characterization immediately tells us that for any bridgeless cubic graph, the
vector 1

3
, i.e. the vector valued 1

3
on each edge, is in PMP(G). Given a vertex set

X, let ∂X denote the set of vertices in X incident to edges in δ(X). We say that
a partial edge weighting wX on EX is extendable from X if it satisfies the following
sufficient restrictions:

EXT1 wX(e) ∈ {0, 13 , 23} for each e ∈ EX ,

EXT2 wX(δ({v})) = 1 for each vertex v ∈ X,

EXT3 wX(e) =
1
3
for each e ∈ δ(X),

EXT4 wX(C) ≥ 1
3
for every non-empty edge-cut C in G|X,

EXT5 if wX(C) < 1 for some edge-cut C in G|X with |C| odd then either |C| = 1
or one of the sides of C contains exactly one vertex in ∂X.

We are finally ready to formally define burls and foliages. A vertex set X is a
burl if there exists a vector wX ∈ REX such that (1) X is wX-alternating, and (2)
wX is extendable from X. In this case we say that wX is a certificate for the burl
X. Again, a collection of disjoint vertex sets {X1, . . . , Xk} is a foliage if each Xi is
a burl.
We already noted that 1

3
∈ PMP(G). Thus we can easily verify that for any

vertex set X, the partial weighting 1
3
|EX is extendable from X. Actually, much

more is true. The following lemma clarifies our motivation for the definition of a
foliage:
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Lemma 20 Let G be a cubic bridgeless graph, let X = {X1, . . . , Xk} be a foliage,
and for each i let wXi

be a certificate for Xi. Let w be an edge weighting for G
defined as

w(e) =

{
wXi

(e) if e ∈ E(G|Xi)

1/3 if e /∈ ⋃
iE(G|Xi)

Then every set Xi ∈ X is w-alternating.

Proof. Since every partial weighting wXi
is equal to 1

3
on the boundary of Xi,

we know that each Xi is strongly (w|EXi
)-alternating. Therefore each Xi is w-

alternating. It remains to confirm that w ∈ PMP(G). By Theorem 20 it suffices
to check that w satisfies conditions (i), (ii) and (iii). The first two conditions are
satisfied by (EXT1), (EXT2) and (EXT3). To verify (iii), consider an odd Y ⊆ V (G).
We show that w(δ(Y )) ≥ 1.
It follows from (EXT1) and (EXT2) that 3w(δ(Y )) is an odd integer. Therefore,

it is sufficient to verify that w(δ(Y )) > 1/3. Let Xi ∈ X be such that C = δ(Y ) ∩
E(G|Xi) is a non-empty edge-cut in G|Xi. (If no such Xi exists then w(δ(Y )) ≥
1
3
|δ(Y )| ≥ 1 by (EXT3).) It follows from (EXT1), (EXT2) and (EXT3) that |C| and

3w(C) have the same parity. Therefore, w(δ(Y )) > 1/3 by (EXT3) and (EXT4),
unless |C| is odd and δ(Y ) = C. In this last case, we have |C| > 1, as G is bridgeless
and by (EXT5) one of the sides of C, without loss of generality Xi ∩ Y , contains
exactly one vertex in ∂Xi. Then δ(Y \ Xi) consists only of edges incident to this
vertex, contradicting once again the fact that G is bridgeless. □

In light of what we have already discussed, we get the following key fact as a
consequence:

Corollary 4 If a cubic bridgeless graph G contains a foliage X , then there exist
perfect matchings M,M ′ ∈M(G) such that M△M ′ has at least |X |/3 components.

2.1.3.2 Burls, twigs, and foliage weight

We now introduce a special class of burls. Let G be a cubic bridgeless graph and let
X ⊆ V (G). We say that X is a 2-twig if |δ(X)| = 2, and X is a 3-twig if |δ(X)| = 3
and |X| ≥ 5 (that is, X is not a triangle or a single vertex). A twig in G is a 2- or
3-twig. Before we prove that every twig is a burl, we need a simple lemma.

Lemma 21 Let G be a cubic bridgeless graph. Then

1. m(G− e) ≥ 2 for every e ∈ E(G), and
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2. m(G) ≥ 4 if |V (G)| ≥ 6. In particular, for any v ∈ V (G) there is an e ∈ δ({v})
contained in at least two perfect matchings.

Proof. The first item follows from the classical result mentioned in the introduction:
every edge of a cubic bridgeless graph is contained in a perfect matching. The second
is implied by the bound m(G) ≥ 1

4
|V (G)|+ 2 from [22]. □

Lemma 22 Every twig X in a cubic bridgeless graph G is a burl.

Proof. We show that wX = 1
3
|EX is a certificate for X. As we already noted, wX is

extendable from X. Let MX
w be a random matching inM(G,X) corresponding to

wX , as in the definition of a strongly alternating set.
If X is a 2-twig, let H be obtained from G|X by adding an edge e joining the

vertices in ∂X. Then H is cubic and bridgeless. By applying Lemma 21(1) to H, we
see that the set X isM -alternating for everyM ∈M(G,X) such thatM∩δ(X) = ∅.
As Pr[MX

w ∩ δ(X) = ∅] ≥ 1−MX
w(δ(X)) = 1/3, we conclude that X is strongly wX-

alternating.
Suppose now that X is a 3-twig. Let δ(X) = {e1, e2, e3}. Let H be obtained

from G by identifying all the vertices in V (G) −X (removing loops but preserving
multiple edges). We apply Lemma 21(2) to H, which is again cubic and bridgeless. It
follows that for some 1 ≤ i ≤ 3, the edge ei is in at least two perfect matchings of H.
Therefore X is M -alternating for every M ∈ M(G,X) such that M ∩ δ(X) = {ei}.
Finally, Pr[MX

w ∩ δ(X) = {ei}] = 1/3 and thus X is strongly wX-alternating. □

The weight of a foliage X containing k twigs is defined as fw(X ) := β1k+β2(|X |−
k), that is each twig has weight β1 and each non-twig burl has weight β2. Let fw(G)
denote the maximum weight of a foliage in a graph G.

2.1.3.3 Reducing on small edge-cuts

We now describe how we reduce on 2-edge-cuts and 3-edge-cuts, and consider how
these operations affectm⋆(G) and foliages. Let C be a 3-edge-cut in a cubic bridgeless
graph G. The two graphs G1 and G2 obtained from G by identifying all vertices on
one of the sides of the edge-cut (removing loops but preserving multiple edges) are
referred to as C-contractions of G and the vertices in G1 and G2 created by this
identification are called new.
We need a similar definition for 2-edge-cuts. Let C = {e, e′} be a 2-edge-cut in

a cubic bridgeless graph G. The two C-contractions G1 and G2 are now obtained
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from G by deleting all vertices on one of the sides of C and adding an edge joining
the remaining ends of e and e′. The resulting edge is now called new.
In both cases we say that G1 and G2 are obtained from G by a cut-contraction.

The next lemma provides some useful properties of cut-contractions.

Lemma 23 Let G be a graph, let C be a 3- or a 2-edge-cut in G, and let G1 and
G2 be the two C-contractions. Then

1. G1 and G2 are cubic bridgeless graphs,

2. m⋆(G) ≥ m⋆(G1)m
⋆(G2), and

3. For i = 1, 2 let Xi be a foliage in Gi such that for every X ∈ Xi, if |C| = 3
then X does not contain the new vertex, and if |C| = 2 then E(Gi|X) does not
contain the new edge. Then X1 ∪ X2 is a foliage in G. In particular, we have
fw(G) ≥ fw(G1) + fw(G2)− 2β1.

Proof.

1. This can be confirmed routinely.

2. Consider first the case of the contraction of a 2-edge-cut C = δ(X) in G. Let
e be an edge with both ends in X = V (G1). Every perfect matching of G1

containing e combines either with m⋆(G2) perfect matchings of G2 containing
the new edge of G2, or with 2m⋆(G2) perfect matchings of G2 avoiding the new
edge of G2. If e lies in C, note that perfect matchings of G1 and G2 containing
the new edges can be combined into perfect matchings of G containing C.
Hence, e is in at least m⋆(G1)m

⋆(G2) perfect matchings of G.

Now consider a 3-edge-cut C = δ(X). If e has both ends in X ⊂ V (G1), perfect
matchings of G1 containing e combine with perfect matchings of G2 containing
either of the 3 edges of C. If e is in C, perfect matchings containing e in G1

and G2 can also be combined into perfect matchings of G. In any case, e is in
at least m⋆(G1)m

⋆(G2) perfect matchings of G.

3. By (EXT3), the coordinates of the new elements (if they are defined) in their
respective certificates are precisely 1/3, so assigning 1/3 (if necessary) to the
edges of C in G yields valid certificates for the elements of X1 ∪ X2. Since
β1 ≥ β2, this implies fw(G) ≥ fw(G1) + fw(G2)− 2β1. □
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□

It is not generally advantageous to reduce on a 3-edge-cut arising from a triangle,
unless this reduction leads to a chain of similar reductions. Thus we wish to get rid
of certain triangles from the outset. We say that a triangle sharing precisely one
edge with a cycle of length three or four in a graph G is relevant, and otherwise
it is irrelevant. A graph G is pruned if it contains no irrelevant triangles. The
following easy lemma shows that we can prune a bridgeless cubic graph by repeated
cut-contraction without losing too many vertices.

Lemma 24 Let G be a cubic bridgeless graph, and let k be the size of maximum
collection of vertex-disjoint irrelevant triangles in G. Then one can obtain a pruned
cubic bridgeless graph G′ from G with |V (G′)| ≥ |V (G)|−2k by repeatedly contracting
irrelevant triangles.

Proof. We proceed by induction on k. Let a graph G′′ be obtained from G by
contracting an irrelevant triangle T . The graph G′′ is cubic and bridgeless by
Lemma 23(1). Since T is irrelevant in G, the unique vertex of G′′ obtained by
contracting T is not in a triangle in G′′. Therefore if T is a collection of vertex
disjoint irrelevant triangles in G′′ then T ∪ {T} is such a collection in G. (After the
contraction of an irrelevant triangle, triangles that were previously irrelevant might
become relevant, but the converse is not possible.) It follows that |T | ≤ k − 1. By
applying the induction hypothesis to G′′, we see that the lemma holds for G. □

Corollary 5 Let G be a cubic bridgeless graph. Then we can obtain a cubic bridge-
less pruned graph G′ from G with |V (G′)| ≥ |V (G)|/3 by repeatedly contracting
irrelevant triangles.

We wish to restrict our attention to pruned graphs, so we must make sure that
the function m⋆(G) and the maximum size of a foliage does not increase when we
contract a triangle.

Lemma 25 Let G′ be obtained from a graph G by contracting a triangle. Then
m⋆(G′) ≤ m⋆(G) and the maximum size of a foliage in G′ is at most the maximum
size of a foliage in G.

Proof. Let xyz be the contracted triangle, and let ex, ey, and ez be the edges
incident with x, y, z and not contained in the triangle in G. Let t be the vertex of
G′ corresponding to the contraction of xyz. Every perfect matching M ′ of G′ has a
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canonical extension M in G: assume without loss of generality that ex is the unique
edge of M ′ incident to t. Then M consists of the union of M ′ and yz. Observe that
perfect matchings in G containing yz necessarily contain ex, so every edge of G is
contained in at least m⋆(G′) perfect matchings.
Now consider a burl X ′ in G′ containing t, and let w′ a the certificate for X ′. Let

w be the vector w′ with three new coordinates w(xy) = w′(ez), w(yz) = w′(ex) and
w(xz) = w′(ey), then w is a certificate showing that X = X ′ ∪ {x, y, z} \ t is a burl
in G. Properties (EXT1), (EXT2), and (EXT3) are trivially satisfied. Now consider
an edge-cut C in G|X. If B = C ∩{xy, yz, xz} is empty, (EXT4) and (EXT5) follow
directly from the fact that w′ is a certificate for X ′. Otherwise B contains precisely
two elements, say xy and yz. Then we have w(C) ≥ w(xy)+w(yz) ≥ 1

3
by (EXT1)

and (EXT2), and therefore, (EXT4) follows. If |C| ≥ 3 is odd and w(C) < 1, then
without loss of generality w(xy) = 0. Using (EXT4) it can be checked that only one
of the following two cases applies:
If C ∩ {ex, ez} = ∅ then C ′ = C ∪ {ex, ez} \ {xy, yz} is an edge-cut of the same

weight and cardinality as C in G|X, but also in G′|X ′, and consequently, (EXT5)
follows.
If C ∩ E{x,y,z} = {xy, yz, ez} then C has cardinality at least five and C ′′ =

C ∪ {ex} \ {xy, yz, ez} is an odd edge-cut in G|X, but also in G′|X ′ of cardinality
at least 3 and weight w(C ′′) = w(C). Since w′ satisfies (EXT5), w also satisfies
(EXT5) in this case.
Since a burl avoiding t in G′ is also a burl in G, it follows from the analysis above

that the maximum size of a foliage cannot increase when we contract a triangle. □

2.1.3.4 Proving Theorem 19

We say that G has a core if we can obtain a cyclically 4-edge-connected graph G′

with |V (G′)| ≥ 6 by applying a (possibly empty) sequence of cut-contractions to G
(recall that this notion was defined in the previous subsection).
We will deduce Theorem 19 from the next two lemmas. This essentially splits

the proof into two cases based on whether or not G has a core.

