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Abstract. Priced timed (game) automata extend timed (game) automata with
costs on both locations and transitions. In this paper we focus on reachability
priced timed game automata and prove that the optimal cost for winning such a
game is computable under conditions concerning the non-zenoness of cost. Under
stronger conditions (strictness of constraints) we prove that in case an optimal
strategy exists, we can compute a state-based winning optimal strategy.

1 Introduction

Optimal Scheduling in Timed Systems.In recent years the application of model-che-
cking techniques to scheduling problems has become an established line of research.
Static scheduling problems with timing constraints may often be formulated as reacha-
bility problems on timed automata, viz. as the possibility of reaching a given goal state.
Real-time model checking tools such as KRONOSand UPPAAL have been applied on a
number of industrial and benchmark scheduling problems [13, 15].

Often the scheduling strategy needs to take into account uncertainty with respect
to the behavior of an environmental context. In such situations the scheduling problem
becomes a dynamic (timed) game between the controller and the environment, where
the objective for the controller is to find adynamicstrategy that will guarantee the game
to end in a goal state [5, 11, 17].

Optimality of schedules may be obtained within the framework of timed automata
by associating with each run a performance measure. Thus it is possible to compare
runs and search for the optimal run from an initial configuration to a final (goal) target.
The most obvious performance measure for timed automata is clearly that of time itself.
Time-optimality for timed automata was first considered in [10] and proved computable
in [18]. The related problem of synthesizing time-optimal winning strategies for timed
game automata was shown computable in [4].? Work partially supported by ACI Cortos, a program of the French government. Visits to Aal-

borg supported by CISS, Aalborg University, Denmark?? Basic Research in Computer Science (www.brics.dk).



More recently, the ability to consider more general performance measures has been
given. Priced extensions of timed automata have been introduced where a cost
 is asso-
ciated with each locatioǹgiving the cost of a unit of time spent iǹ. In [2] cost-bound
reachability has been shown decidable. [6] and [3] independently solve the cost-optimal
reachability problem for priced timed automata. Efficient incorporation in UPPAAL is
provided by use of so-called priced zones as a main data structure [16]. More recently
in [9], the problem of computing optimalinfinite schedules (in terms of minimal limit-
ratios) is solved for the model of priced timed automata.

The Optimal Control Problem for Timed Games.In this paper we combine the notions
of game and price and solve the problem of cost-optimal winning strategies for priced
timed game automata. The problem we consider is: “Given a priced timed game au-
tomatonA, a goal locationGoal, what is the optimal cost we can achieve to reachGoal
in A?”. We refer to this problem as the Optimal Control Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Herethe cost-rates (cost per
time unit) in locations̀ 0, `2 and`3 are5, 10 and1 respectively. Iǹ 1 the environment
may choose to move to either`2 or `3 (dashed arrows are uncontrollable). However, due
to the invarianty = 0 this choice must be made instantaneous. Obviously, once`2 or `3
has been reached the optimal strategy for the controller is to move toGoal immediately
(however there is a discrete cost (resp.1 and7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in`0 before taking
the transition tò 1. Obviously, in order for the controller to win this durationmust be
no more than two time units. However, what is the optimal choice for the duration in the
sense that the overall cost of reachingGoal is minimal? Denote byt the chosen delay
in `0. Then5t + 10(2 � t) + 1 is the minimal cost through̀2 and5t + (2 � t) + 7 is
the minimal cost through̀3. As the environment chooses between these two transitions
the best choice for the controller is to delayt � 2 such thatmax(21 � 5t; 9 + 4t) is
minimum, which ist = 43 giving a minimal cost of14 13 .

`0
cost(`0) = 5 `1[y = 0℄

`2
cost(`2) = 10

`3
cost(`3) = 1

Goalx � 2;
1;y := 0 uu
x � 2;
2;cost = 1
x � 2;
2;cost = 7

Fig. 1. A Reachability Priced Time Game AutomatonA
Related Work. Acyclic priced (or weighted) timed games have been studied in [14]
and the more general case of non-acyclic games have been recently considered in [1].
In [1], the problem they consider is “compute the optimal cost within k steps”: we
refer to this bounded problem as thek-OCP. This is a weaker version than the one we



consider (OCP) and roughly corresponds to unfolding the gamek times and to reducing
the problem to solving an acyclic game. In [1], the authors focus on the complexity of
thek-OCP rather than on the decidability of the OCP and give a clever (exponential)
bound on the number of regions that appear after unfolding the gamek times. In the
conclusion the authors also indicate that under some non-Zenoness assumption (similar
to the one we use in theorem 6) the number of iterations required to compute the optimal
cost (OCP) is finite and thus that, under this assumption, anygame can be reduced to an
“optimal game in finite number of steps”. However both our work and [1] fail in solving
the general OCP without any (non-Zenoness) assumption.

