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Abstract. Priced timed (game) automata extend timed (game) automitta w
costs on both locations and transitions. In this paper wasdam reachability
priced timed game automata and prove that the optimal costiflming such a
game is computable under conditions concerning the nooreess of cost. Under
stronger conditions (strictness of constraints) we préna in case an optimal
strategy exists, we can compute a state-based winning alginategy.

1 Introduction

Optimal Scheduling in Timed Systemdn recent years the application of model-che-
cking techniques to scheduling problems has become anlisk&bline of research.
Static scheduling problems with timing constraints magoibe formulated as reacha-
bility problems on timed automata, viz. as the possibilityeaching a given goal state.
Real-time model checking tools such aré&Nosand UPPAAL have been applied on a
number of industrial and benchmark scheduling problems18B

Often the scheduling strategy needs to take into accourdrtaioty with respect
to the behavior of an environmental context. In such situnatithe scheduling problem
becomes a dynamic (timed) game between the controller andrttironment, where
the objective for the controller is to finddynamicstrategy that will guarantee the game
to end in a goal state [5,11,17].

Optimality of schedules may be obtained within the framédwafrtimed automata
by associating with each run a performance measure. Thagibgsible to compare
runs and search for the optimal run from an initial configiorato a final (goal) target.
The most obvious performance measure for timed automalkeadthat of time itself.
Time-optimality for timed automata was first consideredlid][and proved computable
in [18]. The related problem of synthesizing time-optiméhming strategies for timed
game automata was shown computable in [4].
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More recently, the ability to consider more general periamge measures has been
given. Priced extensions of timed automata have been integtiwhere a costis asso-
ciated with each locatiofgiving the cost of a unit of time spentinin [2] cost-bound
reachability has been shown decidable. [6] and [3] indepetiglsolve the cost-optimal
reachability problem for priced timed automata. Efficiemtdrporation in WPAAL is
provided by use of so-called priced zones as a main datawstelfd 6]. More recently
in [9], the problem of computing optimatfinite schedules (in terms of minimal limit-
ratios) is solved for the model of priced timed automata.

The Optimal Control Problem for Timed Gamesn this paper we combine the notions
of game and price and solve the problem of cost-optimal wigsirategies for priced
timed game automata. The problem we consider is: “Given @grtimed game au-
tomatonA, a goal locatiorGoal, what is the optimal cost we can achieve to reGohl

in A?”. We refer to this problem as the Optimal Control Problen€R). Consider the
example of a priced timed game automaton given in Fig. 1. Hereost-rates (cost per
time unit) in locationg, ¢; and/; areb, 10 and1 respectively. IrY; the environment
may choose to move to eithér or /5 (dashed arrows are uncontrollable). However, due
to the invarianty = 0 this choice must be made instantaneous. Obviously, 6ncels

has been reached the optimal strategy for the controllerrsave toGoal immediately
(however there is a discrete cost (respnd7) on each discrete transition). The crucial
(and only remaining) question is how long the controllerndtavait in ¢4 before taking
the transition ta/;. Obviously, in order for the controller to win this duratiamust be

no more than two time units. However, what is the optimal cador the duration in the
sense that the overall cost of reachiBgal is minimal? Denote by the chosen delay

in {y. Then5t 4+ 10(2 — ¢) + 1 is the minimal cost through, and5t + (2 — ¢) + 7 is

the minimal cost throughs. As the environment chooses between these two transitions
the best choice for the controller is to delay< 2 such thatmax(21 — 5¢,9 + 4¢) is
minimum, which ist = 3 giving a minimal cost ofl 4.
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Fig. 1. A Reachability Priced Time Game Automatgh

Related Work. Acyclic priced (or weighted) timed games have been studiefd 4]
and the more general case of non-acyclic games have beearilyemensidered in [1].

In [1], the problem they consider is “compute the optimaltoeghin £ steps”: we
refer to this bounded problem as theéDCP. This is a weaker version than the one we



consider (OCP) and roughly corresponds to unfolding theegatimes and to reducing
the problem to solving an acyclic game. In [1], the authoufoon the complexity of
the k-OCP rather than on the decidability of the OCP and give aecléxxponential)
bound on the number of regions that appear after unfoldieggimek times. In the
conclusion the authors also indicate that under some nowfEss assumption (similar
to the one we use in theorem 6) the number of iterations redtircompute the optimal
cost (OCP) is finite and thus that, under this assumptiongame can be reduced to an
“optimal game in finite number of steps”. However both our kvand [1] fail in solving
the general OCP without any (non-Zenoness) assumption.