Lemma 26 Let G be a pruned cubic bridgeless graph. Let Z ⊆ V (G) be such that
|Z| ≥ 2 and |δ(Z)| = 2, or |Z| ≥ 4 and |δ(Z)| = 3. Suppose that the δ(Z)-
contraction G′ of G with Z ⊆ V (G′) has no core. Then there exists a foliage X in
G with

⋃
X∈X X ⊆ Z and

fw(X ) ≥ α|Z|+ β2.
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By applying Lemma 26 to a cubic graph G without a core and Z = V (G) \ {v}
for some v ∈ V (G), we obtain the following.

Corollary 6 Let G be a pruned cubic bridgeless graph without a core. Then

fw(G) ≥ α(|V (G)| − 1) + β2.

On the other hand, if G has a core, we will prove that either fw(G) is linear in
the size of G or every edge of G is contained in an exponential number of perfect
matchings.

Lemma 27 Let G be a pruned cubic bridgeless graph. If G has a core then

m⋆(G) ≥ 2α|V (G)|−fw(G)+γ.

We finish this section by deriving Theorem 19 from Lemmas 26 and 27.
Proof. (of Theorem 19) Let ϵ := 1/3656. By Corollary 5 there exists a pruned
cubic bridgeless graph G′ with |V (G′)| ≥ |V (G)|/3 obtained from G by repeatedly
contracting irrelevant triangles. Suppose first that G′ has a core. By Corollary 5 and
Lemmas 25 and 27, condition [S1] holds as long as ϵ|V (G)| ≤ α|V (G)|/3 − fw(G′).
Therefore we assume fw(G′) ≥ (α

3
−ϵ)|V (G)|. It follows from the definition of fw(G′)

that G′ has a foliage containing at least (α
3
−ϵ)|V (G)|/β1 burls. If G′ has no core then

by Corollary 6 and the fact that α ≤ β2, fw(G′) ≥ α(|V (G′)| − 1) + β2 ≥ α|V (G′)|,
so G′ contains a foliage of size at least α|V (G′)|/β1 ≥ α|V (G)|/3β1. In both cases
condition [S2] holds by Corollary 4 and Lemma 25, since Equation (2.2) tells us
that 3ϵ ≤ (α

3
− ϵ)/β1. □

2.1.4 Cut decompositions

In this section we study cut decompositions of cubic bridgeless graphs. We mostly
follow notation from [8], however we consider 2- and 3-edge-cuts simultaneously. Cut
decompositions play a crucial role in the proof of Lemma 26 in the next section.
Let G be a graph. A non-trivial cut-decomposition of G is a pair (T, ϕ) such that:

� T is a tree with E(T ) ̸= ∅,

� ϕ : V (G)→ V (T ) is a map, and

� |ϕ−1(t)|+ degT (t) ≥ 3 for each t ∈ V (T ).
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For an edge f of T , let T1, T2 be the two components of T \ f , and for i = 1, 2
let Xi = ϕ−1(Ti). Thus (X1, X2) is a partition of V (G) that induces an edge-cut
denoted by ϕ−1(f). If |ϕ−1(f)| ∈ {2, 3} for each f ∈ E(T ) we call (T, ϕ) a small-cut-
decomposition of G.
Let (T, ϕ) be a small-cut-decomposition of a 2-edge-connected cubic graph G, and

let T0 be a subtree of T such that ϕ−1(V (T0)) ̸= ∅. Let T1, . . . , Ts be the components
of T \ V (T0), and for 1 ≤ i ≤ s let fi be the unique edge of T with an end in V (T0)
and an end in V (Ti). For 0 ≤ i ≤ s, let Xi = ϕ−1(V (Ti)). Thus X0, X1, . . . , Xs form
a partition of V (G). Let G′ be the graph obtained from G as follows. Set G0 = G.
For i = 1, . . . , s, take Gi−1 and let Gi be the (ϕ−1(fi))-contraction containing X0.
Now let G′ denote Gs. Note that G′ is cubic. We call G′ the hub of G at T0 (with
respect to (T, ϕ)). If t0 ∈ V (T ) and ϕ−1(t0) ̸= ∅, by the hub of G at t0 we mean the
hub of G at T0, where T0 is the subtree of T with vertex set {t0}.
Let Y be a collection of disjoint subsets of V (G). We say that a small-cut-

decomposition (T, ϕ) of G refines Y if for every Y ∈ Y there exists a leaf v ∈ V (T )
such that Y = ϕ−1(v). Collections of subsets of V (G) that can be refined by a
small-cut decomposition are charaterized in the following easy lemma.

Lemma 28 Let G be a cubic bridgeless graph. Let Y be a collection of disjoint
subsets of V (G). Then there exists a small-cut-decomposition refining Y if |Y | ≥ 2
and |δ(Y )| ∈ {2, 3} for every Y ∈ Y, and either
1. Y = ∅ and G is not cyclically 4-edge-connected, or
2. Y = {Y }, and |V (G) \ Y | > 1, or

3. |Y| ≥ 2.

Proof. We only consider the case |Y| ≥ 3, as the other cases are routine. Take T
to be a tree on |Y| + 1 vertices with |Y| leaves {vY | Y ∈ Y} and a non-leaf vertex
v0. The map ϕ is defined by ϕ(u) = vY , if u ∈ Y for some Y ∈ Y , and ϕ(u) = v0,
otherwise. Clearly, (T, ϕ) refines Y and is a small-cut-decomposition of G. □

We say that (T, ϕ) is Y-maximum if it refines Y and |V (T )| is maximum among
all small-cut decompositions of G refining Y . The following lemma describes the
structure of Y-maximum decompositions. It is a variation of Lemma 4.1 and Claim
1 of Lemma 5.3 in [8].

Lemma 29 Let G be a cubic bridgeless graph. Let Y be a collection of disjoint
subsets of V (G) and let (T, ϕ) be a Y-maximum small-cut-decomposition of G. Then
for every t ∈ V (T ) either ϕ−1(t) = ∅, or ϕ−1(t) ∈ Y, or the hub of G at t is cyclically
4-edge-connected.
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Proof. Fix t ∈ V (T ) with ϕ−1(t) ̸= ∅ and ϕ−1(t) ̸∈ Y . Let f1, . . . , fk be the edges
of T incident with t, and let T1, . . . , Tk be the components of T \ {t}, where fi is
incident with a vertex ti of Ti for 1 ≤ i ≤ k. Let X0 = ϕ−1(t), and for 1 ≤ i ≤ k
let Xi = ϕ−1(V (Ti)). Let G′ be the hub of G at t, and let G′′ be the graph obtained
from G′ by subdividing precisely once every new edge e corresponding to the cut-
contraction of a cut C with |C| = 2. The vertex on the subdivided edge e is called
the new vertex corresponding to the cut-contraction of C, by analogy with the new
vertex corresponding to the cut-contraction of a cyclic 3-edge-cut.
Note that G′ is cyclically 4-edge-connected if and only if G′′ is cyclically 4-edge-

connected. Suppose for the sake of contradiction that C = δ(Z) is a cyclic edge-cut
in G′′ with |C| ≤ 3. Then |C| ∈ {2, 3} by Lemma 23(1), as G′′ is a subdivision of
G′ and G′ can be obtained from G by repeated cut-contractions. Let T ′ be obtained
from T by by splitting t into two vertices t′ and t′′, so that ti is incident to t′ if and
only if the new vertex of G′′ corresponding to the cut-contraction of ϕ−1(fi) is in Z.
Let ϕ′(t′) = X0 ∩ Z, ϕ′(t′′) = X0 \ Z, and ϕ′(s) = ϕ(s) for every s ∈ V (T ′) \ {t′, t′′}.
We claim that (T ′, ϕ′) is a small-cut-decomposition of G contradicting the choice

of T . It is only necessary to verify that |ϕ−1(s)| + degT ′(s) ≥ 3 for s ∈ {t′, t′′}. We
have |ϕ−1(t′)| + degT ′(t′) − 1 = |Z ∩ V (G′′)| ≥ 2 as C is a cyclic edge-cut in G′′. It
follows that |ϕ−1(t′)|+ degT ′(t′) ≥ 3 and the same holds for t′′ by symmetry. □

Figure 2.3: Isomorphism classes of subgraphs induced by elementary twigs.

We finish this section by describing a collection Y to which we will be applying
Lemma 29 in the sequel. In a cubic bridgeless graph G a union of the vertex set of
a relevant triangle with the vertex set of a cycle of length at most four sharing an
edge with it is called a simple twig. Note that simple twigs corresponding to distinct
relevant triangles can intersect, but one can routinely verify that each simple twig
intersects a simple twig corresponding to at most one other relevant triangle. An
elementary twig is either a simple twig, that intersects no simple twig corresponding
to a relevant triangle not contained in it, or the union of two intersecting simple twigs,
corresponding to distinct relevant triangles. An elementary twig is, indeed, a twig,
unless it constitutes the vertex set of the entire graph. Figure 2.3 shows all possible
elementary twigs. The next corollary follows immediately from the observations
above and Lemmas 28 and 29.
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Corollary 7 Let G be a cubic bridgeless graph that is not cyclically 4-edge-connected
with |V (G)| ≥ 8. Then there exists a collection Y of pairwise disjoint elementary
twigs in G such that every relevant triangle in G is contained in an element of Y.
Further, there exists a Y-maximum small-cut-decomposition (T, ϕ) of G and for every
t ∈ V (T ) either ϕ−1(t) = ∅, or ϕ−1(t) is an elementary twig, or the hub of G at t is
cyclically 4-edge-connected.

2.1.5 Proof of Lemma 26

The proof of Lemma 26 is based on our ability to find burls locally in the graph.
The following lemma is a typical example.

Lemma 30 Let G be a cubic bridgeless graph and let X ⊆ V (G) be such that
|δ(X)| = 4 and m(G|X) ≥ 2. Then X contains a burl.

Proof. Let w = 1
3
|EX . We already observed that w is extendable from X. Note that

if M ∈M(G,X) contains no edges of δ(X) then X is M -alternating. As M ∩ δ(X)
is even for every M ∈M(G,X) we have

4
3
= E [|Mw ∩ δ(X)|] ≥ 2Pr[Mw ∩ δ(X) ̸= ∅].

Therefore Pr[Mw ∩ δ(X) = ∅] ≥ 1/3, and so X is strongly w-alternating. □

The proof of Lemma 26 relies on a precise study of the structure of small-cut
trees for graphs with no core. The following two lemmas indicate that long paths in
such trees necessarily contain some burls.

Lemma 31 Let (T, ϕ) be a small-cut-decomposition of a cubic bridgeless graph G,
and let P be a path in T with |V (P )| = 10. If we have

� degT (t) = 2 for every t ∈ V (P ),

� the hub of G at t is isomorphic to K4 for every t ∈ V (P ), and

� |ϕ−1(f)| = 3 for every edge f ∈ E(T ) incident to a vertex in V (P ),

then ϕ−1(P ) contains a burl.

Proof. Let P ′ = v−1v0 . . . v9v10 be a path in T such that P = v0 . . . v10. Let
fi = vi−1vi and let Ci = ϕ−1(fi), 0 ≤ i ≤ 10. Let X := ϕ−1(V (P )). We assume
without loss of generality that G|X contains no cycles of length 4, as otherwise
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the lemma holds by Lemma 30. Let A be the set of ends of edges in C0 outside
of X, and let B be the set of ends of edges in C10 outside of X. Observe that
EX consists of 3 internally vertex-disjoint paths from A to B, as well as one edge
in G|ϕ−1({vi}) for 0 ≤ i ≤ 9. Let R1, R2 and R3 be these three paths from A
to B, and let uj be the end of Rj in A for j = 1, 2, 3. For 0 ≤ i ≤ 9, we have
ϕ−1(vi) = {xi, yi} so that xi ∈ V (Rj), yi ∈ V (Rj′) for some {j, j′} ⊆ {1, 2, 3} with
j ̸= j′, and ei := xiyi ∈ E(G). Let the index of i be defined as ({j, j′}, sgn(i)),
where sgn(i) = 0 if the number of vertices in Rj between uj and xi and the number
of vertices in Rj′ between uj′ and yi have the same parity, and sgn(i) = 1 otherwise.
There are 6 possible indices, so there exist 1 ≤ i < i′ ≤ 7 with the same indices.
Without loss of generality we assume that those indices are ({1, 2}, 0) or ({1, 2}, 1).
To show that X is a burl, we construct a certificate w on EX . We first set

w(e) = 1
3
for every e ∈ δ(X). We then set w(ei′′) = 0 for i < i′′ < i′ and w(ei′′) =

1
3

for 0 ≤ i′′ ≤ i and i′ < i′′ ≤ 9. On the edges of R1, R2, R3, and ei′ , we let w be the
unique assignment of weights that satisfies conditions (EXT2) and (EXT3), which
gives each such edge weight 1

3
or 2

3
on the paths and gives w(ei′) weight either 0 or

1
3
, depending on the parity of i′ − i. Two examples are shown in Figure 2.4.

xi

R1

R2

R3
yi−1

Z

xi′

xi′+1

yi yi′

xi−1

yi′+1 yi′+2

xi′+2

xi

R1

R2

R3

xi′

yi′+2

xi′+2
Z

yi yi′

yi′+1yi−1

xi′+1

xi−1

Figure 2.4: Certificates for the burl X when i′− i is odd (left) and when i′− i is even
(right). Horizontal paths are R1, R2 and R3, solid edges correspond to the value 1/3
of w, bold edges to value 2/3 and dashed edges to value 0.