In this work (following our research report [7]) that was done simultaneously and
independently from [1], we don’t provide any complexity bound for (k-)OCP, but rather
focus on the synthesis of winning strategies and their structural properties. The method
we use is radically different from the one proposed in [14, 1]and our main contributions
(which extend previous works) are then the following:

– in both above-mentioned papers, the definition of the optimal cost is based on a re-
cursive definition of a function (like theO function given in definition 11, page 8)
that can be very complex (e.g. in [1]); we propose a new run-based definition (def-
inition 9) of the optimal cost that is more natural and enables us to obtain new
results. For instance the definition of the optimal cost in [14, 1] is based on an
infimum-supremum computation: if the optimal cost is
 the algorithm does not
give any hint whether
 is actually realized (there is a strategy of cost
) or if 
 is
the limit of the optimal cost (there is a family of strategiesof cost
+" for all " > 0).
In our settings, we can compute the optimal cost and answer the question whether
an optimal strategy exists or not (corollaries 1 and 2). Moreover we provide a proof
that non-Zenoness implies termination of our algorithm (theorem 6).

– in addition to the previous new results on optimal cost computation that extend
the ones in [14, 1] we also tackle the problem of strategy synthesis. In particular
we study the properties of the strategies (memoryless, cost-dependence) needed to
achieve the optimal cost which is a natural question that arises in game theory. For
example, in [1] setting, it could be the case that in two instances of the unfolding
of the game, the values of a strategy for a given state are different. In this paper
we prove that if an optimal strategy exists then one can effectively construct an
optimal strategy which only depends on the current state andon the accumulated
cost since the beginning of the play. We also prove that undersome assumptions,
if an optimal strategy exists then a state-based cost-independent strategy exists and
can be effectively computed (theorem 7).

– finally the algorithms we obtain can be implemented [8] in HYTECH.

Proofs are omitted but can be found in [7].

2 Reachability Timed Games (RTG)

In this paper we focus onreachability games, where the control objective is to enforce
that the system eventually evolves into a particular state.It is classical in the literature
to definereachability timed games (RTG)[5, 11, 17] to model control problems. In this
section we recall some known general results about RTG.



Timed Transition Systems and Games.

Definition 1 (Timed Transition Systems (TTS)).A timed transition systemis a tupleS = (Q;Q0;A
t;�!) whereQ is a set of states,Q0 � Q is the set of initial states,A
t is a finite set of actions, disjoint fromR�0 ,�!� Q�� �Q is a set of edges. We
let� = A
t [ R�0 . If (q; e; q0) 2�!, we also writeq e�! q0.
We make the following common assumptions about TTSs:

– 0-DELAY: q 0�! q0 if and only if q = q0,
– ADDITIVITY : if q d�! q0 andq0 d0��! q00 with d; d0 2 R�0 , thenq d+d0����! q00,
– CONTINUITY: if q d�! q0, then for everyd0 andd00 in R�0 such thatd = d0 + d00,

there existsq00 such thatq d0��! q00 d00��! q0,
– DETERMINISM: if q e�! q0 andq e�! q00 with e 2 �, thenq0 = q00.

A run � = q0 t0��! q00 e0��! q1 t1��! q01 e1��! � � � qn tn��! q0n en��! qn+1 : : : in S is a
finite or infinite sequence of alternating time (ti 2 R�0 ) and discrete (ei 2 A
t) steps.States(�) = fq0; q00; ; q1; q01; : : : ; qn; q0n; : : : g is the set of states encountered on�. We
denote by�rst(�) = q0 and if � is finite and hasn alternating time and discrete stepslast(�) = qn. Runs(q; S) is the set of (finite and infinite) runs inS starting fromq.
The set of runs ofS is Runs(S) = Sq2Q Runs(q; S). We useq e�! as a shorthand for

“9q0 s.t.q e�! q0” and extends this notation to finite runs� e�! wheneverlast(�) e�!.