In this work (following our research report [7]) that was éogsimultaneously and
independently from [1], we don’t provide any complexity bolfor (k-)OCP, but rather
focus on the synthesis of winning strategies and their stratproperties. The method
we use is radically different from the one proposed in [14id our main contributions
(which extend previous works) are then the following:

— in both above-mentioned papers, the definition of the optiost is based on a re-
cursive definition of a function (like th@® function given in definition 11, page 8)
that can be very complex (e.g. in [1]); we propose a new rigedaefinition (def-
inition 9) of the optimal cost that is more natural and engahis to obtain new
results. For instance the definition of the optimal cost iA, [ is based on an
infimum-supremum computation: if the optimal costcithe algorithm does not
give any hint whether is actually realized (there is a strategy of cgsbr if ¢ is
the limit of the optimal cost (there is a family of strategiégostc+-< for all e > 0).

In our settings, we can compute the optimal cost and answegubstion whether
an optimal strategy exists or not (corollaries 1 and 2). Mueg we provide a proof
that non-Zenoness implies termination of our algorithnegttem 6).

— in addition to the previous new results on optimal cost caotaion that extend
the ones in [14, 1] we also tackle the problem of strategytsgis. In particular
we study the properties of the strategies (memoryless;dmtndence) needed to
achieve the optimal cost which is a natural question thatarin game theory. For
example, in [1] setting, it could be the case that in two insés of the unfolding
of the game, the values of a strategy for a given state arereiff. In this paper
we prove that if an optimal strategy exists then one can &ffdg construct an
optimal strategy which only depends on the current stateoanitthe accumulated
cost since the beginning of the play. We also prove that usdere assumptions,
if an optimal strategy exists then a state-based cost-grdgnt strategy exists and
can be effectively computed (theorem 7).

— finally the algorithms we obtain can be implemented [8] mTHECH.

Proofs are omitted but can be found in [7].

2 Reachability Timed Games (RTG)

In this paper we focus oreachability gameswhere the control objective is to enforce
that the system eventually evolves into a particular stats.classical in the literature
to definereachability timed games (RT@, 11, 17] to model control problems. In this
section we recall some known general results about RTG.



Timed Transition Systems and Games.

Definition 1 (Timed Transition Systems (TTS)).A timed transition systerns a tuple
S = (Q, Qo,Act,—) where( is a set of stateg)y, C Q is the set of initial states,
Act is a finite set of actions, disjoint frof~,, —C @ x X' x @ is a set of edges. We
let ¥ = Act UR>q. If (g,€,q') €—, we also writeg — ¢'.

We make the following common assumptions about TTSs:

— 0-DELAY: q N q ifand only ifg = ¢/,
— ADDITIVITY : if ¢ % ¢ andg’ % ¢ with d, d' € R, theng drd
— CONTINUITY: if ¢ LN ¢', then for every!’ andd” in R>( such thatl = d' + d”,

there existg” such thay " ¢/ “— ¢/,
— DETERMINISM: if ¢ - ¢’ andq —= ¢” with e € X, theng’ = ¢".

Arunp = qg t—°>q(')e—0>q1 f—1>q§ F’—1>qnfL>~q7’1 = Gugr... InSisa
finite or infinite sequence of alternating time € R>() and discreted; € Act) steps.
States(p) = {q0,90:,91:41,- -+ -4, - - - } IS the set of states encounteredoWe
denote byfirst(p) = qo and if p is finite and has: alternating time and discrete steps
last(p) = qn. Runs(q, S) is the set of (finite and infinite) runs iff starting fromq.
The set of runs of is Runs(S) = (U, Runs(q, S). We useg —~+ as a shorthand for

€

“J¢’ s.t.q = ¢'” and extends this notation to finite rups-~+ wheneveriast(p) ——.

Definition 2 (Timed Games (TG)).A timed gameG = (Q, Qq,Act,—)isa TTS
such thatAct is partitioned intocontrollableactionsAct,. and uncontrollable actions
Act,,.