We claim that w is a certificate for X. Let Z consist of xi, yi, xi′ , yi′ and vertex
sets of segments of R1 and R2 between these vertices. The only edges in support of
w in δ(Z) belong to either R1 or R2. As |Z| is even, repeating the argument in the
proof of Lemma 30, we deduce that Pr[Mw ∩ δ(Z) = ∅] ≥ 1/3. As G|Z contains a
spanning even cycle, and therefore at least two perfect matchings, we conclude that
Z, and consequently X, are strongly w-alternating. It is easy to see that w satisfies
(EXT4). By our assumption that ϕ−1(P ) contains no cycles of length 4, the edges
ei−1, ei′+1 have ends on R3 and both R1 and R2 contain an end of one of the edges
ei′+1 and ei′+2 (we insist that P contains 10 rather than 7 vertices to ensure this
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property). Using this fact, one can routinely verify that w satisfies (EXT5) and is
therefore extendable from X. □

Lemma 32 Let (T, ϕ) be a small-cut-decomposition of a cubic bridgeless graph G.
Let t1, t2 ∈ V (T ) be a pair of adjacent vertices of degree 2. Suppose that |ϕ−1(f)| = 2
for every edge f ∈ E(T ) incident to t1 or t2. Then ϕ−1({t1, t2}) contains a burl.

Proof. Let t0t1t2t3 be a subpath of T and let Ci = ϕ−1(ti−1ti) for i = 1, 2, 3 be
an edge-cut of size 2. Assume that both G|ϕ−1(t1) and G|ϕ−1(t2) have at most one
perfect matching. By Lemma 30 it suffices to show that G|ϕ−1({t1, t2}) has at least
two perfect matchings. As the hub G1 over t1 is cubic and bridgeless it contains
at least 2 perfect matching avoiding any edge. Let e1, e2 ∈ E(G1) be the edges in
E(G1)−E(G) corresponding to C1- and C2-contraction, respectively. By assumption,
at most one perfect matching of G1 avoids both e1 and e2. It follows that either two
perfect matchings of G1 avoid e1 and contain e2, or one avoids e1 and e2 and one
avoids e1 and contains e2. Let G2 be the hub over t2. The symmetric statement
holds for G2. In any case, the perfect matchings in G1 and G2 can be combined to
obtain at least two perfect matchings of G|ϕ−1({t1, t2}). □

From the definition of a small-cut-decomposition, we immediately get the follow-
ing corollary:

Corollary 8 Let (T, ϕ) be a small-cut-decomposition of a cubic bridgeless graph G,
and let P be a path in T in which every vertex has degree 2. Suppose there exist
three edges f1, f2, f3 of T incident to vertices of P such that |ϕ−1(f1)| = |ϕ−1(f2)| =
|ϕ−1(f3)| = 2. Then ϕ−1(P ) contains a burl.

Let B3 denote the cubic graph consisting of two vertices joined by three parallel
edges. Lemmas 31 and 32 imply the following.

Corollary 9 Let (T, ϕ) be a small-cut-decomposition of a cubic bridgeless graph G
and let P be a path in T with |V (P )| = 32. If for every t ∈ V (P ), degT (t) = 2 and
the hub of G at t is isomorphic to K4 or B3, then ϕ−1(P ) contains a burl.

Proof. If at least three edges incident to vertices in V (P ) correspond to edge-cuts
of size 2 in G then the corollary holds by Corollary 8. Otherwise, since there are
33 edges of T incident to vertices of P , there must be 11 consecutive edges incident
to vertices in P corresponding to edge-cuts of size 3. In this case, the result follows
from Lemma 31. □
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Proof. (of Lemma 26) We proceed by induction on |Z|. If |Z| ≤ 6 then Z is a twig. In
this case the lemma holds since β1 ≥ β2+6α by (2.3). We assume for the remainder
of the proof that |Z| ≥ 7. It follows that G′ is not cyclically 4-edge-connected, as
G′ has no core. Therefore Corollary 7 is applicable to G′. Let Y be a collection of
disjoint elementary twigs in G′ such that every relevant triangle in G′ is contained
in an element of Y , and let (T, ϕ) be a Y-maximum small-cut decomposition of G′.
By Corollary 7, the hub at every t ∈ V (T ) with |ϕ−1(t)| ≠ ∅ is either an elementary
twig, in which case t is a leaf of T , or is cyclically 4-edge-connected, in which case it
is isomorphic to either K4 or B3.
In calculations below we will make use of the following claim: If degT (t) = 2 for

some t ∈ V (T ), then |ϕ−1(t)| ≤ 2. If this is not the case, the hub at t is isomorphic
to K4, and at least three of its vertices must be vertices of G. It follows that there
is an edge f ∈ E(T ) incident to t for which |ϕ−1(f)| = 2. Let v ∈ ϕ−1(t) be a vertex
incident to an edge in ϕ−1(f). Then C = ϕ−1(f)△δ(v) is a 3-edge-cut in G. As
in the proof of Lemma 29 we can split t into two vertices t′, t′′ with ϕ−1(t′) = {v}
and ϕ−1(t′′) = ϕ−1(t) \ v. We now have ϕ−1(t′t′′) = C and the new small-cut-
decomposition contradicts the maximality of (T, ϕ). This completes the proof of the
claim.
Let t0 ∈ V (T ) be such that ϕ−1(t0) contains the new vertex or one of the ends of

the new edge inG′. SinceG is pruned, G′ contains at most one irrelevant triangle, and
if such a triangle exists, at least one of its vertices lies in ϕ−1(t0). As a consequence,
for any leaf t ̸= t0 of T , ϕ−1(t) is a twig. Let t∗ ∈ V (T )\{t0} be such that degT (t∗) ≥ 3
and, subject to this condition, the component of T \ {t∗} containing t0 is maximal.
If degT (t) ≤ 2 for every t ∈ V (T ) \ {t0}, we take t∗ = t0 instead.
Let T1, . . . , Tk be all the components of T \{t∗} not containing t0. By the choice of

t∗, each Ti is a path. If |V (Ti)| ≥ 33 for some 1 ≤ i ≤ k then let T ′ be the subtree of Ti

containing a leaf of T and exactly 32 other vertices. Let f be the unique edge in δ(T ′).
LetH (resp.H ′) be the ϕ−1(f)-contraction of G (resp. G′) containing V (G′)\ϕ−1(T ′),
and let Z ′ consist of V (H ′) ∩ Z together with the new vertex created by ϕ−1(f)-
contraction (if it exists). If H is not pruned then it contains a unique irrelevant
triangle and we contract it, obtaining a pruned graph. By the induction hypothesis,
either |Z ′| ≤ 6 or we can find a foliage X ′ in Z ′ with fw(X ′) ≥ α(|Z ′| − 2) + β2. If
|Z ′| ≤ 6 let X ′ := ∅.
Let t′ be a vertex of T ′ which is not a leaf in T . Since degT (t

′) = 2, |ϕ−1(t′)| ≠ ∅.
Therefore ϕ−1(t′) is isomorphic to B3 or K4 and we can apply Corollary 9. This
implies that ϕ−1(T ′) contains an elementary twig and a burl that are vertex-disjoint,
where the elementary twig is the preimage of the leaf. Further, we have |ϕ−1(T ′)| ≤
8 + 2 · 32 = 72, since an elementary twig has size at most 8 and the preimage of
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every non-leaf vertex of T ′ has size at most 2 by the claim above. By Lemma 23(3),
we can obtain a foliage X in Z by adding the twig and the burl to X ′ and possibly
removing a burl (which can be a twig) containing the new element of H ′ created by
ϕ−1(f)-contraction. It follows that if |Z ′| ≥ 7 then

fw(X ) ≥ α(|Z ′| − 2) + 2β2 ≥ (α|Z|+ β2)− 74α + β2 ≥ α|Z|+ β2,

by (2.4), as desired. If |Z ′| ≤ 6 then |Z| ≤ 78 and

fw(X ) ≥ β1 + β2 ≥ 78α + β2 ≥ α|Z|+ β2,

by (2.5).
It remains to consider the case when |V (Ti)| ≤ 32 for every 1 ≤ i ≤ k. Suppose

first that t∗ ̸= t0 and that |ϕ−1(T0)| ≥ 7, where T0 denotes the component of T \ t∗
containing t0. Let f0 be the edge incident to t∗ and a vertex of T0. We form the
graphs H, H ′ and a set Z ′ by a ϕ−1(f0)-contraction as in the previous case, and
possibly contract a single irrelevant triangle. As before, we find a foliage X ′ in
Z ′ with fw(X ′) ≥ α(|Z ′| − 2) + β2. Note that ϕ−1(Ti) contains a twig for every
1 ≤ i ≤ k. By Lemma 23(3), we now obtain a foliage X in Z from X ′, adding
k ≥ 2 twigs and possibly removing one burl (which can be a twig) from X ′. We
have |ϕ−1(Ti)| ≤ 8 + 31 · 2 = 70 for every 1 ≤ i ≤ k, and |ϕ−1(t∗)| ≤ 4. Therefore
|Z| ≤ |Z ′|+ 70k + 4. It follows from (2.5) that

fw(X ) ≥ α(|Z ′|−2)+β2+(k−1)β1 ≥ α|Z|+β2−76α+(k−1)(β1−70α) ≥ α|Z|+β2.

Now we can assume t∗ = t0 or |ϕ−1(T0)| ≤ 6. First suppose t∗ ̸= t0 but |ϕ−1(T0)| ≤
6. Then again |ϕ−1(t∗)| ≤ 4, so we have |Z| ≤ 70k + 10. Let X be the foliage
consisting of twigs in T1, . . . , Tk. Thus by (2.6), we have

fw(X ) = kβ1 ≥ (α|Z|+ β2) + k(β1 − 70α)− 10α− β2 ≥ α|Z|+ β2.

Finally we can assume t∗ = t0. Then |ϕ−1(t∗)| ≤ 4, unless k = 1 and ϕ−1(t∗) is
an elementary twig. In either case, |Z| ≤ 70k + 8 and the equation above applies.
□

2.1.6 Proof of Lemma 27

The following lemma is a direct consequence of a theorem of Kotzig, stating that any
graph with a unique perfect matching contains a bridge (see [27]).
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Lemma 33 Every edge of a cyclically 4-edge-connected cubic graph with at least six
vertices is contained in at least two perfect matchings.

Let G be a cubic graph. For a path v1v2v3v4, the graph obtained from G by
splitting along the path v1v2v3v4 is the cubic graph G′ obtained as follows: remove
the vertices v2 and v3 and add the edges v1v4 and v′1v

′
4 where v

′
1 is the neighbor of

v2 different from v1 and v3 and v′4 is the neighbor of v3 different from v2 and v4.
The idea of this construction (and its application to the problem of counting perfect
matchings) originally appeared in [65]. We say that a perfect matching M of G is a
canonical extension of a perfect matching M ′ of G′ if M△M ′ ⊆ E(G)△E(G′), i.e.
M and M ′ agree on the edges shared by G and G′.

Lemma 34 Let G be a cyclically 4-edge-connected cubic graph with |V (G)| ≥ 6. If
G′ is the graph obtained from G by splitting along some path v1v2v3v4, then

1. G′ is cubic and bridgeless;

2. G′ contains at most 2 irrelevant triangles;

3. fw(G) ≥ fw(G′)− 2β1;

4. Every perfect matching M ′ of G′ avoiding the edge v1v4 has a canonical exten-
sion in G.

Proof.

1. The statement is a consequence of an easy lemma in [26], stating that the cyclic
edge-connectivity can drop by at most two after a splitting.

2. Since G is cyclically 4-edge-connected and has at least six vertices, it does not
contain any triangle. The only way an irrelevant triangle can appear in G′ is
that v1 and v4 (or v′1 and v

′
4) have precisely one common neighbor (if they have

two common neighbors, the two arising triangles share the new edge v1v4 or
v′1v
′
4 and hence, are relevant).

3. At most two burls from a foliage of G′ intersect the edge v1v4 or the edge v′1v
′
4.

Therefore, a foliage of G can be obtained from any foliage of G′ by removing
at most two burls.

4. The canonical extension is obtained (uniquely) from M ′ ∩ E(G) by adding
either v2v3 if v′1v

′
4 ̸∈M ′ or {v′1v2, v3v′4} if v′1v′4 ∈M ′. □
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□

Proof. (of Lemma 27) We proceed by induction on |V (G)|. The base case |V (G)| = 6
holds by Lemma 33 and (2.7).
For the induction step, consider first the case thatG is cyclically 4-edge-connected.