Definition 2 (Timed Games (TG)).A timed gameG = (Q;Q0;A
t;�!) is a TTS
such thatA
t is partitioned intocontrollableactionsA
t
 and uncontrollable actionsA
tu.

Strategies, Reachability Games.A strategy [17] is a function that during the cause of
the game constantly gives information as to what the controller should do in order to
win the game. In a given situation the strategy could suggestthe controller to either i)
“do a particular controllable action” or ii) “do nothing at this point in time, just wait”
which will be denoted by the special symbol�. For instance if one wants to delay until
some clock valuex reaches43 (as would be a good strategy in the location`0 of Fig. 1)
then the strategy would be: forx < 43 do� and forx = 43 do the control action from̀0
to `1.
Definition 3 (Strategy).LetG = (Q;Q0;A
t;�!) be a TG. Astrategyf overG is a
partial function fromRuns(G) toA
t
 [ f�g.

We denoteStrat(G) the set of strategies overG. A strategyf is state-basedwhen-
ever8�; �0 2 Runs(G); last(�) = last(�0) implies thatf(�) = f(�0). State-based
strategies are also calledmemorylessstrategies in game theory [11, 19]. The possible
runs that may be realized when the controller follows a particular strategy is defined by
the following notion of outcome (see e.g. [11]):

Definition 4 (Outcome).LetG = (Q;Q0;A
t;�!) be a TG andf a strategy overG. TheoutcomeOut
ome(q; f) of f from q in G is the subset ofRuns(q;G) defined
inductively by:



– q 2 Out
ome(q; f),
– if � 2 Out
ome(q; f) then�0 = � e�! q0 2 Out
ome(q; f) if �0 2 Runs(q;G) and

one of the following three conditions hold:
1. e 2 A
tu,
2. e 2 A
t
 ande = f(�),
3. e 2 R�0 and80 � e0 < e; 9q00 2 Q s.t. last(�) e0��! q00 ^ f(� e0��! q00) = �.

– for an infinite run�, � 2 Out
ome(q; f) if all the finite prefixes of� are inOut
ome(q; f).
Note that some strategies may block the evolution at some point for instance if

condition 3 above is not satisfied. One has to be careful when synthesizing strategies to
ensure condition 3 and this is not trivial (see [7], theorem 2for details).

Definition 5 (Reachability Timed Games (RTG)).A reachability timed gameG =(Q;Q0;Goal;A
t;�!) is a timed game(Q;Q0;A
t;�!) with a distinguished set of
goal statesGoal � Q such that for allq 2 Goal, q e�! q0 impliesq0 2 Goal.
If G is a RTG, a run� is a winning run if States(�) \ Goal 6= ;. The set of winning
runs inG from q is denotedWinRuns(q;G).

For reachability games one has to choose a semantics for uncontrollable actions:
either i) they can only spoil the game and it is up to the controller to do some control-
lable action to win ( [5, 17, 14]) or ii) if at some states only an uncontrollable action is
enabled but forced to happen and leads to a winning state thens is winning. The choice
we make is to follow the framework used by La Torreet al in [14, 1] where uncontrol-
lable actions cannot help to win. This choice is made for the sake of simplicity (mainly
for the proof of theorem 3). However, we can handle any reasonable semantics like ii)
above but the proofs are more involved (see [7]).

We now formalize the previous notions. Amaximal run� is either an infinite run
(supposing strict alternation of delays and actions) or a finite run� that satisfies either

(i) last(�) 2 Goal or ii) 8t � 0, if � t�! q0 a��! thena 2 A
tu (i.e. the only possible
next discrete actions fromlast(�), if any, are uncontrollable actions). A strategyf is
winning from q if all maximal runs inOut
ome(q; f) are inWinRuns(q;G). A stateq
in a RTGG is winning if there exists a winning strategyf from q in G. We denote byW(G) the set of winning states inG andWinStrat(q;G) the set of winning strategies
from q overG.

Control of Linear Hybrid Games.In the remainder of this section we summarize pre-
vious results [11, 17, 20] obtained for particular classes of RTG: Linear Hybrid Games
(LHG).

Let X be a finite set of real-valued variables. We denoteLin(X) the set of linear
constraints over the variables inX. Lin
(X) is the subset of convex linear constraints
overX. A valuationof the variables inX is a mapping fromX to R (thus an element
of RX ). For a valuationv and alinear assignment4 � we denotev[�℄ the valuation
defined byv[�℄(x) = �(x)(v). Assign(X) is the set of linear assignments overX. Forr : X �! Q and Æ 2 R�0 we denotev + r � Æ the valuation s.t. for allx 2 X,(v + r � Æ)(x) = v(x) + r(x) � Æ.