Strategies, Reachability Gamed strategy [17] is a function that during the cause of
the game constantly gives information as to what the cdetrshould do in order to
win the game. In a given situation the strategy could sugthestontroller to either i)
“do a particular controllable action” or ii) “do nothing dti$ point in time, just wait”
which will be denoted by the special symbolFor instance if one wants to delay until
some clock value: reache% (as would be a good strategy in the locatigrof Fig. 1)
then the strategy would be: fer< 3 do A and forz = 3 do the control action fron

to /.

Definition 3 (Strategy).LetG = (Q, Qo, Act,—) be a TG. Astrategyf overG is a
partial function fromRuns(G) to Act. U {\}.

We denoteStrat((G) the set of strategies ovét. A strategy/f is state-basedvhen-
evervp,p’ € Runs(G),last(p) = last(p’) implies thatf(p) = f(p'). State-based
strategies are also calledemorylesstrategies in game theory [11, 19]. The possible
runs that may be realized when the controller follows a paldir strategy is defined by
the following notion of outcome (see e.g. [11]):

Definition 4 (Outcome).LetG = (Q, Qo,Act,—) be a TG andf a strategy over
G. TheoutcomeOutcome(q, f) of f fromq in G is the subset dRuns(q, G) defined
inductively by:



— q € Outcome(q, f),
— if p € Outcome(q, f) thenp’ = p - ¢’ € Outcome(q, f) if o’ € Runs(q, G) and
one of the following three conditions hold:
1. e € Act,,
2. e € Act. ande = f(p),
3. e€RygandV0 < € < e,3¢" € Qs.tlast(p) — ¢" A f(p — ¢") = \.
— for an infinite runp, p € Outcome(q, f) if all the finite prefixes ofp are in
Outcome(q, f).

Note that some strategies may block the evolution at somet ffoi instance if
condition 3 above is not satisfied. One has to be careful wiethesizing strategies to
ensure condition 3 and this is not trivial (see [7], theorefar2ietails).

Definition 5 (Reachability Timed Games (RTG)).A reachability timed gamé&' =
(@, Qo, Goal, Act, —) is a timed gaméQ, Qo, Act, —) with a distinguished set of
goal state$oal C @ such that for allg € Goal, ¢ — ¢’ impliesq’ € Goal.

If G is a RTG, a rurp is awinning runif States(p) N Goal # (. The set of winning
runs inG from ¢ is denotedVinRuns(q, G).

For reachability games one has to choose a semantics fonwattable actions:
either i) they can only spoil the game and it is up to the cdleréo do some control-
lable action to win ([5, 17, 14]) or ii) if at some stat@nly an uncontrollable action is
enabled but forced to happen and leads to a winning statestiseminning. The choice
we make is to follow the framework used by La Toateal in [14, 1] where uncontrol-
lable actions cannot help to win. This choice is made for ke of simplicity (mainly
for the proof of theorem 3). However, we can handle any reglslersemantics like ii)
above but the proofs are more involved (see [7]).

We now formalize the previous notions.maximal runp is either an infinite run
(supposing strict alternation of delays and actions) oritefiun p that satisfies either
(i) last(p) € Goal orii) V& > 0,if p L5 ¢ %5 thena € Act, (i.e. the only possible
next discrete actions frorust(p), if any, are uncontrollable actions). A stratefjyis
winningfrom ¢ if all maximal runs inOutcome(q, f) are iNWinRuns(q, G). A stateq
in a RTGG is winningif there exists a winning strategyfrom ¢ in G. We denote by
W(G) the set of winning states i@ andWinStrat(q, G) the set of winning strategies
from g over@.

Control of Linear Hybrid Games.In the remainder of this section we summarize pre-
vious results [11, 17, 20] obtained for particular clasdeRTG: Linear Hybrid Games
(LHG).

Let X be a finite set of real-valued variables. We derdtg X) the set of linear
constraints over the variables K. Lin.(X) is the subset of convex linear constraints
over X. A valuationof the variables inX is a mapping fromX to R (thus an element
of RY). For a valuationv and alinear assignmerita we denotev[a] the valuation
defined byv[a](z) = a(x)(v). AssigiX) is the set of linear assignments ov&r For
r: X — Qandd € R>o we denotev + r - ¢ the valuation s.t. for alk € X,
(v+7-0)(x) =v(z)+r(z)-d.