Fix an edge e = uv ∈ E(G). Our goal is to show that e is contained in at least
2α|V (G)|−fw(G)+γ perfect matchings.
Let w ̸= u be a neighbor of v and let w1 and w2 be the two other neighbors of

w. Let xi, yi be the neighbors of wi distinct from w for i = 1, 2. Let G1, . . . , G4 be
the graphs obtained from G by splitting along the paths vww1x1, vww1y1, vww2x2

and vww2y2. Let G′i be obtained from Gi by contracting irrelevant triangles for
i = 1, . . . , 4. By Lemma 34(2) we have |V (G′i)| ≥ |V (G)| − 6.
Suppose first that one of the resulting graphs, without loss of generality G′1, does

not have a core. By Corollary 6, Lemma 25 and Lemma 34, we have

α|V (G)| ≤ α(|V (G′1)|+6) ≤ fw(G′1)+7α−β2 ≤ fw(G1)+7α−β2 ≤ fw(G)+2β1+7α−β2.

Therefore
α|V (G)| − fw(G) + γ ≤ γ + 2β1 + 7α− β2 ≤ 1

by (2.8) and the lemma follows from Lemma 33.
We now assume that all four graphs G′1, . . . , G

′
4 have a core. By Lemma 34(4),

every perfect matching containing e in Gi canonically extends to a perfect matching
containing e in G. Let S be the sum of the number of perfect matchings of Gi

containing e, for i ∈ {1, 2, 3, 4}. By induction hypothesis and Lemmas 25 and 34,
S ≥ 4 · 2α(|V (G)|−6)−fw(G)−2β1+γ. On the other hand, a perfect matching M of G
containing e is the canonical extension of a perfect matching containing e in precisely
three of the graphs Gi, i ∈ {1, 2, 3, 4}. For instance if w1y1, ww2 ∈ M , then G2 is
the only graph (among the four) that does not have a perfect matching M ′ that
canonically extends toM (see Figure 2.5). As a consequence, there are precisely S/3
perfect matchings containing e in G. Therefore,

m⋆(G) ≥ 4
3
· 2α(|V (G)|−6)−fw(G)−2β1+γ ≥ 2α|V (G)|−fw(G)+γ,

by (2.9), as desired.
It remains to consider the case when G contains a cyclic edge-cut C of size at

most 3. Suppose first that for such edge-cut C, both C-contractions H1 and H2 have
a core. Then, by Lemma 23(3), fw(G) ≥ fw(H1) + fw(H2) − 2β1 and, by induction
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Figure 2.5: Perfect matchings in only three of the Gi’s canonically extend to a given
perfect matching of G containing e.

hypothesis, applied to H1 and H2 (after possibly contracting one irrelevant triangle
in each) and Lemma 23,

m⋆(G) ≥ m⋆(H1)m
⋆(H2) ≥ 2α|V (G)|−4α−fw(G)−2β1+2γ ≥ 2α|V (G)|−fw(G)+γ,

by (2.10), as desired. Finally, if for every cyclic edge-cut C of size at most 3 only
one C-contraction has a core, we apply Corollary 7 to G. Let (T, ϕ) be the resulting
small-cut-decomposition of G. There exists a unique vertex t ∈ V (T ) such that the
hub H of G at t is cyclically 4-edge-connected with |V (H)| ≥ 6. Let T1, . . . , Tk be
the components of T−t and let Zi = ϕ−1(V (Ti)). We apply Lemma 26 to Z1, . . . , Zk.
Note that Lemma 26 is indeed applicable, as G is pruned, and therefore every triangle
in G belongs to an elementary twig. Consequently, no edge-cut corresponding to an
edge of (T, ϕ) separates exactly 3 vertices of G.
Let X1,X2, . . . ,Xk be the foliages satisfying the lemma. Let X0 be the maximal

foliage in H avoiding new vertices and edges created by contraction of the edge-cuts
δ(Z1), . . . , δ(Zk). Then fw(X0) ≥ fw(H)−kβ2, as H contains no twigs (it is cyclically
4-edge-connected). Since X0 ∪ X1 ∪ . . . ∪ Xk is a foliage in G we have

fw(G) ≥ fw(H)− kβ2 +
k∑

i=1

fw(Xi) ≥ fw(H) + α
k∑

i=1

|Zi|,

by the choice of X1, . . . ,Xk. It remains to observe that

m⋆(G) ≥ m⋆(H) ≥ 2α|V (H)|−fw(H)+γ ≥ 2α(|V (G)|−
∑k

i=1 |Zi|)−fw(H)+γ ≥ 2α|V (G)|−fw(G)+γ,

by the above. □
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2.1.7 Concluding remarks

2.1.7.1 Improving the bound.

We expect that the bound in Theorem 18 can be improved at the expense of more
careful case analysis. In particular, it is possible to improve the bound on the length
of the path in Corollary 9. We have chosen not to do so in an attempt to keep the
argument as short and linear as possible.
In [11] it is shown that for some constant c > 0 and every integer n there exists a

cubic bridgeless graph on at least n vertices with at most c2n/17.285 perfect matchings.

2.1.7.2 Number of perfect matchings in k-regular graphs.

In [61, Conjecture 8.1.8] the following generalization of the conjecture considered in
this work is stated. A graph is said to be matching-covered if every edge of it belongs
to a perfect matching.

Conjecture 5 For k ≥ 3 there exist constants c1(k), c2(k) > 0 such that every k-
regular matching covered graph contains at least c2(k)c1(k)|V (G)| perfect matchings.
Furthermore, c1(k)→∞ as k →∞.

While our proof does not seem to extend to the proof of this conjecture, the
following weaker statement can be deduced from Theorem 18. We are grateful to
Paul Seymour for suggesting the idea of the following proof.

Theorem 21 Let G be a k-regular (k − 1)-edge-connected graph on n vertices for
some k ≥ 4. Then

log2m(G) ≥ (1− 1
k
)(1− 2

k
) n
3656

.

Proof. Let w be an edge-weighting of G assigning weight 1/k to every edge. It is
easy to deduce from Theorem 20 that w ∈ PMP(G). LetMw be a random variable
inM(G) corresponding tow. We choose a triple of perfect matchings of G as follows.
Let M1 ∈M(G) be arbitrary. We have

E[|Mw ∩M1|] =
n

2k
.

Therefore we can choose M2 ∈M(G) so that |M2 ∩M1| ≤ n
2k
. Let Z ⊆ V (G) be the

set of vertices not incident with an edge of M1 ∩M2. Then |Z| ≥ (1− 1
k
)n. For each

v ∈ Z we have
Pr[Mw ∩ δ({v}) ∩ (M1 ∪M2) = ∅] = 1− 2

k
.
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Therefore the expected number of vertices whose three incident edges are in Mw,
M1 and M2 respectively, is at least (1 − 1

k
)(1 − 2

k
)n. It follows that we can choose

M3 ∈M(G) so that the subgraph G′ of G with E(G′) = M1 ∪M2 ∪M3 has at least
(1 − 1

k
)(1 − 2

k
)n vertices of degree three. Note that G′ is by definition matching-

covered. It follows that the only bridges in G′ are edges joining pairs of vertices
of degree one. Let G′′ be obtained from G′ by deleting vertices of degree one and
replacing by an edge every maximal path in which all the internal vertices have
degree two. The graph G′′ is cubic and bridgeless and therefore by Theorem 18 we
have

log2m(G) > log2m(G′) ≥ log2m(G′′) ≥ 1
3656
|V (G′′)| ≥ (1− 1

k
)(1− 2

k
) n
3656

,

as desired. □

2.2 Perfect matchings interactions

In this section we will show another context where the operation of path splitting,
together with careful analysis of short edge-cuts, can be applied in order to obtain
interesting results.
In 2013, Giuseppe Mazzuoccolo [56] proposed three conjectures about the inter-

actions between perfect matchings in bridgeless cubic graphs. His first conjecture,
implied by the Berge-Fulkerson Conjecture [31] and Fan-Raspaud Conjecture [28], is
the following.

Conjecture 6 (Mazzuoccolo, 2013 [56]) Let G be a bridgeless cubic graph. Then,
there exist two perfect matchings of G such that the complement of their union is a
bipartite graph.

Suppose there are three perfect matchings such that every edge is in at most two
of them, as by Fan and Raspaud (or take any three out of the six by Berge and Fulk-
erson). Then any two of them have the desired property: Indeed, if the complement
of their union contained an odd cycle, then the third perfect matching could only
cover the vertices of this cycle by the edges of the cycle, which is impossible.
This last conjecture was presented by Jean Paul Zerafa at a workshop on ex-

ceptional structures in discrete mathematics in Modra (Slovakia), and together with
Edita Máčajová, the three of us started to work on this problem there. We managed
to prove the conjecture, more precisely, we proved the following stronger statement.
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Theorem 22 (Kardoš, Máčajová, and Zerafa, 2023 [46]) Let G be a bridge-
less cubic graph. Let F be a 1+-factor of G and let e ∈ E(G). Then, there exists a
perfect matching M of G such that e ∈M , and G \ (F ∪M) is bipartite.

Note that a 1+-factor of G is the edge set of a spanning subgraph of G such that
its vertices have degree 1, 2 or 3. Theorem 22 not only shows the existence of two
perfect matchings of G whose deletion leaves a bipartite subgraph of G, but that for
every perfect matching of G there exists a second one such that the deletion of the
two leaves a bipartite subgraph of G. In particular, Theorem 22 also implies that for
every collection of disjoint odd circuits of G, there exists a perfect matching which
intersects at least one edge from each odd circuit (this was posed as an open problem
by Mazzuoccolo and Zerafa in [57], see also [69]).
Mazzuoccolo moved on to propose two stronger conjectures, with Conjecture 8

being the strongest of all three.

Conjecture 7 (Mazzuoccolo, 2013 [56]) Let G be a bridgeless cubic graph. Then,
there exist two perfect matchings of G such that the complement of their union is an
acyclic graph.

Conjecture 8 (Mazzuoccolo, 2013 [56]) Let G be a bridgeless cubic graph. Then,
there exist two perfect matchings of G such that the complement of their union is an
acyclic graph, whose components are of order 2 or 3.

Clearly, these last two conjectures are true for 3-edge-colourable cubic graphs,
and Janos Hägglund verified the strongest of these conjectures (Conjecture 8) by
computer for all non-trivial snarks (non 3-edge-colourable cubic graphs) of order
at most 34 [56]. However, 5 years later, Jin, Steffen, and Mazzuoccolo [40] gave
a counterexample to Conjecture 7. Their counterexample contains a lot of 2-edge-
cuts and the authors state that the conjecture ”could hold true for 3-connected or
cyclically 4-edge-connected cubic graphs”. In fact, we reviewed our proof of Theorem
22, and we realized that most of the arguments can be adapted to show the following
stronger statement.

Theorem 23 Let G be a cyclically 3-edge-connected cubic graph, which is not a
Klee-graph. Then, for any e ∈ E(G) and any 1+-factor F of G, there exists a perfect
matching M of G containing e such that G \ (F ∪M) is acyclic.

We remark that Klee-graphs (see Definition 1 below), which are to be discussed
further later (see section 2.2.1), are 3-edge-colourable cubic graphs and so are not a
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counterexample to Conjecture 7. However, the stronger statement given in Theorem
23 does not hold for this class of graphs, and this is the reason why we exclude them.
Although Theorem 23 is not a direct consequence of the Berge–Fulkerson Con-

jecture, we believe that the results presented here and in [46] are valuable steps
towards trying to decipher long-standing conjectures about interactions between per-
fect matchings in bridgeless cubic graphs.
In fact, we will prove the following statement, which is equivalent to Theorem

23.

Theorem 24 Let G be a cyclically 3-edge-connected cubic graph, which is not a
Klee-graph. Then, for any e ∈ E(G) and any collection of disjoint circuits C, there
exists a perfect matching M of G containing e such that every circuit in C contains
an edge from M .

Indeed, given a collection of disjoint circuits C, its complement is a 1+-factor,
say FC. A perfect matching M containing e such that G \ (FC ∪M) is acyclic must
contain an edge from every circuit in C. On the other hand, given a 1+-factor F , its
complement is a collection of disjoint paths and circuits, and so it suffices to consider
the collection CF of circuits disjoint from F . A perfect matchingM containing e such
that every circuit in CF contains an edge from M , clearly makes G\ (F ∪M) acyclic.

2.2.1 Klee-graphs

Definition 1 (as in [11]) A graph G is a Klee-graph if G is the complete graph on
4 vertices K4 or there exists a Klee-graph G0 such that G can be obtained from G0

by replacing a vertex by a triangle (see Figure 2.6).

Figure 2.6: Examples of Klee-graphs on 4 upto 12 vertices, left to right.

For simplicity, if a graph G is a Klee-graph, we shall sometimes say that G is
Klee. We note that there is a unique Klee-graph on 6 vertices (the graph of a 3-sided
prism), and a unique Klee-graph on 8 vertices. These two graphs are examples of
so-called Klee ladders, and shall be respectively denoted as KL6 and KL8.
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Lemma 35 (Cygan, Pilipczuk, and Škrekovski 2013 [11]) The edge set of any
Klee-graph can be uniquely partitioned into three pairwise disjoint perfect matchings.
In other words, any Klee-graph is 3-edge-colourable, and the colouring is unique up
to a permutation of the colours.