4 A linear assignment assigns to each variable a linear expression.



Definition 6 (LHG [12]). A Linear Hybrid GameH = (L; `0;A
t; X;E; inv;Rate)
is a tuple whereL is a finite set oflocations, `0 2 L is the initial location,A
t =A
t
 [ A
tu is the set ofactions(controllable and uncontrollable actions),X is a
finite set of real-valued variables, E � L � Lin(X) � A
t � Assign(X) � L is a
finite set oftransitions, inv : L �! Lin
(X) associates to each location itsinvariant,
Rate : L �! (X �! Q ) associates to each location and variable anevolution rate.
A reachabilityLHG is a LHG with a distinguished set of locationsGoal � L (with no
outgoing edges). It defines the set of goal statesGoal� RX .

The semantics of a LHGH = (L; `0;A
t; X;E; inv;Rate) is a TTSSH = ((L �RX ; (`0;0);A
t;�!)) where�! consists of: i)discrete steps:(`; v) e�! (`0; v0) if

there exists(`; g; e; �; `0) 2 E s.t.v j= g andv0 = v[�℄; ii) time steps:(`; v) Æ�! (`; v0)
if Æ 2 R�0 , v0 = v + Rate(`) � Æ andv; v0 2 inv(`).

For reachability LHG, the computation of the winning statesis based on the defi-
nition of acontrollable predecessorsoperator [11, 17]. LetQ = L � RX . For a subsetX � Q anda 2 A
t we definePreda(X) = fq 2 Q j q a��! q0; q0 2 Xg. The
controllable and uncontrollable discrete predecessors ofX are defined by
Pred(X) =S
2A
t
 Pred
(X) anduPred(X) = Su2A
tu Predu(X). A notion ofsafetimed prede-
cessors of a setX w.r.t. a setY is also needed. Intuitively a stateq is in Predt(X;Y ) if
from q we can reachq0 2 X by time elapsing and along the path fromq to q0 we avoidY . Formally this is defined by:Predt(X;Y ) = fq 2 Q j 9Æ 2 R�0 s.t.q Æ�! q0; q0 2 X andPost[0;Æ℄(q) � Y g
wherePost[0;Æ℄(q) = fq0 2 Q j 9t 2 [0; Æ℄ s.t.q t�! q0g. Now we are able to define the
controllable predecessorsoperator� as follows:�(X) = Predt �X [ 
Pred(X); uPred(X)� (1)

Note that this definition of� captures the choice that uncontrollable actions cannot be
used to win. A symbolic version of the� operator can be defined on LHG [11, 17].
Hence there is a semi-algorithmCompWin which computes the least fixed point of�X:fGoalg [ �(X) as the limit of an increasing sequence of sets of states (starting
with the initial stateGoal). If H is a reachability LHG, the result of the computation�X:fGoalg [ �(X) is denotedCompWin(H).
Theorem 1 (Symbolic Algorithm for LHG [11]). W(SH) = CompWin(H) for a
reachability LHGH and henceCompWin is a symbolic semi-algorithm for computing
the winning states of a reachability LHG.

As for controller synthesis the previous algorithm allows us to compute the winning
states of a game but the extraction of strategies is not made particularly explicit. The
proof of the following theorem (given in [7]) provides a symbolic algorithm (assuming
time determinism) that synthesizes winning

Theorem 2 (Synthesis of Winning Strategies [7]).Let H be a LHG. If the semi-
algorithm CompWin terminates forH, then we can compute a polyhedral5 strategy
which is winning in each state ofCompWin(H) and state-based.

5 A strategyf is polyhedral if for alla 2 A
t
 [ f�g, f�1(a) is a finite union of convex
polyhedra for each location of the LHG.



3 Priced Timed Games (PTG)

In this section we definePriced Timed Games (PTG). We focus onreachability PTG
(RPTG)where the aim is to reach a particular state of the game at thelowestpossible
cost. We give a new run-based definition of theoptimal cost. We then relate our defi-
nition with the one given in [14] (note that the definition of [1] seems close to the one
in [14] but it is not clear enough for us how close they are) andprove both definitions
are indeed equivalent.

Priced Timed Games.

