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Abstract
We propose Pony-ORCA, a fully concurrent protocol for garbage
collection in the actor paradigm. It allows actors to perform garbage
collection concurrently with any number of other actors. It does not
require any form of synchronization across actors except those in-
troduced through the actor paradigm, i.e. message send and mes-
sage receive.

Pony-ORCA is based on ideas from ownership and deferred,
distributed, weighted reference counting. It adapts the messaging
system of actors to keep the reference count consistent.

We introduce a formal model and describe the invariants on
which it relies. We illustrate these invariants through an example
and sketch how they are maintained. We show some benchmarks
and argue that the protocol can be implemented efficiently.

1. Introduction
The actor paradigm [4] was proposed in 1973 by Carl Hewitt [23].
An actor is a computational entity that, in response to a message it
receives, can: 1) send a finite number of (asynchronous) messages
to other actors; 2) create a finite number of new actors; and 3)
designate the code to be executed for the next message it receives.
The code executed upon receipt of a message is called a behaviour.
The actor paradigm has been adopted in a functional setting, e.g. in
Erlang [7], and in the object-oriented paradigm [5, 10, 14, 34].

Implicit garbage collection is crucial for convenience of pro-
gramming, however automatic garbage collection often proves to
be a performance bottleneck, e.g, [12] reports application pauses
of around 3 seconds. This has been subject of improvement in
other garbage collection protocols, such as the Pauseless GC Algo-
rithm [18] and the Continuously Concurrent Compacting Collector
(C4) [35] from Azul Systems, which allow a non-stop-the-world,
concurrent and parallel collection by using read barriers. In con-
current GC protocols, it is important to ensure the absence of race
conditions—for instance, a race condition during a marking phase
can cause an object to be marked for collection when there still exist
references to it. This is often solved using synchronization mech-
anisms, as for instance in some of the JVM collectors [28], which
can cause program performance loss.
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In this paper, we propose Pony-ORCA 1, a garbage collection
protocol for actor-based object oriented programming languages,
which is fully concurrent and where no synchronization mecha-
nisms, such as read and write barriers, are needed, avoiding appli-
cation latency spikes. We have implemented Pony-ORCA for the
language Pony [6], but our protocol is applicable for any language
which fulfills the criteria we give later. Our protocol is based on
ownership and deferred distributed weighted reference counting.

Ownership types [15, 32] were proposed with the remit to de-
limit groups of related objects into different areas of the heap. They
were used for garbage collection under the requirement that there
are no incoming references to these areas [33]. Such a scheme
works well in the concurrent setting, but the no-incoming refer-
ences requirement is often far too strong.

Reference counting garbage collection puts no requirement on
the heap structure; instead, it tracks, for each object, a count of the
number of references to it held by other objects [8]. This approach
has been further developed to detect cycles and to deal with the
distributed setting [20, 30]. However, the approach has poor local-
ity and thus, in the concurrent setting, it requires synchronization
across the various threads [26].

We employ the locality found in actors, and the implicit syn-
chronization afforded by the actor messaging system, to develop a
fully concurrent garbage collection algorithm. Pony-ORCA allows
the fully concurrent garbage collection of objects as well as actors.
In particular:

• An actor may perform garbage collection concurrently with
other actors while they are executing any kind of behaviour.

• An actor may decide whether to garbage collect an object solely
based on its own local state, without consultation with, or in-
specting the state of, any other actor.

• No synchronization between actors is required during garbage
collection, other than potential message sends.

• An actor may garbage collect between its normal behaviours,
i.e. it need not wait until its message queue is empty.

• Pony-ORCA can be applied to several programming languages,
provided that they satisfy the following two requirements:

Actor behaviours are atomic.
Message delivery is causal—i.e. messages arrive before any
messages they may have caused, if they have the same
destination.

Our approach is based on implicit ownership, whereby an actor
owns any object that it has allocated. Each actor is responsible for
garbage collecting the objects it owns. The challenge is that an actor

1 ORCA stands for Ownership Reference Counting for Actors and it is a
reference to the killer whale



may have no path to an object it owns, while other actors may still
have paths to that object, or the object may appear in messages
in some other actor’s message queue. It would be erroneous to
garbage collect such an object.