Since Klee-graphs are 3-edge-colourable, they easily satisfy the statement of Con-
jecture 7.

Proposition 2 Let G be a Klee-graph. Then, G admits two perfect matchings M1

and M2 such that G \ (M1 ∪M2) is acyclic.

The new graph obtained after expanding a vertex of a Hamiltonian graph (not
necessarily Klee) into a triangle is still Hamiltonian, and so, since K4 is Hamilto-
nian, all Klee-graphs are Hamiltonian. Hamiltonian cubic graphs have the following
distinctive property.

Proposition 3 Let G be a Hamiltonian cubic graph. Then, for any collection of
disjoint circuits C of G there exists a perfect matching M of G which intersects at
least one edge of every cycle in C.

Proof. SinceG is Hamiltonian, it admits three disjoint perfect matchingsM1,M2,M3

covering E(G) such that at least two of them induce a Hamiltonian cycle. Without
loss of generality, assume that M2 ∪ M3 induce a Hamiltonian cycle. Let C be a
collection of disjoint cycles of G for which the statement of the proposition does not
hold. In particular, this implies that M1 does not intersect all the cycles in C —
since the complement of M1 is a Hamiltonian cycle, C consists of exactly one cycle.
However, this means that M2 (or M3) intersects the only cycle in C, contradicting
our initial assumption. □

Corollary 10 For any collection of disjoint cycles C of a Klee-graph G there exists
a perfect matching M of G which intersects at least one edge of every cycle in C.

On the other hand, we have to exclude Klee-graphs from Theorem 23 (and The-
orem 24) since for some Klee-graphs there are edges contained in a unique perfect
matching, as we will see below.

Lemma 36 (Cygan, Pilipczuk, and Škrekovski 2013 [11]) Let G be a Klee-
graph on at least 6 vertices. Then, G has at least two triangles and all its triangles
are vertex-disjoint.
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Indeed, expanding a vertex into a triangle can only destroy triangles containing
the vertex to be expanded.

We will now define a series of particular Klee-graphs, which we will call Klee
ladders. Let KL4 be the complete graph on 4 vertices, and let u4v4 be an edge of
KL4. For any even n ≥ 4, let KLn+2 be the Klee-graph obtained from KLn by
expanding the vertex un into a triangle. In the resulting graph KLn+2, we denote
the vertex corresponding to vn by vn+2, and denote the vertex of the new triangle
adjacent to vn+2 by un+2.
In other words, the graphKL2k+2 consists of the Cartesian product P2□Pk (where

Pt denotes a path on t vertices) with two additional vertices u2k+2 and v2k+2 adjacent
to each other, such that u2k+2 (v2k+2) is adjacent to the two vertices in the first (last,
respectively) copy of P2 in P2□Pk (see Figure 2.7).
Klee ladders can be used to illustrate why we have to exclude Klee-graphs from

our main result. For a given Klee ladder G there exists an edge e such that e is
contained in a unique perfect matching of G, and therefore there is no hope for a
statement like Theorem 24 to be true.

e

Figure 2.7: An example of a Klee ladder, KL12. There is a unique perfect matching
(here depicted using dotted lines) containing the edge e. The complement of this
perfect matching is a Hamiltonian cycle.

We will frequently use the following structural property of certain Klee-graphs.

Lemma 37 Let G be a Klee-graph on at least 8 vertices having exactly two (disjoint)
triangles. Then,

(i) exactly one edge of each triangle lies on a 4-cycle; and

(ii) if G admits an edge joining the two triangles, then G is a Klee ladder.

Proof. We prove this by induction. Claim (i) is obvious for KL8, the only Klee-
graph on 8 vertices, so let G be a Klee-graph on n ≥ 10 vertices. By definition, it
can be obtained from a smaller one, say G0, by expanding a vertex into a triangle.
Since G only has two triangles, this operation must have destroyed a (single) triangle
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of G0, which in turn gives rise to a 4-cycle containing exactly one of the edges of the
new triangle.
Moreover, if G admits an edge e joining the two triangles, then the corresponding

edge e0 in G0 joins a triangle to a vertex contained in a (distinct) triangle, so it
joins the two triangles of G0. By induction, G0 is a Klee ladder, say KLn−2, for
some n ≥ 8, and the edge e0 is the edge un−2vn−2 (see the definition of Klee ladders
above). Claim (ii) follows immediately. □

2.2.2 The general case

Proof. (of Theorem 24) Let G be a minimum counterexample to the statement of
Theorem 24. Since K4 is Klee, G has at least six vertices. There are only two 3-
connected cubic graphs on six vertices, namely KL6 and K3,3. The former is Klee.
For the latter, K3,3, a collection of disjoint cycles can only contain one cycle on either
four or six vertices and in both cases it is easy to check that every edge is contained
in a perfect matching intersecting the prescribed cycle. Therefore, G has at least
eight vertices.
Let e ∈ E(G) be an edge of G such that there exists a collection of disjoint

cycles such that for every perfect matching M containing e there is a cycle in the
collection containing no edge from M . Amongst all such collections, we can choose
an inclusion-wise minimal one, denoted by C. By the choice of C, we may assume
that e /∈ C for any C ∈ C.
In the sequel, we will prove progressively a series of structural properties of G.

Before that, we need to define three additional graph families. Let KL2k−2 be the
Klee ladder on 2k − 2 vertices with k ≥ 4; let u2k−2 and v2k−2 be the two vertices
contained in the two triangles, say u2k−2u1u2 and v2k−2v1v2, which are adjacent to
each other. Moreover, we may assume that KL2k−2 \ {u2k−2, v2k−2} contains two
disjoint paths of length k − 3, one from u1 to v1 and the other from u2 to v2.
We remove the vertices u2k−2 and v2k−2 and replace them by four vertices, say

u′1, u
′
2, v

′
1, and v′2, adjacent to u1, u2, v1, and v2, respectively, and we add a 4-cycle

passing through the four new vertices. In fact, we can see the last operation as adding
a complete graph on 4 vertices and removing a perfect matching. Up to symmetry,
only three outcomes are possible.

� A ladder L2k is obtained if the edges u′1v
′
2 and u

′
2v
′
1 are missing.

� A Möbius ladder ML2k is obtained if the edges u′1v
′
1 and u

′
2v
′
2 are missing.

� A quasi-ladder QL2k is obtained if the edges u′1u
′
2 and v

′
1v
′
2 are missing.
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Observe that the ladder L2k is the graph of a k-sided prism. Observe that ladders
and Möbius ladders are vertex-transitive.

KL2k−2 L2k

ML2k−2 QL2k

Figure 2.8: An illustration of a Klee ladder, a ladder, a Möbius ladder, and a quasi-
ladder.

Claim 1. The graph G is not a ladder, a Möbius ladder, nor a quasi-ladder.
Proof of Claim 1. We proceed by contradiction. Suppose thatG ∈ {L2n,ML2n, QL2n :
n ≥ 4}, and let C be a collection of disjoint cycles in G. We prove that for every
edge e there exists a perfect matching Me containing e such that its complement is
a Hamiltonian cycle, say Ce; moreover, there exists yet another perfect matching M ′

e

containing e. The first perfect matching can be used to prove Theorem 24 unless
C = {Ce}. If this is the case, then we can use M ′

e.
In most of the cases, the second perfect matching M ′

e can be obtained from Me

by the following operation: we find a 4-cycle consisting of the edges e1, e2, e3, e4 (in
this cyclic order) avoiding e and containing exactly two edges from Me, say e1 and
e3. We then set M ′

e = (Me \ {e1, e3}) ∪ {e2, e4}. In other words, M ′
e is obtained as

the symmetric difference of Me and a suitable 4-cycle.
If G is a ladder or a Möbius ladder, then G is vertex-transitive, and there are only

two edge orbits. It suffices to distinguish between e being an edge contained in two
4-cycles (vertical according to Figure 2.8) or in a single one (horizontal or diagonal).
An example of a pair of perfect matchings Me and M ′

e having the desired properties
is depicted in Figure 2.9.
Let G = QL2k for some k ≥ 4. If e is an edge of the subgraph P2□Pk−2 or an

edge of the 4-cycle u′1v
′
1u
′
2v
′
2 (see the definition of a quasi-ladder for the notation),

then a pair of perfect matchings Me and M ′
e having the desired properties can be

found in a same way as in the previous case, see Figure 2.10 for an illustration.
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e

e

e

e

Figure 2.9: An example of a Hamiltonian cycle Ce (drawn using double lines) avoiding
a given edge e whose complement is a perfect matching Me containing e, for both
possible positions of the prescribed edge e in a ladder (top line) or a Möbius ladder
(bottom line). A second perfect matching M ′

e can be obtained by the symmetric
difference with the grey 4-cycle.

Otherwise, let e = u1u
′
1 (for the remaining three edges the situation is symmet-

ric). There is a unique Hamiltonian cycle Ce avoiding e and containing u2u
′
2, see

Figure 2.11 for an illustration. In this case, there is another perfect matching M ′
e

containing {u1u
′
1, u2u

′
2, v1v

′
1, v2v

′
2} and all the vertical edges of the subgraph P2□Pk−2

except for the first and the last one. ■

e

e e

e

Figure 2.10: An example of a Hamiltonian cycle Ce avoiding a given edge e (drawn
using double lines) whose complement is a perfect matching Me containing e, for an
edge e contained in the grid P2□Pk−2 (top line) and in the 4-cycle outside the grid
(bottom line) of a quasi-ladder. A second perfect matching M ′

e can be obtained by
the symmetric difference with the grey 4-cycle.

Claim 2. The graph G does not have any cyclic 3-edge-cuts.
Proof of Claim 2. Suppose thatG admits a cyclic 3-edge-cut E(V ′, V ′′) with E(V ′, V ′′) =
{f1, f2, f3} =: X, where each fi = v′iv

′′
i , for some v

′
1, v
′
2, v
′
3 ∈ V ′ and v′′1 , v

′′
2 , v
′′
3 ∈ V ′′.

Since G has no 2-edge-cuts, the vertices v′1, v
′
2, v
′
3, v
′′
1 , v
′′
2 , v
′′
3 are all distinct.

Either there is no cycle in C intersecting X, or the cut X is intersected by a
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e e e

Figure 2.11: An example of a Hamiltonian cycle Ce avoiding a given edge e (drawn
using double lines) whose complement is a perfect matching Me containing e, for an
edge e joining a vertex in the grid P2□Pk−2 to a vertex of the 4-cycle outside the
grid in a quasi-ladder (top line, two cases depending on the parity of the length of
the grid). A second perfect matching M ′

e (bottom).

unique cycle CX in C. Without loss of generality, we shall assume that when CX

exists, X ∩ CX = {f2, f3}.
Let G′ and G′′ be the two graphs obtained from G after deleting X and joining

the vertices v′i to a new vertex v
′, and the vertices v′′i to a new vertex v

′′. For each
i ∈ [3], let e′i = v′iv

′ and e′′i = v′′i v
′′.

v′ v′′
v′
1

v′
2

v′
3

v′′
1

v′′
2

v′′
3

G′ G′′

f1

f2

f3

v′
1

v′
2

v′
3

v′′
1

v′′
2

v′′
3

G

Figure 2.12: The graphs G′ and G′′ when G admits a cyclic 3-edge-cut {f1, f2, f3}.

Let

C ′ =
{
{C ∈ C \ {CX} : C ∩ E(G′) ̸= ∅} ∪ {(CX ∩ E(G′)) ∪ {e′2, e′3}} if CX exists,

{C ∈ C : C ∩ E(G′) ̸= ∅} otherwise.

Similarly, let

C ′′ =
{
{C ∈ C \ {CX} : C ∩ E(G′′) ̸= ∅} ∪ {(CX ∩ E(G′′)) ∪ {e′′2, e′′3}} if CX exists,

{C ∈ C : C ∩ E(G′′) ̸= ∅} otherwise.

It is not hard to see that C ′ (C ′′) is a collection of disjoint cycles in G′ (in G′′,
respectively). Every cycle C ̸= CX in C corresponds to a cycle either in C ′ or in
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C ′′. The cycle CX (if it exists) corresponds to two cycles C ′X and C ′′X in C ′ and C ′′,
respectively.
Case A. We first consider the case when G does not admit any triangles, and

claim that G′ (similarly G′′) is not Klee. For, suppose that G′ is Klee. Since G has no
triangles, |V (G′)| ≥ 6, and so, by Lemma 36, G′ must admit two disjoint triangles.
This is impossible since any triangle in G′ must contain the vertex v′. Hence, when
G does not admit any triangles, G′ and G′′ are both not Klee.
Without loss of generality, we can also assume that at least one of the endvertices

of e corresponds to a vertex in V ′. We consider two cases, depending on the existence
of CX .
Case A1. First, consider the case when CX does not exist. When e ∈ X, say

e = f1, then, by minimality of G, there exists a perfect matchingM ′ of G′ (M ′′ of G′′)
containing e′1 (e

′′
1), intersecting every cycle in C ′ (in C ′′, respectively). Consequently,

M = M ′ ∪ M ′′ ∪ {f1} \ {e′1, e′′1} is a perfect matching of G containing e = f1,
intersecting every cycle in C.
It remains to consider the case when e /∈ X, and so the endvertices of e both

correspond to vertices in G′. Once again, for simplicity, we shall refer to this edge
as e. Let M ′ be a perfect matching of G′ containing e intersecting every cycle in C ′.
Without loss of generality, assume that e′1 ∈M ′. LetM ′′ be a perfect matching of G′′

containing e′′1 intersecting every cycle in C ′′. LetM = M ′∪M ′′∪{f1}\{e′1, e′′1}. This
is a perfect matching of G containing e, intersecting every cycle in C, a contradiction.
Case A2. Suppose that CX exists. When e ∈ X, we have that e = f1 by the

choice of CX , and so, by the minimality of G, there exists a perfect matching M ′ of
G′ (M ′′ of G′′) containing e′1 (e

′′
1), intersecting every cycle in C ′ (in C ′′, respectively).