Definition 7 (Priced Timed Transition Systems (PTTS)).A priced timed transition
systemis a pair (S;Cost) whereS = (Q;Q0;A
t;�!) is a TTS andCost is a cost
function i.e. a mapping from�! to R�0 that satisfies:

– PRICE ADDITIVITY : if q d�! q0 and q0 d0��! q00 with d; d0 2 R�0 , then the

following holds:Cost(q d+d0����! q00) = Cost(q d�! q0) + Cost(q0 d0��! q00).
– BOUNDED COST RATE: there existsK 2 N such that for everyq d�! q0 whered 2 R�0 , Cost(q d�! q0) � d:K

For a transition q e�! q0, Cost(q e�! q0) is the cost of the transition and we noteq e;p���! q0 if p = Cost(q e�! q0).
All notions concerning runs on TTS extend straightforwardly to PTTS. LetS be a PTTS
and� = q0 e1��! q1 e2��! : : : en��! qn a finite run6 of S. Thecostof � is defined byCost(�) =Pn�1i=0 Cost(qi ei+1����! qi+1).
Definition 8 (Priced Timed Games).A priced timed game(PTG) (resp. Reachability
PTG) is a pairG = (S;Cost) such thatS is a TG (resp. RTG) andCost is a cost
function.

All the notions like strategies, outcomes, winning states are already defined for (R)TG
and carry over in a natural way to (R)PTG. ThecostCost(q; f) of a winning strategyf 2WinStrat(q;G) is defined by:Cost(q; f) = sup fCost(�) j � 2 Out
ome(q; f)g.
Definition 9 (Optimal Cost for a RPTG). LetG be a RPTG andq be a state inG.
Thereachable costs setCost(q) from q in G is defined by:Cost(q) = fCost(q; f) j f 2WinStrat(q;G)g
Theoptimal cost fromq in G is OptCost(q) = inf Cost(q). Theoptimal costin G issupq2Q0 OptCost(q) whereQ0 denotes the set of initial states.

Definition 10 (Optimal Strategies for a RPTG).LetG be a RPTG andq a state inG.
A winning strategyf 2 WinStrat(q;G) is said to beoptimal wheneverCost(q; f) =OptCost(q).

6 We are not interested in defining the cost of an infinite run as we will only use costs of winning
runs which must be finite in the games we play.



Optimal winning strategies do not always exist, even for RPTGs deriving from
timed automata (see [7]). A family of winning strategies(f") which get arbitrarily close
to the optimal cost may be rather determined. Our aim is many-fold. We want to 1) com-
pute the optimal cost of winning, 2) decide whether there is an optimal strategy, and 3)
in case there is an optimal strategy compute one such strategy. Before giving a solution
to the previous problems we relate our definition of cost optimality to the one given
in [14, 1].

Recursive Definition of the Optimal Cost.In [14, 1] a method for computing the opti-
mal cost in priced timed games is introduced: it is defined as the optimal cost one can
expect from a state by a function satisfying a set of recursive equations, and not using a
run-based definition as we did in the last subsection. We givehereafter the definition of
the function used in [14] and prove that it does correspond toour run-based definition
of optimal cost. In [1], a similar but more involved definition is proposed, we do not
detail this last definition here.

Definition 11 (TheO function (Adapted from [14])). LetG be a RPTG. LetO be the
function fromQ toR�0[f+1g that is the least fixed point7 of the following functional:

O(q) = infq t;p��!q0t2R�0 max
8>>>>>>>><>>>>>>>>:

min0BB�0BB� minq0 
;p0��!q00
2A
t
 p+ p0 +O(q00)1CCA ; p+O(q0)1CCA (1)
supq t0;p0���!q00t0�t maxq00 u;p00���!q000u2A
tu p0 + p00 +O(q000) (2) (�)

The following theorem relates the two definitions:

Theorem 3. LetG = (S;Cost) be a RPTG induced by a LHG andQ its set of states.
ThenO(q) = OptCost(q) for all q 2 Q.8

4 Reducing Priced Timed Games to Timed Games

In this section we show that computing the optimal cost to wina priced timed game
amounts to solving a control problem (without cost).

Priced Timed Game Automata.Let X be a finite set of real-valued variables called
clocks. We denoteB(X) the set of constraints' generated by the grammar:' ::= x �k j '^'wherek 2 Z, x; y 2 X and�2 f<;�;=; >;� g. A valuationof the variables
in X is a mapping fromX to R�0 (thus an element ofRX�0 ). For a valuationv and a setR � X we denotev[R℄ the valuation that agrees withv onX nR and is zero onR. We
denotev + Æ for Æ 2 R�0 the valuation s.t. for allx 2 X, (v + Æ)(x) = v(x) + Æ.