In our approach, an actor maintains a reference count for all the
objects it owns. The reference count is guaranteed to be non-zero
for any object which is accessible from any message or any actor
other than its owner. Thus, an actor can safely garbage collect any
object which is locally unreachable, and whose reference count is
zero.

There is the remaining challenge of ensuring that the reference
count indeed is non-zero for objects which are accessible from
actors other than their owner. This is maintained through a system
whereby all the actors which may reach an object they do not
own also maintain their (foreign) reference count, and whereby
the sum of all foreign reference counts of an object corresponds
to its owning actor’s (local) reference count for that object. This
requirement needs to be modified to take into account the messages
in the various queues. Therefore, in Pony-ORCA, when an actor
receives or sends references to objects, it may need to inform the
owning actor through protocol-specific messages.

Our paper is organized as follows: in Section 2 we present
related work on garbage collection protocols; in Section 3 we
briefly introduce the Pony language; in Section 4 we define the
runtime configuration and what is a well-formed configuration,
in the Pony-ORCA protocol; in Section 5 we argue why objects
can be safely collected and how the consistency of the runtime
configuration is maintained; we discuss our results in Section 6;
and we finish the paper with conclusions in Section 7.

2. Garbage collection in the actor world
Previously, actor-model languages and libraries have used five dif-
ferent approaches to garbage collection. The first is to combine
manual termination of actors with a standard tracing garbage col-
lector. These are primarily JVM based implementations, such as
Scala [22], Akka [5], Kilim [34], AmbientTalk[36], and SALSA
2.0 [37]. The second is to combine manual termination with a
largely per-actor tracing collector, using copying of messages to
move data into actor heaps, that also has some global data. These
are primarily BEAM based implementations, such as Erlang [7]
and Elixir [21]. The third is to transform the actor graph into an
object graph and use a tracing collector to collect actors as well as
objects, as done in ActorFoundry [3]. The fourth is to use reference
listing and snapshots to collect actors, as done in SALSA 1.0 [38].
The fifth is to use a message-based actor collection protocol that
can collect actors and detect termination fully concurrently, with-
out a stop-the-world step [17].

In this work, we extend message-based actor collection [17],
applying it to passive object collection when objects are shared by
reference amongst actors.

Our work draws heavily on existing distributed garbage collec-
tion algorithms, particularly on distributed reference counting [19,
20, 26, 29–31]. A key difference is that Pony-ORCA does not have
reference count cycles amongst objects, since only actors hold ref-
erence counts for objects and those counts are independent of the
number of paths to an object in an actor’s reachable heap. Thus, we
do not require cycle detection [8, 19, 20, 26, 29] or reference list-
ing [31]. This approach also eliminates heap change related refer-
ence count changes, which in effect gives highly deferred reference
counting [9].

Pony-ORCA is also influenced by the Emerald garbage collec-
tor [27], particularly in the design goals of comprehensiveness, con-
currency, expediency, efficiency, and correctness. In addition, inde-
pendently collected actor heaps are similar to Emerald’s local col-

lector, with our message protocol effectively replacing the global
collector.

3. The language Pony and Causal Message
Delivery

The language Pony supports actors (active objects), and objects
(passive objects). Objects and actors have fields and synchronous
methods; in addition, actors have asynchronous methods, called be-
haviours. Actors may receive asynchronous messages which con-
tain any number of parameters. These may be addresses or literals
(e.g. integers). The messages are stored in a queue. Whenever an
actor is enabled, it removes the top message from its queue and ex-
ecutes the body of the corresponding behaviour. Actors and objects
may call synchronous methods on objects and asynchronous be-
haviours on other actors. Pony also contains further features: traits,
algebraic data types, generics etc., which, however, we will not be
discussing here. A formal semantics of the Pony subset discussed
here appears in [6].

Causal message delivery requires that whenever a message,
msg1, is a direct or indirect cause of another message, msg2, and the
destination of the two messages is the same, msg1 will be delivered
before msg2. A message msg is a cause of a further message msg0,
if a) an actor sends msg0 after receiving msg, or b) an actor sends
msg0 after sending msg, or c) there exists an intermediate message
msg00 such that msg is a cause of msg00, and msg00 is a cause of
msg0. Therefore, the causal relationship is asymmetric, acyclic, and
transitive.