Consequently, M = M ′ ∪M ′′ ∪ {f1} \ {e′1, e′′1} is a perfect matching of G containing
e = f1. Clearly, every cycle in C \ {CX} is intersected by M . The cycle CX must
be intersected by M since C ′X (C

′′
X) contains an edge of M

′ (M ′′), not incident to v′

(v′′, respectively).
When e /∈ X, the endvertices of e both correspond to vertices in G′. Once again,

for simplicity, we shall refer to this edge as e. Let M ′ be a perfect matching of G′

containing e intersecting every cycle in C ′. We have e′i ∈ M ′ for some i ∈ [3]. Let
M ′′ be a perfect matching of G′′ containing e′′i intersecting every cycle in C ′′. Let
M = M ′∪M ′′∪{fi}\{e′i, e′′i }. This is a perfect matching of G containing e. As before,
M intersects every cycle in C unless i = 1 and no edge of G′ or G′′ corresponding to
an edge of CX is in M ′ or M ′′, which is impossible since C ′X (C

′′
X) is a cycle in C ′

(C ′′), so it contains an edge of M ′ ( M ′′), not incident to v′ (v′′, respectively).
Case B. What remains to be considered is the case when G admits a triangle.

Consequently, without loss of generality, we can assume that G′′ is K4. We note that
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in this case, G′ cannot be Klee because otherwise G itself would be Klee. Thus, the
inductive hypothesis can only be applied to G′ but not to G′′. As in Case A, we can
assume that at least one of the endvertices of e corresponds to a vertex in V ′, since
if the endvertices of e both belong to V ′′, say e = v′′i v

′′
j , a perfect matching of G

contains e if and only if it contains fk, where {i, j, k} = [3]. We proceed as in Case
A and note that the perfect matching M ′ containing (the edge corresponding to) e
intersecting every cycle in C ′ obtained after applying the inductive hypothesis to G′
can be easily extended to a perfect matching M of G containing e. What remains to
show is thatM intersects every cycle in C. The only cycle possibly not intersected by
M is CX , if it exists. However, this can only happen if i = 1, and, if this is the case,
then, in particular, C ′X is a cycle in G

′ and so contains an edge of M ′ not incident to
v′. This implies that CX contains the corresponding edge ofM in G, a contradiction.■

Claim 3. The graph G does not have any cyclic 4-edge-cuts.
Proof of Claim 3. Suppose first that, in particular, G has a 4-cycle C = (v′′1 , v

′′
2 , v
′′
3 , v
′′
4).

Let v′1, v
′
2, v
′
3, v
′
4 be the vertices in G − C respectively adjacent to v′′1 , v

′′
2 , v
′′
3 , v
′′
4 , let

fi = v′iv
′′
i for i ∈ {1, 2, 3, 4} and let X = {f1, f2, f3, f4}. The vertices v′i are pairwise

distinct since G does not have any cyclic 3-cuts.
Let {i, j, k} = {2, 3, 4}. We denote by G1i the graph obtained after adding two

new vertices x and y to G− C, such that:

� x and y are adjacent;

� v′1 and v
′
i are adjacent to x; and

� v′j and v
′
k are adjacent to y.

It is known that the graph G1i is 3-connected whenever G is cyclically 4-edge-
connected [26]. We claim that G1i is not Klee, for any i ∈ {2, 3, 4}. For, suppose
not. Since G does not admit any cyclic 3-cuts, by Lemma 36, the only two possible
triangles in G1i are (v′1, v

′
i, x) and (v′j, v

′
k, y). Moreover, since x is adjacent to y, by

Lemma 37, G1i is a Klee ladder. For every i ∈ {2, 3, 4}, this implies that G is a graph
isomorphic to a ladder, a Möbius ladder, or a quasi-ladder — this is a contradiction.
We proceed by considering whether e belongs to E(C), X, or E(G− C).
Case A. When e ∈ E(C), then for every i ∈ {2, 3, 4}, every perfect matching of

G1i containing e′ = xy extends to a perfect matching of G containing e. The cut X
contains an even number of edges belonging to some cycle in C. In particular, E(C)
can contain at most three cycle edges belonging to some cycle in C, and so C ̸∈ C.
If X contains no cycle edges, then we can set C ′ = C and apply induction on any

G′ = G1i to find a perfect matching M ′ containing e′ intersecting every cycle in C ′,
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which readily extends to a perfect matching M containing e intersecting every cycle
in C. Note that the cycle C, in particular, is always intersected by at least one edge
of M .
If there is a single cycle intersecting X exactly twice, say CX passing through the

edges fj and fk, then we apply induction on the graph G′ = G1i where {1, i} = {j, k}
(if 1 ∈ {j, k}), or |{1, i, j, k}| = 4 (otherwise). The cycle C ′X in G′ corresponding to
CX contains two edges both incident to either x or y. Hence, if a perfect matching
M ′ containing e′ = xy intersects every cycle in C ′ = (C \ {CX}) ∪ {C ′X}, then it
extends to a perfect matching containing e intersecting every cycle in C, since C ′X
contains an edge in M ′ not incident to x (nor y).
If there are two distinct cycles each intersecting X twice, say CX passing through

the edges f1 and f2, andDX passing through the edges f3 and f4, or if there is a single
cycle intersecting X four times, say CX passing through the vertices v′1, v

′′
1 , v
′′
2 , v
′
2, and

also v′3, v
′′
3 , v
′′
4 , v
′
4, then we can apply induction on the graph G12 with e′ = xy just

like in the previous case.
Case B. When e ∈ X, say e = f1, then every perfect matching of G′ = G13

containing e′ = xu1 extends to a perfect matching of G containing e in a unique
way. If there is no cycle in C intersecting X, then we can set C ′ = C \ {C} and
apply induction directly. If there is a cycle in C intersecting X, say CX , then |CX ∩
X| = 2. The corresponding cycle C ′X in G′ is well-defined: it always contains y and
eventually also x (when CX ∩X ̸= {f2, f4}). A perfect matchingM ′ in G′ containing
e′ intersecting every cycle in C ′ = (C \ {CX}) ∪ {C ′X} intersects C ′X at a cut-edge
incident to y or an edge of G−C. In both cases, the corresponding perfect matching
M in G containing e intersects every cycle in C, since M intersects CX at an edge in
X or an edge of G− C.
Case C. It remains to consider the case when e ∈ E(G− C). Let G′ = G13 and

let e′ be the edge of G′ corresponding to e in G. Every perfect matching M ′ of G′

containing e′ and not containing xy extends to a perfect matchingM of G containing
e in a unique way; every perfect matching M ′ of G′ containing e′ and xy extends to
a perfect matching M of G in two distinct ways, whose symmetric difference is the
4-cycle C. In all the cases, we obtain a perfect matching M of G containing at least
one edge of C.
If X contains no edges belonging to any cycle in C, then we can set C ′ = C \ {C}

and apply induction directly. The cycle C in particular (if it is in C) is always
intersected by at least one edge of M .
If there is a single cycle intersecting X exactly twice, say CX , passing through

the edge f1 and fi for some i ∈ {2, 3, 4}, then the corresponding cycle C ′X in G′ is
well-defined: it always contains x and eventually also y (when CX ∩X ̸= {f1, f3}).
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We can set C ′ = (C \ {CX}) ∪ {C ′X} and apply induction. If M ′ contains an edge
of C ′X not incident to x nor y, then M contains an edge of CX not incident to any
vertex of C. If M ′ contains the edge xy, then amongst the two possible extensions
of M ′ into M we can always choose one that contains at least one edge of CX . If
M ′ contains an edge incident to x or to y distinct from xy, then M contains the
corresponding edge in X. In all the cases, it is possible to extend a perfect matching
M ′ of G′ containing e′ and intersecting every cycle in C ′ into a perfect matching M
of G containing e and intersecting every cycle in C.
If there are two distinct cycles each intersecting X twice, say CX passing through

the edges f1 and f2 and DX passing through the edges f3 and f4, then we apply
induction on G′ with C ′ = C \ {CX , DX}. If the perfect matching M ′ containing e′

and intersecting every cycle in C ′ obtained by induction also contains xy, then we
can choose M to contain both v′′1v

′′
2 and v′′3v

′′
4 , and so it intersects both CX and DX

as well. If M ′ does not contain xy, then |M ∩ {f1, f2, f3, f4}| = 2. If M contains
exactly one of f1 and f2 then it also contains one of f3 and f4, and so M intersects
both CX and DX . If {f1, f2} ⊂ M , then v′′3v

′′
4 ∈ M ; similarly, if {f3, f4} ⊂ M , then

v′′1v
′′
2 ∈M . In all the cases M intersects both CX and DX , as desired.
If there is a single cycle intersecting X four times, say CX passing through

v′1v
′′
1v
′′
2v
′
2 and also v′3v

′′
3v
′′
4v
′
4, then we can apply induction on the graph G′ with

C ′ = C \ {CX} just like in the previous case.
From this point on we may assume thatG does not contain any 4-cycles. In partic-

ular, for every cyclic 4-edge-cut E(V ′, V ′′) both sides have at least six vertices. Sup-
pose that G admits a cyclic 4-edge-cut E(V ′, V ′′) with E(V ′, V ′′) = {f1, f2, f3, f4} =:
X, where each fi = v′iv

′′
i , for some v

′
1, v
′
2, v
′
3, v
′
4 ∈ V ′ and v′′1 , v

′′
2 , v
′′
3 , v
′′
4 ∈ V ′′. Since G

has no 3-edge-cuts, the vertices v′1, v
′
2, v
′
3, v
′
4, v
′′
1 , v
′′
2 , v
′′
3 , v
′′
4 are all distinct.

We define graphs G′1i and G
′′
1i for i ∈ {2, 3, 4} analogously as in the previous part.

We denote by x′ and y′ (x′′ and y′′) the two new vertices in G′1i (in G′′1i), and by
e′1, e

′
2, e

′
3, e

′
4 (e

′′
1, e

′′
2, e

′′
3, e

′′
4) the edges of G

′
1i (of G

′′
1i, respectively) corresponding to

f1, f2, f3, f4, respectively, for i ∈ {2, 3, 4}. These graphs are all 3-connected [26].
None of these graphs can be a Klee-graph: if this was the case, it would have to be
a Klee ladder on at least eight vertices, but there are no 4-cycles at all in G, so this
is impossible.
Consider first the case when e ∈ X, say e = f1. If there is a cycle CX in C

intersecting X, then e /∈ CX and |CX ∩ X| = 2. We may assume that CX ∩ X =
{f2, f3}. We consider all the three graphs G′12, G′13, and G′14 (and all the three graphs
G′′12, G

′′
13, and G

′′
14) at the same time. The cycle CX (if it exists) corresponds to a cycle

C ′X (C
′′
X) in each of them in a natural way, covering either one or two vertices amongst

x′ and y′ (x′′ and y′′, respectively). If CX does not exist, we shall proceed in the same
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manner, but letting CX , C ′X , and C
′′
X be equal to ∅. We apply induction with e′ = e′1

(e′′ = e′′1) and C ′ = ((C \{CX})∩E(G′1i))∪{C ′X} (C ′′ = ((C \{CX})∩E(G′′1i))∪{C ′′X},
respectively). Let M ′

i (M
′′
i ) be a perfect matching in G′1i (G

′′
1i) containing e′ (e′′)

intersecting every cycle in C ′ (in C ′′, respectively). Every perfect matching amongst
M ′

2,M
′
3, andM

′
4 contains exactly one edge e

′
k corresponding to a cut edge fk for some

k ∈ {2, 3, 4} (besides the edge e′ corresponding to f1) and the three values of k cannot
all be the same for the three perfect matchings. The same thing holds for the other
three perfect matchings M ′′

2 , M
′′
3 , and M ′′

4 . Therefore, for some k ∈ {2, 3, 4} there
exist two perfect matchings M ′

i and M
′′
j containing the edge e

′
k and e

′′
k, respectively.