7 The righthand-sides of the equations forO(q) defines a functionalF on (Q �! R�0 [f+1g). (Q �! R�0 [ f+1g) equipped with the natural lifting of� on R�0 [ f+1g
constitutes a complete lattice. AlsoF can be quite easily seen to be a monotonic functional on
this lattice. It follows from Tarski’s fixed point theory that the least fix point ofF exists.

8 Note that if a stateq 2 Q is not winning, bothO(q) andOptCost(q) are+1.



Definition 12 (PTGA). A Priced Timed Game AutomatonA is a tuple(L; `0;A
t; X;E; inv; f) whereL is a finite set oflocations, `0 2 L is theinitial location,A
t = A
t
[A
tu is the set ofactions(partitioned into controllable and uncontrollable actions),X is a finite set ofreal-valued clocks, E � L � B(X) � A
t � 2X � L is a finite
set of transitions, inv : L �! B(X) associates to each location itsinvariant, f :L [ E �! N associates to each location acost rateand to each discrete transition
a cost. A reachabilityPTGA (RPTGA) is a PTGA with a distinguished set of locationsGoal � L (with no outgoing edges). It defines the set of goal statesGoal� RX�0 .

The semantics of the PTGA is a PTTSSA = ((L�RX�0 ; (`0;0);A
t;�!);Cost) where�! consists of: i)discrete steps:(`; v) e�! (`0; v0) if there exists(`; g; e; R; `0) 2 E
s.t.v j= g andv0 = v[R℄; Cost((`; v) e�! (`0; v0)) = f(`; g; e; R; `0) ; ii) time steps:(`; v) Æ�! (`; v0) if Æ 2 R�0 , v0 = v + Æ andv; v0 2 inv(`); andCost((`; v) Æ�!(`; v0)) = Æ � f(`). Note that this definition ofCost gives a cost function as defined in
Def. 7.

From Optimal Reachability Game to Reachability Game.Assume we want to compute
the optimal cost to win a reachability priced timed game automatonA. We define a
(usual and unpriced) LHGH as follows: we use a variable
ost in the LHG to stand for
the cost value. We buildH with the same discrete structure asA and specify a rate for
ost in each location: if the cost increases with a rate of+k per unit of time inA, then
we set the derivative of
ost to be�k in H; if the cost of a discrete transition is+k
in A, then we updatecostby cost := cost� k in H. To each stateq in (the semantics
of) A there are many corresponding states(q; 
) in H, where
 is the value of thecost
variable. For such a state(q; 
) we denote9cost:(q; 
) the stateq. If X is a set of states
in (the semantics of)H then9cost:X = fq j 9
 � 0 j (q; 
) 2 Xg. From the PTGA of
Fig. 1 we obtain the LHG of Fig. 2.

`0dcostdt = �5 `1y = 0
`2dcostdt = �10
`3dcostdt = �1

Goalx � 2; 
1 ; y := 0 uu
x � 2; 
2

cost’= cost� 1
x � 2; 
2

cost’= cost� 7
Fig. 2.The Linear Hybrid GameH.

Now we solve the following control problem on the LHG: “can wewin in H with
the goal statesGoal^
ost � 0?” Intuitively speaking we are asking the question: “what
is the minimal amount of resource (
ost) needed to win the control gameH?” For a
PTGAA we can compute the winning states ofH with the semi-algorithmCompWin
(defined at the end of section 2) and if it terminates the wining set of statesWH =CompWin(H) is a union of zones of the form(`; R ^ cost � h) where` is a location,



R � RX�0 , h is a piece-wise affine function onR and�2 f>;�g (because� preserves
this kind of sets). Hence we have the answer to the optimal reachability game: we
intersect the set of initial states with the set of winning statesWH , and in case it is not
empty, the projection on the
ost axis yields a constraint on the cost like
ost � k withk 2 Q �0 and�2 f>;�g. By definition of winning set of states in reachability games,
i.e. this is the largest set from which we can win, no cost lower than or equal tok is
winning and we can deduce thatk is the optimal cost. Also we can decide whether there
is an optimal strategy or not: if� is equal to> there is no optimal strategy and if� is� there is one.