For example, if actor A sends message msg1 to actor B, and then
sends message msg2 to actor C, and actor C sends message msg3
to actor B after receiving msg2, then msg1 is a cause of msg2, and
also msg2 is a cause of msg3, and by transitivity msg1 is a cause of
msg3. Therefore, causal message delivery requires that actor B will
receive msg1 before receiving msg3.

Causal message delivery is not required in the original formu-
lation of the actor paradigm [23], which mandates that message
delivery is guaranteed, but need not be ordered. The motivation for
this is to make the actor-model as general as possible. For the same
reason, the original formulation does not require buffered queues.
However, in [17] it is shown how causal messaging can be imple-
mented efficiently in the concurrent setting, and in [11] we have
implemented it in the distributed setting.

Crucially, causal message delivery has been of paramount im-
portance in the development of the actor collection protocol [17],
and of various distributed protocols developed in [11]. We plan
to discuss efficient implementation of causal messaging in further
work.

4. The Pony-ORCA Garbage Collection Protocol
Pony-ORCA is based on a reference counting scheme, whereby
each actor keeps a reference count for some other objects or ac-
tors. An actor can decide whether to garbage collect an object it
owns solely on the basis of whether the object is reachable from
the owning actor fields and whether the object’s (local) reference
count is zero. For this to work, the owner’s reference count for an
object has to be a true reflection of the global configuration, namely
the owner’s (local) reference count after receiving all the pending
ORCA protocol specific messages must be the same as the sum
of the (foreign) reference counts in the non-owning actors together
with pending Pony-level application messages. In order to main-
tain this invariant, whenever objects are sent, received, or become
unreachable, the reference count will need to be modified and/or
ORCA-specific messages sent to the owners of such objects, thus
resulting in the updating of local reference counts of these objects.
Note, that an actor does not need to keep a reference count for all



Figure 1. Ownership and References diagram.

other objects or actors. We will discuss the size of the counter tables
in Section 4.2.

In this section we describe our protocol in more detail, and de-
velop a formal model. In section 4.1 we show diagrammatically
some actors, heaps and queues, and discuss which objects are glob-
ally unreachable. In section 4.2 we show Pony-ORCA specific data
structures. In section 4.3 we define what it means for the owner’s
reference count to be a true reflection of the global configuration
along with further necessary well-formedness conditions.

4.1 Actors and reachable objects
In Pony, actors can create new objects, send messages to other ac-
tors (with references to actors and objects, not necessarily allocated
by the sending actor) and receive messages. As we said earlier, it is
possible for an actor to own an object without having a reference to
it, while non-owning actors do have references to it—for instance,
an actor may create an object, send it to other actors and then drop
the reference to that object. Given this, the protocol needs to ensure
that an object, even though is not reachable from its owner, is not
garbage collected if there exists another actor or a message in one
of the actor’s queues with a reference to it.

EXAMPLE 1. Consider the Ownership and References diagram
from Figure 1. We have actors ↵1, ↵2 and ↵3 and show them in
rounded double boxes. We have objects !1,!2, . . . ,!8 and we
show them in rounded single boxes. We show ownership through
square boxes, e.g. ↵1 owns !7. We show references through arrows,
e.g. !3 references !1. Notice that object !3 is not reachable from
↵2, its owner, but it is reachable from ↵1.

4.2 Runtime configuration modelling Pony-ORCA
We now model the data structures used in Pony-ORCA, as well as
the Pony runtime entities relevant to the soundness of our protocol.
In Pony-ORCA each actor contains a (local) reference count for any
object it owns, as well as a (foreign) reference count for any other
actor or object it does not own. We represent ownership through the
mapping Owner, and we unify local and foreign reference counts
to one mapping, RC .

We consider sets of addresses, S
all

, and distinguish between
object addresses, S

obj

, and actor addresses, S
act

. Every actor or
object has an owner, which is an actor. We require that the owner of
an actor is the actor itself. We indicate addresses through ◆, ◆0, etc,
actor addresses through ↵, ↵0, etc., and object addresses through !,
!0, etc.