4 A linear assignment assigns to each variable a linear esipres



Definition 6 (LHG [12]). A Linear Hybrid GameH = (L, {y,Act, X, F,inv, Rate
is a tuple wherel is a finite set oflocations ¢, € L is theinitial location, Act =
Act. U Act,, is the set ofactions(controllable and uncontrollable actions) is a
finite set ofreal-valued variablesE? C L x Lin(X) x Act x AssigiX) x L is a
finite set oftransitionsinv : L — Lin.(X) associates to each location itsvariant
Rate: . — (X — Q) associates to each location and variable ewolution rate
A reachabilityLHG is a LHG with a distinguished set of locatiosal C L (with no
outgoing edges). It defines the set of goal stéies x R .

The semantics of a LHG& = (L, ¢y, Act, X, F,inv,Rate is a TTSSy = ((L x
RX, (¢,0), Act, —)) where — consists of: i)discrete steps(/,v) — (¢/,v") if
there existg/, g,e, o, (') € E s.t.v |= g andv’ = v[a]; i) time steps(¢, v) N (¢,0")
if § € R>g, v = v+ Ratg() - 6 andv, v’ € inv({).

For reachability LHG, the computation of the winning statebased on the defi-
nition of acontrollable predecessomperator [11,17]. Le@ = L x RX. For a subset
X C Q anda € Act we definePred®(X) = {¢ € Q | ¢ % ¢.¢ € X}. The
controllable and uncontrollable discrete predecesso’$ afe defined byPred(X) =
Ucenact, Pred®(X) anduPred(X) = J, cac, Pred”(X). A notion ofsafetimed prede-
cessors of a set w.r.t. a seft is also needed. Intuitively a stajés in Pred,(X,Y) if
from ¢ we can reacly’ € X by time elapsing and along the path frgno ¢’ we avoid
Y. Formally this is defined by:

Pred;(X,Y) = {g € Q| 36 € Rs sit.g -5 ¢/, ¢ € X andPosty 5)(¢) C Y}

wherePost 5(¢) = {¢' € Q | 3t € [0,0] s.t.q N q'}. Now we are able to define the
controllable predecessoperatorr as follows:

m(X) = Pred; (X U cPred(X), uPred(X)) (1)

Note that this definition ofr captures the choice that uncontrollable actions cannot be
used to win. A symbolic version of the operator can be defined on LHG [11, 17].
Hence there is a semi-algorith@ompWin which computes the least fixed point of
AX {Goal} U m(X) as the limit of an increasing sequence of sets of statedi(star
with the initial stateGoal). If H is a reachability LHG, the result of the computation
X .{Goal} Un(X) is denotedCompWin(H).

Theorem 1 (Symbolic Algorithm for LHG [11]). W(Sy) = CompWin(H) for a
reachability LHGH and hence&CompWin is a symbolic semi-algorithm for computing
the winning states of a reachability LHG.

As for controller synthesis the previous algorithm allowssa compute the winning
states of a game but the extraction of strategies is not madieylarly explicit. The
proof of the following theorem (given in [7]) provides a syatils algorithm (assuming
time determinism) that synthesizes winning

Theorem 2 (Synthesis of Winning Strategies [7])Let H be a LHG. If the semi-
algorithm CompWin terminates forH, then we can compute a polyhedratrategy
which is winning in each state @ompWin(H) and state-based.

5 A strategy f is polyhedral if for alla € Act. U {)\}, f~*(a) is a finite union of convex
polyhedra for each location of the LHG.



3 Priced Timed Games (PTG)

In this section we definBriced Timed Games (PTG)Ve focus orreachability PTG
(RPTG)where the aim is to reach a particular state of the game dotestpossible
cost. We give a new run-based definition of thptimal cost We then relate our defi-
nition with the one given in [14] (nhote that the definition 4 feems close to the one
in [14] but it is not clear enough for us how close they are) prave both definitions
are indeed equivalent.

Priced Timed Games.