We can combine them together into a perfect matching M containing e and fk,
intersecting every cycle in C. In particular, if CX exists, then it can only be avoided
by M if k = 4, but then M ′

i (M
′′
j ) cannot contain any edge of C

′
X (C

′′
X) incident

to x′ or to y′ (to x′′ or to y′′), so it intersects C ′X inside G[V ′] (C ′′X inside G[V ′′],
respectively). Consequently, M intersects CX inside G[V ′] and G[V ′′].
Consider next the case where e /∈ X. We may assume that e ∈ G[V ′]. Let CX be

the set of cycles in C intersecting X. We have |CX | ≤ 2, and even if there is a single
cycle in CX , it may contain all four edges of X. Let C ′0 (C ′′0 ) be the set of cycles from
C within G[V ′] (G[V ′′], respectively). Given G′ = G′1i (G

′′ = G′′1i) for some arbitrary
i ∈ {2, 3, 4}, let C ′X (C ′′X) be the set of cycles obtained from the subpaths of cycles in
CX contained in G[V ′] (in G[V ′′]) by adding the necessary edges from {e′1, e′2, e′3, e′4}
(from {e′′1, e′′2, e′′3, e′′4}) and eventually also the edge x′y′ (x′′y′′, respectively), if needed.
Observe that |C ′X | = 2 (|C ′′X | = 2) is possible when |CX | = 1, and vice-versa. Finally,
let C ′ = C ′0 ∪ C ′X and C ′′ = C ′′0 ∪ C ′′X .
Let e′ be the edge in G′ corresponding to e in G. By induction, we obtain a

perfect matching M ′ containing e′ intersecting every cycle in C ′.
Consider first the case when x′y′ ∈ M ′. We apply induction to obtain a perfect

matching M ′′ of G′′ = G1i, for any i ∈ {2, 3, 4}, containing x′′y′′ intersecting every
cycle in C ′′. Then, M = (M ′ \ {x′y′}) ∪ (M ′′ \ {x′′y′′}) is a perfect matching of G
containing e. It is easy to check that M intersects every cycle in C ′0 and in C ′′0 ; it
remains to certify that M intersects all the cycles in CX . If |CX | ≤ 1, then we choose
G′′1i in such a way that x

′′y′′ does not belong to any cycle in C ′′X , and so M ′′ contains
at least one edge (not incident to x′′ or y′′) of every cycle in C ′′X , and so the cycle in
CX will contain at least one edge from M . If |CX | = 2, then it suffices to choose G′′1i
in such a way that C ′′X contains two distinct cycles (avoiding x′′y′′), and then each
of them will contain at least one edge (not incident to x′′ or y′′) from M ′′, and thus
each cycle in CX will contain at least one edge from M , as desired.
It remains to consider the case when for every choice of G′ = G′1i, a perfect

matching M ′
i of G

′ containing e′ and intersecting every cycle in C ′ never contains
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the edge x′y′. Without loss of generality, we may assume that for G′12 the perfect
matching M ′

2 contains the edges e
′
1 and e′3. We then consider G

′
13. Again, without

loss of generality, the perfect matching M ′
3 contains the edges e

′
1 and e′2. Finally,

we apply induction on G′′ = G′′14 with e′′ = e′′1. Every perfect matching M
′′ of G′′

containing e′′ contains either e′′2 or e
′′
3, so it can be combined with either M

′
2 or M

′
3

to give a perfect matching M of G containing e. We may assume that e′′2 ∈ M ′′. It
is easy to check that such a perfect matching M intersects all the cycles in C ′0 and in
C ′′0 ; it remains to certify that M intersects all the cycles in CX . The only cycle from
CX potentially not intersected by M is the one containing the edges f3 and f4, say
CX . However, the corresponding cycles C ′X and C ′′X in C ′X and C ′′X (there is exactly
one on each side) respectively contain an edge of M ′

3 (not incident to x
′ or y′) and

an edge of M ′′ (not incident to x′′ or y′′). Therefore, M intersects CX at least twice,
which is more than what is desired. ■

From this point on we may assume that G is cyclically 5-edge-connected. We
now consider the edges at distance 2 from e (distance measured as the length of a
shortest path joining corresponding vertices in the line graph of G).

Claim 4. Let f be an edge at distance 2 from e. Then, f /∈ C for any C ∈ C.
Proof of Claim 4. Now it is time to do some path splitting. Let f = uv, let the
neighbours of u distinct from v be α and γ, and let the neighbours of v distinct from
u be β and δ. In particular, since G is cyclically 5-edge-connected, these four vertices
are all distinct and non-adjacent. Without loss of generality, we may assume that α
is an endvertex of e.

e α
u

vβ δ

γ

f

e α

β δ

γ

G′G

Figure 2.13: The vertices α, β, γ, δ and an (αβ : γδ)uv-reduction.

As shown in Figure 2.13, we obtain a smaller graph by deleting the endvertices
of f (together with all edges incident to them) and adding the edges αβ and γδ –
by splitting the path αuvβ. Let this resulting graph, obtained after an (αβ : γδ)uv-
reduction, be G′. Since G is cyclically 5-edge-connected, G′ is cyclically 3-edge-
connected.
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Let the edge in G′ corresponding to e, and the vertices in G′ corresponding to
α, β, γ, δ be denoted by the same name. We recall that any perfect matching of G′

which contains e can be extended to a perfect matching of G containing the edge e
(see also Figure 2.14). In fact, let M ′ be a perfect matching of G′ containing e. This
is extended to a perfect matching M of G containing e as follows:

M =

{
M ′ ∪ {uγ, vδ} \ {γδ} if γδ ∈M ′,

M ′ ∪ {f} otherwise.

e α
u

vβ δ

γ

f

e α

β δ

γ

GG′

e α

β δ

γ

f

e α

β δ

γ

GG′

Figure 2.14: Extending a perfect matching of G′ containing e to a perfect matching
of G containing e. Dotted lines represent edges in M or M ′.

Suppose that for some edge f at distance 2 from e, f is in some cycle Cf in C.
This means that exactly one of uα and uγ, and exactly one of vβ and vδ belong to
Cf . Without loss of generality, we may assume that uα ∈ Cf if and only if vβ ∈ Cf

(otherwise, we rename β and δ). Let G′ be the graph obtained from G after an
(αβ : γδ)uv-reduction. Let C ′f be the cycle in G

′ corresponding to Cf in G obtained
by replacing the 3-edge path passing through u and v by a single edge. Since G is of
girth 5, Cf is a cycle of length at least 3. Let C ′ = (C \{Cf})∪{C ′f} be the collection
of disjoint cycles of G′ obtained by this reduction. This is portrayed in Figure 2.15.
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G′G

Figure 2.15: If f ∈ Cf , then we apply induction on G′ — the graph obtained from
G after an (αβ : γδ)uv-reduction. Dashed lines represent edges outside C or C ′,
respectively.

Let us first assume that G′ is not a Klee-graph. Since G′ is cyclically 3-edge-
connected and its order is strictly less than G, it is not a counterexample. LetM ′ be
a perfect matching of G′ containing e intersecting all the cycles in C ′. We extend this
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perfect matching to a perfect matching M of G containing e as described above (see
Figure 2.14), and claim that it intersects all the cycles in C. Every cycle C ′ ̸= C ′f
in C ′ is hit by an edge of M ′ in G′, and so the corresponding cycle C is hit by the
corresponding edge of M in G. The cycle C ′f is hit by an edge M

′ in G′, and so the
corresponding cycle Cf is hit by the corresponding edge in G, unless γδ ∈ E(Cf ) and
the hitting edge is γδ, but then Cf is hit by both edges γu and vδ. Observe that M ′

cannot contain αβ because e ∈M ′.
Therefore, G′ must be Klee. Since G′ is obtained after an (αβ : γδ)uv-reduction,

and G is cyclically 5-edge-connected, by Lemma 36, the graph G′ admits exactly two
(disjoint) triangles Tℓ and Tr such that V (Tℓ) = {vℓ, α, β} and V (Tr) = {vr, γ, δ},
for some vℓ and vr in G′. Let a, b, c, d be the vertices in G′−{vℓ, vr, α, β, γ, δ} which
are adjacent to α, β, γ, δ, respectively (see Figure 2.16). Furthermore, since G is
cyclically 5-edge-connected, by Lemma 37 the edge αβ (γδ) is the only edge in Tℓ

(in Tr) which lies on a 4-cycle. Therefore, (α, β, b, a) and (γ, δ, d, c) are 4-cycles in
G′. Next we show that a, b, c, d are pairwise distinct. Clearly, a ̸= b, and c ̸= d.
Moreover, a ̸= c, and b ̸= d, otherwise G would admit a 4-cycle. What remains to
show is that a ̸= d, and b ̸= c. We first note that since G is cubic, and a = d if
and only if b = c. Indeed, if a = d and b ̸= c, then, a is adjacent to α, b, c, δ, a
contradiction. Moreover, since G is cyclically 4-edge-connected, if a = d, G would
be the Petersen graph. However, it is an easy exercise to check that the Petersen
graph is not a counterexample.

d

δ

vr

γ

ca

α

vℓ

β

b

v

u

G
d

δ

vr

γ

ca

α

vℓ

β

b
G′

d

δ

vr

γ

ca

α

vℓ

β

b
G′′

Figure 2.16: If for some graphG, the graphG′ obtained after an (αβ : γδ)uv-reduction
is a Klee graph, then the graph G′′ obtained after an (αδ : βγ)uv-reduction is not.

Hence, a, b, c, d are four distinct vertices. Consequently, if we apply an (αδ :
βγ)uv-reduction to G we can be sure that αδ and βγ do not lie on a triangle in the
resulting graph G′′. In particular, G′′ is not Klee. Let C ′′ = C\{Cf}. By the inductive
hypothesis, G′′ admits a perfect matchingM ′′ containing e intersecting every cycle in
C ′′. By extending the perfect matching M ′′ to a perfect matching M of G containing
e as described above (see Figure 2.14), we can deduce that M intersects every cycle
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in C, because, in particular,M contains exactly one edge from E(Cf )∩{uγ, uv, vβ}. ■

From this point on we may assume that no edge f at distance 2 from e is con-
tained in a cycle in C. As a consequence, we have that no edge at distance at most
2 from e is contained in a cycle in C.

Claim 5. Every vertex at distance 2 from e is traversed by a cycle in C.
Proof of Claim 5. Once again, let us consider an edge f = uv at distance 2 from e,
with vertices denoted α, β, γ, δ as above. In particular, there can be a cycle in C
passing through an endvertex of f only if it is passes through the edges βv and vδ.
Suppose that there is no such cycle. As we have seen in the above claim, at

least one of the the resulting graphs obtained by an (αβ : γδ)uv-reduction or an
(αδ : γβ)uv-reduction is not Klee, and so, without loss of generality, we can assume
that the graph G′ obtained after an (αβ : γδ)uv-reduction is not Klee. In G′, there is
a perfect matching M ′ containing e and intersecting every cycle in C ′ = C. It is easy
to see that the perfect matching M (of G) containing e obtained as an extension of
M ′ still intersects all the cycles in C, a contradiction. ■

As a consequence of Claim 5, we have the following.

Claim 6. The edge e does not belong to a 5-cycle.
Proof of Claim 6. Suppose that e belongs to a 5-cycle C = (t1, t2, t3, t4, t5). Let the
vertices in G−V (C) which are adjacent to some vertex in C be v1, v2, v3, v4, v5, such
that vi is adjacent to ti and e = t1t2. Since G is cyclically 5-edge-connected, the
vis are pairwise distinct. Moreover, by Claim 4, no edge in C can be contained in a
cycle of C, but by Claim 5, the vertex t4 must be traversed by a cycle of C, which is
clearly impossible. ■

We also show that e cannot be at distance 2 from a 5-cycle.

Claim 7. Edges at distance 2 from e do not belong to a 5-cycle.
Proof of Claim 7. Suppose the above assertion is false and let C = (t1, t2, t3, t4, t5)
be such a 5-cycle, with t1 being an endvertex of an edge adjacent to e. We obtain a
smaller graph G′ by deleting the edge t3t4, and smooth the vertices t3 and t4. Let
the resulting graph be denoted by G′. It can be easily seen that G′ is cyclically
3-edge-connected and that it does not admit any triangles (and therefore note Klee),
because otherwise, G would contain 4-cycles. For each i ∈ [5], let the vertex in
V (G) − V (C) adjacent to ti be denoted by t′i. We proceed by first showing that a
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perfect matching M ′ of G′ containing e can be extended to a perfect matching M of
G containing e. Without loss of generality, assume that t1t2 ∈ M ′. We extend this
to a perfect matching of G as follows:

M =

{
M ′ ∪ {t3t4} if t5t′5 ∈M ′,

M ′ ∪ {t1t5, t2t3, t4t′4} \ {t1t2, t′4t5} otherwise.

Next, since in G, no edge at distance at most 2 from e belongs to a cycle in C,
and every vertex at distance 2 from an endvertex of e is traversed by one, we have
that t2t3 and t4t5 belong to some cycle in C (possibly the same). We consider two
cases depending on whether the edge t3t4 is in a cycle edge or not.