Note that with our reduction of optimal control of PTGA to control of LHG, the cost
information becomes part of the state and that the runs inA andH are closely related.
The correctness of the reduction is then given by the next theorem.

Theorem 4. LetA be a RPTGA andH its corresponding LHG (as defined above). If
the semi-algorithmCompWin terminates forH and ifWH = CompWin(H), then: 1)CompWin terminates forA andWA def= CompWin(A) = 9
ost:WH ; and 2) (q; 
) 2WH () there existsf 2WinStrat(q;WA) withCost(q; f) � 
.
Computation of the Optimal Cost and Strategy.Let X � Rn�0 . Theupward closure
of X, denoted"X is the set"X = fx0 j 9x 2 X s.t.x0 � xg.
Theorem 5. LetA be a RPTGA andH its corresponding LHG. If the semi-algorithmCompWin terminates forH then forq 2WA, "Cost(q) = f
 j (q; 
) 2WHg.
Corollary 1 (Optimal Cost). LetA be a RPTGA andH its corresponding LHG. If the
semi-algorithmCompWin terminates forH then"Cost(`0;0) is computable and is of
the form
ost � k (left-closed) or
ost > k (left-open) withk 2 Q �0 . In addition we
get thatOptCost(l0;0) = k.

Corollary 2 (Existence of an Optimal Strategy).LetA be a RPTGA. If"Cost(`0;0)
is left-open then there is no optimal strategy. Otherwise wecan compute a winning and
optimal strategy.

Termination Criterion & Optimal Strategies.

Theorem 6. LetA be a RPTGA satisfying the following hypotheses: 1)A is bounded,
i.e. all clocks inA are bounded ; 2) the cost function ofA is strictly non-zeno, i.e. there
exists some� > 0 such that the accumulated cost of every cycle in the region automaton
associated withA is at least�. Then the semi-algorithmCompWin terminates forH,
whereH is the LHG associated withA.

Note that the strategy built in corollary 2 is state-based for H but isa priori no more
state-based forA: indeed the strategy forH depends on the current value of the cost
(which is part of the state inH). The strategy forA is thus dependent on the run and
not memoryless. More precisely it depends on the last state(`; v) of the run and on the
accumulated cost along the run.

Nevertheless, we now give a sufficient condition for the existence of optimal cost-
independent strategies and exhibit a restricted class of automata for which this condi-
tions holds.



Theorem 7. LetA be a RPTGA andH the associated LHG. IfCompWin terminates forH andWH is a union of sets of the form(`; R; cost� h) then there exists a state-based
strategyf defined overWA = 9cost:WH s.t. for eachq 2 WA, f 2 WinStrat(q;WA)
andCost(q; f) = OptCost(q).
Note that under the previous conditions we build a strategyf which isuniformly optimal
i.e. optimal for all states ofWA. A syntactical criterion to enforce the condition of
theorem 7 is that the constraints (guards) on controllable actions are non-strict and
constraints on uncontrollable actions are strict.

Remarks on the hypotheses in Theorems 6 and 7.The hypothesis onA being bounded
is not restrictive because all priced timed automata can be transformed into bounded
priced timed automata having the same behaviours (see for example [16]). The strict
non-zenoness of the cost function can be checked on priced timed game automata:
indeed it is sufficient to check whether there is a cycle whoseprice is0 in the so-called
“corner-point abstraction” (see [6, 9]) ; then, if there is no cycle with cost0, it means
that the cost is strictly non-zeno, otherwise, it is not strictly non-zeno.

5 Conclusion

In this paper we have given a new run-based definition of cost optimality for priced
timed games. This definition enables us to prove the following results: the optimal cost
can be computed for the class of priced timed game automata with a strictly non-zeno
cost. Moreover we can decide whether there exists an optimalstrategy which could
not be done in previous works [14, 1]. In case an optimal strategy exists we can com-
pute a witness. Finally we give some additional results concerning the type of informa-
tion needed by the optimal strategy and exhibit a class of priced timed game automata
for which optimal state-based (no need to keep track of the cost information) can be
synthetized. Our strategy extraction algorithm has been implemented using the tool
HYTECH [8].

Our future work will be on extending the class of systems for which termination is
ensured. Our claim is that there is no need for the strict non-zenoness hypothesis for ter-
mination. Another direction will consist in extending our work to optimal safety games
where we want to minimize for example the cost per time unit along infinite schedules
whatever the environment does, which would naturally extends both this current work
and [9].
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