Definition 7 (Priced Timed Transition Systems (PTTS)).A priced timed transition
systemis a pair (S, Cost) whereS = (@, Qo, Act,—) is a TTS andCost is a cost
functioni.e. a mapping from— to R>( that satisfies:

— PRICE ADDITIVITY: if ¢ N ¢ and ¢’ “, ¢" with d, d" € Rxg, then the
following holds:Cost(q —*% ¢} = Cost(q - ¢) + Cost(q’ 2= ¢").

— BOUNDED CoST RATE: there existdX' € N such that for every N q' where
d € Rs, Cost(q -5 ¢') < d.K

For a transitionqg -~ ¢/, Cost(¢ — ¢') is the costof the transition and we note
g =L ¢ifp= Cost(q - ¢').

All notions concerning runs on TTS extend straightforwatdIPTTS. LetS be a PTTS
andp = g0 = ¢1 = ... = g, afinite rurf of S. Thecostof p is defined by
Cost(p) = D_1—g Cost(gi " gi+1)-

Definition 8 (Priced Timed Games).A priced timed gaméPTG) (resp. Reachability
PTG) is a pairG = (5, Cost) such thatS is a TG (resp. RTG) andost is a cost
function.

All the notions like strategies, outcomes, winning statesadready defined for (R)TG
and carry over in a natural way to (R)PTG. TtestCost(q, /) of a winning strategy
f € WinStrat(q, G) is defined byCost(q, f) = sup {Cost(p) | p € Outcome(q, f)}.

Definition 9 (Optimal Cost for a RPTG). Let G be a RPTG and be a state inG.
Thereachable costs s€bst(q) fromg in G is defined by:

Cost(q) = {Cost(q, f) | f € WinStrat(q,G)}

Theoptimal cost fromy in G is OptCost(¢q) = inf Cost(q). Theoptimal costin G is
sup,eq, OptCost(g) whereQ, denotes the set of initial states.

Definition 10 (Optimal Strategies for a RPTG).LetG be a RPTG ang a state inG.
A winning strategyf € WinStrat(q, G) is said to beoptimalwheneveiCost(q, f) =
OptCost(q).

5 We are not interested in defining the cost of an infinite runaswil only use costs of winning
runs which must be finite in the games we play.



Optimal winning strategies do not always exist, even for BBTeriving from
timed automata (see [7]). A family of winning strategig's) which get arbitrarily close
to the optimal cost may be rather determined. Our aim is nialgy\We want to 1) com-
pute the optimal cost of winning, 2) decide whether theranisgtimal strategy, and 3)
in case there is an optimal strategy compute one such sgr&@etpre giving a solution
to the previous problems we relate our definition of costroptity to the one given
in [14, 1].

Recursive Definition of the Optimal Costln [14, 1] a method for computing the opti-
mal cost in priced timed games is introduced: it is definechasoptimal cost one can
expect from a state by a function satisfying a set of recarsguations, and not using a
run-based definition as we did in the last subsection. Welwgveafter the definition of
the function used in [14] and prove that it does corresporalitarun-based definition
of optimal cost. In [1], a similar but more involved definitigs proposed, we do not
detail this last definition here.

Definition 11 (The O function (Adapted from [14])). LetG be a RPTG. Le® be the
function fromQ to R U{+oc} that is the least fixed poifitf the following functional:

min min - p+p'+0(¢") | ,p+0(d) | (1)
;7 &P vq'!
O(q) = jnf max qceActg ()
o,
g sup max P +p"+0(d") (2)
= v t'.p // q// u,p "zl
t St uEAct,

The following theorem relates the two definitions:

Theorem 3. LetG = (S, Cost) be a RPTG induced by a LHG arglits set of states.
ThenO(q) = OptCost(q) forall ¢ € Q.8

4 Reducing Priced Timed Games to Timed Games

In this section we show that computing the optimal cost to avipriced timed game
amounts to solving a control problem (without cost).

Priced Timed Game AutomatalLet X be a finite set of real-valued variables called
clocks. We denot&( X)) the set of constraints generated by the grammar:::= = ~

k| oApwherek € Z, z,y € X and~€ {<, <,=,>,> }. Avaluationof the variables
in X is a mapping fromX to R>, (thus an element &< ). For a valuation and a set
R C X we denote[R] the valuation that agrees withon X \ R and is zero orRR. We
denotev + ¢ for 6 € R>, the valuation s.t. for alt € X, (v + 0)(x) = v(z) + 4.