(i) When t3t4 is a cycle edge, then the vertices t2, t3, t4, t5 are consecutive vertices
on some cycle CX in C. In this case, we let E(C ′X) = E(CX) ∪ {t1t2, t1t5} \
{t2t3, t3t4, t4t5} and C ′ = (C\{CX})∪{C ′X} to be a collection of disjoint cycles in
G′. By the inductive hypothesis there exists a perfect matching M ′ containing
e intersecting every cycle in C ′. The perfect matching M of G containing e
obtained from M ′ as explained above clearly intersects every cycle in C (it
contains either t2t3 or t3t4). This contradicts our initial assumption and so we
must have the following case.

(ii) When t3t4 is not a cycle edge, we let CX and CY (with X not necessarily
distinct from Y ) to be the cycles containing the edges t2t3 and t4t5, respectively.
The corresponding cycles C ′X and C ′Y in G′ are obtained by smoothing out
the vertices t3 and t4. We then set C ′ = (C \ {CX , CY }) ∪ {C ′X , C ′Y }. Note
that the edges t2t′2 and t5t

′
5 belong to distinct cycles in C ′ if and only if they

belong to distinct cycles in C. By the inductive hypothesis, there exists a
perfect matching M ′ of G′ containing e intersecting every cycle in C ′. Without
loss of generality, assume that t1t2 ∈ M ′. The perfect matching M ′ contains
either t5t′5 or t5t

′
4, and consequently, so does the perfect matching M obtained

from M ′ as explained above. This implies that CY is intersected by M . If
C ′X ̸= C ′Y , then M

′ contains an edge of C ′X not incident to t2 in G
′, and so M

contains the corresponding edge of CX in G. Altogether, the perfect matching
M obtained from M ′ as shown above intersects every cycle in C. This is again
a contradiction to our initial assumption that G is a counterexample — thus
proving our claim. ■

Let’s get back to analysing an edge f = uv at distance 2 from e. We cannot
use the reduction portrayed in Figure 2.13 as we do not have a guarantee that we
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can obtain a perfect matching M intersecting the cycle in C containing the edges
vβ and vδ, which we shall denote by Cv. Since G is cyclically 5-edge-connected,
this latter cycle is of length at least 5. Let δ, v, β, y, z be consecutive and distinct
vertices on this cycle (see Figure 2.17). Moreover, let w and x be the vertices in G
respectively adjacent to β and y, such that wβ, xy /∈ E(Cv). We proceed by applying
an (αβ : γδ)uv-reduction followed by an (αx : wz)βy-reduction as portrayed in Figure
2.17.
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Figure 2.17: An (αβ : γδ)uv-reduction followed by an (αx : wz)βy-reduction. Dashed
edges represent edges outside C or C ′.

Let the resulting graph after these two reductions be denoted by G′, and let
C ′ = C \ {Cv}. Since G′ is obtained by applying twice the reduction at an edge at
distance 2 from e, a perfect matching of G′ containing e can always be extended to
a perfect matching of G containing e (recall that βy cannot be adjacent to e, since
βy ∈ Cv). Moreover, any such matching contains either the edge βy or the edge yz,
and so it also contains at least one edge of the cycle Cv. Therefore, as long as G′ is
cyclically 3-edge-connected and not Klee, by minimality of G, there exists a perfect
matching M ′ of G′ containing e intersecting every cycle in C ′, which extends to a
perfect matching M of G containing e intersecting every cycle in C. This contradicts
our initial assumption that G is a counterexample.
Therefore, G′ is either Klee or admits a (cyclic) edge-cut of size at most 2 (more

details after proof of Claim 8).

Claim 8. The graph G′ is not Klee.
Proof of Claim 8. Suppose that G′ is Klee. The edge γδ cannot be on a triangle
otherwise the edges uv and uγ at distance 2 from e belong to a 5-cycle, contradicting
Claim 7. Since G is cyclically 5-edge-connected, if G′ is Klee then we must have
that αx and wz each lie on a triangle (see Lemma 36). Therefore, in particular,
if G′ is Klee, α and x must have a common neighbour (in both G′ and G, so it is
not u). This common neighbour cannot be u′, the neighbour of α not incident to e
and distinct from u, either, since x would then be a vertex at distance 2 from the
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endvertex α of e (via u′) and so, by Claim 5, it would be traversed by a cycle in C.
However, the edges xu′ and xy are not in any cycle in C, a contradiction. Therefore,
the common neighbour of x and α is α′, the other endvertex of e. By Lemma 37, one
edge of the triangle (x, α, α′) lies on a 4-cycle in G′, which is not present in G. First,
consider the case when exactly one of α′x and α′α lie on a 4-cycle, say (α′, s, t, x) or
(α′, s, t, α) accordingly. Since the edges α′s, xt, α′x, α′α, αt all belong to G, s and t
cannot be adjacent in G, and so {s, t} is equal to {w, z} or {γ, δ}. If {s, t} = {γ, δ},
then we either have that α′γ ∈ E(G), implying that (α′, γ, u, α) is a 4-cycle in G, or
that α′δ ∈ E(G), implying that (α′, α, u, v, δ) is a 5-cycle in G containing e, both a
contradiction. Hence, {s, t} = {w, z}. Since, G is cyclically 5-edge-connected, x can-
not be adjacent to z nor w, and so, we must have that the edge lying on the 4-cycle
with w and z is α′α. However, this is impossible since z cannot be adjacent to an
endvertex of e. Consequently, we must have that the edge of the triangle (x, α, α′)
lying on a 4-cycle in G′ is αx. In this case, st cannot be an edge in G, otherwise
(α′, α, s, t, x) would be a 5-cycle in G containing e, contradicting Claim 6. Thus,
{s, t} is equal to {w, z} or {γ, δ} once again. As before, x cannot be adjacent to z
or w, implying that α being adjacent to γ or δ, respectively giving rise to (α, u, γ)
or (α, u, v, δ) in G, a contradiction. Therefore, G′ is not Klee. ■

Consequently, G′ must admit some (cyclic) edge-cut of size at most 2. Whenever
G is cyclically 4-edge-connected, by the analysis done at the end of the main result in
[46], we know the graph G′ is bridgeless, so if G′ is not (cyclically) 3-edge-connected,
it admits a 2-edge-cut. We next show that this cannot be the case, that is, if G′

admits a 2-edge-cut, then G is not a counterexample to our statement.

Claim 9. G′ is cyclically 3-edge-connected, unless α is adjacent to x in G.
Proof of Claim 9. Suppose that G′ admits a 2-edge-cut X2 = {g1, g2}. Let Ω1 =
{α, γ, δ, w, x, z} and let Ω2 = {u, v, β, y}.
We label the vertices of G′\X2 with labels A and B depending in which connected

component of G′ \X2 they belong to. Consequently, G′ has exactly two edges which
are not monochromatic: g1 and g2. We consider different cases depending on the
number of vertices in Ω1 labelled A in G′, and show that, in each case, a 2-edge-cut
in G′ would imply that G is not cyclically 5-edge-connected or not a counterexample
to our statement. Without loss of generality, we shall assume that the number of
vertices in Ω1 labelled A is at least the number of vertices in Ω1 labelled B. We
consider four cases.

(B0) All the vertices in Ω1 are labelled A in G′.
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First, we extend this labelling of V (G′) to a partial labelling of V (G) by giving
to the vertices in V (G) − Ω2 the same label they had in G′. We then give
label A to all the vertices in Ω2. However, this means that G has exactly
two edges, corresponding to the edges in X2, which are not monochromatic, a
contradiction, since G does not admit any 2-edge-cuts.

(B1) Exactly 5 vertices in Ω1 are labelled A in G′.

This means that exactly one of the edges in {αx,wz, γδ} belongs to X2, say
g1, without loss of generality. Once again, we extend this labelling to a partial
labelling of G, and then give label A to all the vertices in Ω2. However, this
means that G has an edge which has exactly one endvertex in Ω1 labelled B
and exactly one endvertex in Ω2 labelled A, which together with the edge g2
gives a 2-edge-cut in G, a contradiction once again.

(B2) Exactly 4 vertices in Ω1 are labelled A in G′.

We consider two cases depending on whether there is one or three monochro-
matic edges in {αx,wz, γδ}. First, consider the case when {αx,wz, γδ} has
exactly one monochromatic edge, meaning that X2 ⊂ {αx,wz, γδ}. As in the
previous cases, we extend this labelling to a partial labelling of V (G), and
then give label A to all the vertices in Ω2. However, this means that G has
exactly two edges each having exactly one endvertex in Ω1 labelled B and ex-
actly one endvertex in Ω2 labelled A, meaning that G admits a 2-edge-cut, a
contradiction.

Therefore the edges {αx,wz, γδ} are all monochromatic: two edges with all
their endvertices coloured A, and one edge with its endvertices coloured B.
We extend this labelling to a partial labelling of V (G), and then give label
A to all the vertices in Ω2. This gives rise to exactly two edges each having
exactly one endvertex in Ω1 labelled B and exactly one endvertex in Ω2 labelled
A. These two edges together with the two edges in X2 form a 4-edge-cut X4 of
G. Since the latter is cyclically 5-edge-connected this 4-edge-cut is not cyclic
— it separates two adjacent vertices from the rest of the graph. Since w ̸= z
and γ ̸= δ (otherwise there would be a 3-cycle in G) and also α ̸= x (otherwise
Cv would contain edges at distance 1 from e), these two adjacent vertices in G
are endvertices of exactly one of αx, wz, or γδ in G′, and the 2-edge-cut in G′

separates a 2-cycle from the rest of the graph. However, G can contain neither
the edge wz nor γδ, since G has no 4-cycles. Thus, we must have that α is
adjacent to x in G.
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(B3) Exactly 3 vertices in Ω1 are labelled A in G′.

Since G′ has exactly two edges which are not monochromatic, there is exactly
one edge in {αx,wz, γδ} which is not monochromatic. The latter corresponds
to one of the edges in X2, say g1, without loss of generality. As before, we
extend this labelling to a partial labelling of V (G), and then give label A to all
the vertices in Ω2. This gives rise to exactly three edges each having exactly
one endvertex in Ω1 labelled B and exactly one endvertex in Ω2 labelled A,
which together with the edge g2 from X2 form a 4-edge-cut X4 of G. As in the
previous case, X4 separates two adjacent vertices from the rest of the graph —
G has exactly two vertices labelled B. As in the previous case, the endvertices
of the monochromatic edge belonging to {αx,wz, γδ} (in G′) which are labelled
B must be either equal or adjacent in G, which is only possible if α is adjacent
to x in G. ■

Therefore, given any edge f = uv at distance 2 from e, applying an (αβ : γδ)uv-
reduction followed by an (αx : wz)βy-reduction would lead to α being adjacent to x
in G. Let y′ and z′ be the two consecutive vertices on Cv such that y′ is adjacent to δ
(note that y′ or z′ are possibly equal to z). Let w′ and x′ respectively be the vertices
in G − Cv adjacent to δ and y′, and let α′ be the other endvertex of e. Applying
an (αδ : γβ)uv-reduction followed by an (αx′ : w′z′)δy′-reduction leads to α being
adjacent to x′. Therefore, x′ can be equal to α′, u or x. If x′ = α′, then the edge
δy′ would be an edge belonging to Cv at distance 2 from the edge e, and if x′ = u,
then (u, v, δ, y′) would be a 4-cycle in G, with both cases leading to a contradiction.
Therefore, x = x′.
Let G′ be the graph obtained after an (αβ : γδ)uv-reduction and let C ′ = C \{Cv}.

By induction, there exists a perfect matching M ′ containing e intersecting all the
cycles in C ′, and it can be extended into a perfect matching M of G containing
e. Suppose that M does not intersect Cv (it is the only cycle in C that M could
possibly avoid). To cover vertices y and y′, we must have {xy, xy′} ⊂M — which is
impossible. □

Here are some consequences of Theorem 24. Corollary 11 follows by the above
result and Corollary 10.

Corollary 11 Let G be a cyclically 3-edge-connected cubic graph and let C be a
collection of disjoint cycles of G. Then, there exists a perfect matching M such that
M ∩ E(C) ̸= ∅, for every C ∈ C.
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Corollary 12 Let G be a cyclically 3-edge-connected cubic graph. For every perfect
matching M1 of G, there exists a perfect matching M2 of G such that G \ (M1 ∪M2)
is acyclic.
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Conclusion

In this thesis, I have aimed to showcase a selection of my scientific results, including
the two I am most proud of: the proofs of Barnette-Goodey conjecture and Lovász-
Plummer conjecture. I believe that this selection also highlights the breadth and
variety of techniques I have employed in my work, ranging from probabilistic tools
and discharging methods to the use of computers for exhaustive enumeration and
property verification.
Regarding my future work, if I were to name a single open problem that partic-

ularly draws my attention within the areas covered by this manuscript, it would be
one situated at the intersection of the two main chapters, as it concerns both perfect
matchings and fullerene graphs. The Fries number of a fullerene graph G is defined
as the maximum number of resonant hexagons with respect to a fixed perfect match-
ing of G. Similarly, the Clar number is the maximum number of disjoint resonant
hexagons with respect to a fixed perfect matching. Asymptotically tight lower and
upper bounds for both parameters are known. However, despite the effort of several
research groups, the exact computational complexity of determining either value re-
mains open. Thus, the central question is: Is there a polynomial-time algorithm to
find the value of the Fries or Clar number of a given fullerene graph?
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