" The righthand-sides of the equations 0tq) defines a functionalF on (Q — Rsq U
{+00}). (@ — R>o U {+00}) equipped with the natural lifting o£ onR>q U {+oc}
constitutes a complete lattice. Algocan be quite easily seen to be a monotonic functional on
this lattice. It follows from Tarski's fixed point theory thtie least fix point ofF exists.

8 Note that if a statg € Q is not winning, bothO(q) andOptCost(q) are+oc.



Definition 12 (PTGA). A Priced Timed Game Automatofis a tuple(L, ¢y, Act, X,
E,inv, f) whereL is afinite set olocations ¢, € L is theinitial location,Act = Act.U
Act,, is the set ofactions(partitioned into controllable and uncontrollable actish

X is a finite set ofreal-valued clockst C L x B(X) x Act x 2% x L is a finite

set of transitions inv : L — B(X) associates to each location itsvariant f :

L U E — N associates to each locationaost rateand to each discrete transition

a cost A reachabilityPTGA (RPTGA) is a PTGA with a distinguished set of locations
Goal C L (with no outgoing edges). It defines the set of goal statas x R, .

The semantics of the PTGAis aPTFS = ((LxRZ, (¢, 0), Act, —), Cost) where
— consists of: i)discrete steps(/,v) = (¢, v’)iif there exists(¢,g,e, R, (') € E
st.v = g andv’ = v[R]; Cost((¢,v) —— (£',v")) = f(l, g,e, R, (') ; ii) time steps:
(6,v) 25 (6,0) if 6 € Rag, v' = v+ 6 andv,v’ € inv(¢); and Cost(((,v) —=
(¢,v")) = & - f(¢). Note that this definition o€ost gives a cost function as defined in
Def. 7.

From Optimal Reachability Game to Reachability GamAssume we want to compute
the optimal cost to win a reachability priced timed game aatton A. We define a
(usual and unpriced) LH@& as follows: we use a variabtest in the LHG to stand for
the cost value. We build with the same discrete structure.dsand specify a rate for
cost in each location: if the cost increases with a rate-éfper unit of time inA, then
we set the derivative ofost to be —k in H; if the cost of a discrete transition isk
in A, then we updateostby cost:= cost— % in H. To each state in (the semantics
of) A there are many corresponding states:) in H, wherec is the value of theost
variable. For such a state, ¢c) we denotedcost(g, ¢) the state;. If X is a set of states
in (the semantics offf then3costX = {q| 3¢ > 0|(q,c) € X}. From the PTGA of
Fig. 1 we obtain the LHG of Fig. 2.

T > 2;co
cost’= cost— 1

deost __ =0 b
e =-5 Y ~

deost _
dt 1

Fig. 2. The Linear Hybrid Gamé{.

Now we solve the following control problem on the LHG: “can wan in H with
the goal state6oal A cost > 0?” Intuitively speaking we are asking the question: “what
is the minimal amount of resourceoist) needed to win the control gamé?” For a
PTGA A we can compute the winning statesifwith the semi-algorithnCompWin
(defined at the end of section 2) and if it terminates the vgréat of state$Vy =
CompWin(H) is a union of zones of the forift, R A cost = h) where/ is a location,



R CRY,, his a piece-wise affine function R and>¢< {>, >} (becauser preserves
this kind of sets). Hence we have the answer to the optimahedzlity game: we
intersect the set of initial states with the set of winnirgfesiV 5, and in case it is not
empty, the projection on thest axis yields a constraint on the cost likest > k with
k € Q>¢ and>€ {>,>}. By definition of winning set of states in reachability games
i.e. this is the largest set from which we can win, no cost lowentbaequal tok is
winning and we can deduce thiais the optimal cost. Also we can decide whether there
is an optimal strategy or not: i is equal to> there is no optimal strategy andsf is
> there is one.

Note that with our reduction of optimal control of PTGA to ¢ of LHG, the cost
information becomes part of the state and that the runsamd H are closely related.
The correctness of the reduction is then given by the nexiéme.

Theorem 4. Let A be a RPTGA and its corresponding LHG (as defined above). If
the semi-algorithnCompWin terminates ford and if Wy = CompWin(H ), then: 1)

CompWin terminates forA and W4 &ef CompWin(A) = Jcost.Wy; and 2) (¢, ¢) €
Wy <= there existy’ € WinStrat(q, W) with Cost(q, f) < c.

Computation of the Optimal Cost and Strategyet X C RZ,. Theupward closure
of X, denotedtX isthe settX = {2/ | 3z € X s.t.a’ > 2}.

Theorem 5. Let A be a RPTGA and its corresponding LHG. If the semi-algorithm
CompWin terminates forH then forq € W4, 1Cost(q) = {c | (q,¢c) € Wx}.

Corollary 1 (Optimal Cost). Let A be a RPTGA and/ its corresponding LHG. If the
semi-algorithmCompWin terminates forH thentCost (¢, 0) is computable and is of
the formcost > k (left-closed) orcost > k (left-open) withk € Q>¢. In addition we
get thatOptCost(lg,0) = k.

Corollary 2 (Existence of an Optimal Strategy).Let A be a RPTGA. IffCost(¢y, 0)
is left-open then there is no optimal strategy. Otherwisearecompute a winning and
optimal strategy.

Termination Criterion & Optimal Strategies.

Theorem 6. Let A be a RPTGA satisfying the following hypothesesAi$ bounded,
i.e. all clocks inA are bounded ; 2) the cost function dfis strictly non-zenoi.e. there
exists some > 0 such that the accumulated cost of every cycle in the regitonaaton
associated with4 is at leastx. Then the semi-algorithfiompWin terminates forH ,
whereH is the LHG associated witH.

Note that the strategy built in corollary 2 is state-basedfdut isa priori no more
state-based fod: indeed the strategy fail depends on the current value of the cost
(which is part of the state ifif). The strategy forA is thus dependent on the run and
not memoryless. More precisely it depends on the last §tate of the run and on the
accumulated cost along the run.

Nevertheless, we now give a sufficient condition for the texise of optimal cost-
independent strategies and exhibit a restricted classtofraia for which this condi-
tions holds.



Theorem 7. Let A be a RPTGA and/ the associated LHG. fompWin terminates for
H andWp is a union of sets of the for(d, R, cost> h) then there exists a state-based
strategyf defined ovefV 4 = JcostWy s.t. for eachy € Wy, f € WinStrat(q, Wa)
and Cost(q, f) = OptCost(q).

Note that under the previous conditions we build a strafegyich isuniformly optimal
i.e. optimal for all states oft/4. A syntactical criterion to enforce the condition of
theorem 7 is that the constraints (guards) on controllabt®rms are non-strict and
constraints on uncontrollable actions are strict.

Remarks on the hypotheses in Theorems 6 antheé hypothesis ol being bounded
is not restrictive because all priced timed automata candrestormed into bounded
priced timed automata having the same behaviours (see &n@e [16]). The strict

non-zenoness of the cost function can be checked on prinegtitpame automata:
indeed it is sufficient to check whether there is a cycle whpraee is0 in the so-called

“corner-point abstraction” (see [6, 9]) ; then, if there s eycle with cos®, it means

that the cost is strictly non-zeno, otherwise, it is notcsliyinon-zeno.

5 Conclusion

In this paper we have given a new run-based definition of cpsinality for priced
timed games. This definition enables us to prove the follgwesults: the optimal cost
can be computed for the class of priced timed game autométeavatrictly non-zeno
cost. Moreover we can decide whether there exists an opsinategy which could
not be done in previous works [14, 1]. In case an optimal efraexists we can com-
pute a witness. Finally we give some additional results eamog the type of informa-
tion needed by the optimal strategy and exhibit a class ekgrtimed game automata
for which optimal state-based (no need to keep track of t& ioformation) can be
synthetized. Our strategy extraction algorithm has begsleémented using the tool
HYTECH [8].

Our future work will be on extending the class of systems farol termination is
ensured. Our claim is that there is no need for the strictzesmeness hypothesis for ter-
mination. Another direction will consist in extending ouomk to optimal safety games
where we want to minimize for example the cost per time uwihglinfinite schedules
whatever the environment does, which would naturally edgdvoth this current work
and [9].
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