DEFINITION 1 (Addresses and Owners). We require enumerable
sets S

all

, S
obj

, and S
act

, and a function
Owner : S

all

! S
act

such that
S
all

= S
obj

] S
act

◆ 2 S
all

↵ 2 S
act

! 2 S
obj

and
8↵ 2 S

act

.Owner(↵) = ↵

A runtime configuration consists of a per-actor heap, a per-
actor queue of messages, and a per-actor counter table. In order
to argue soundness we need to model the heap. We do not need
to distinguish the class of objects, or the contents of their fields.
All we need to model is the set of addresses which are reachable
from a given address. In the current paper we over-approximate
this information, and our model only represents the set of addresses
reachable from a given actor. In fact, we expect that a valid heap for
an actor contains a superset of the addresses reachable from that
actor, or from objects in that actor’s heap, but we do not model
reachability. We will give a finer grained model in further work.

The message queue is a sequence of messages, where the or-
der matters. Messages are either Pony-level messages, or ORCA-
specific messages. Our protocol is not concerned with the ex-
act Pony-level messages sent, but it is concerned with the ad-
dresses these may contain. Pony-level messages are APP(◆?). The
ORCA-specific messages DEC(◆, k) and INC(◆, k) require the actor
to change its reference count to ◆ accordingly. The counter table
gives the reference count for a given address, reflecting references
from other actors or messages in queues.

DEFINITION 2 (Runtime Configurations).

K 2 RunTimeCfg = S
act

! (P(S
all

)⇥Msg? ⇥ (S
all

! Z))
Msg ::= APP(◆ ⇤ ) | INC(◆, k) | DEC(◆, k)

k 2 N
q 2 Msg?

In the remainder we use the following abbreviations

• HeapK(↵) = K(↵)#1
• QueueK(↵) = K(↵)#2
• MessageK(↵, j) = K(↵)#2 (j)
• RCK(↵, ◆) = K(↵)#3 (◆)

And we require the following well-formedness conditions:

WF1. RCK(↵, ◆) � 0
WF2. ! 2 HeapK(↵) =) Owner(!) 2 HeapK(↵)

In our model, the counter table is a total function from actor-
address pairs to integers. We do that for the sake of simplicity. The
implementation is more efficient than that: an actor keeps reference
count entries only for objects it owns which are reachable from
other actors, or objects/actors which it can reach and which it does
not own.

EXAMPLE 2. In Figure 2 we show an abstract representation of
heaps, message queues and reference counts. We will discuss heaps
and reference counts in the next section. We have message queues
Qs1 and Qs2. In Qs1 all the queues are empty. In Qs2 the actor
at ↵1 has a Pony-level application message APP(!6), the actor
at ↵2 has a message APP(!7,!6,!7) and the queue of the third
actor is empty. Message identifiers are not used in Pony-ORCA;
only addresses are considered.

If we consider the diagram from Figure 1 together with the
queues from Qs1 then the objects !4,!5,!6,!7,!8 and actor ↵3

are globally unreachable. However, if we consider the queues from
Qs2, then !4 is the only globally unreachable reference.



Heaps
H1:
Heap1(↵1) = {↵1,↵2,!1,!2,!3,!4,!5,!7,!8 }
Heap1(↵2) = {↵1,↵2,!1,!2,!3,!5,!7,!8 }
Heap1(↵3) = {↵2,↵3,!5,!6 }

H2:
Heap2(↵1) = {↵1,↵2,!1,!2,!3 }
Heap2(↵2) = {↵2 }

Queues
Qs1:

Qs2:

Counter Tables
CT 1:

↵1 ↵2 ↵3

↵1 5 5 0
↵2 1 2 1
↵3 0 0 0
!1 50 50 0
!2 3 3 0
!3 10 10 0
!4 0 0 0
!5 10 40 30
!6 0 0 0
!7 10 10 0
!8 10 10 0

CT 2:

↵1 ↵2 ↵3

↵1 6 5 0
↵2 1 4 1
↵3 0 0 2
!1 50 50 0
!2 3 3 0
!3 10 10 0
!4 0 0 0
!5 10 40 28
!6 0 0 2
!7 12 10 1
!8 10 12 1

Figure 2. Heaps, message queues and counter tables.

EXAMPLE 3. If we consider the ownership and references diagram
from Figure 1, then Heap1 defined in Figure 2 is valid. Similarly,
Heap2 from Figure 2 is also valid. Heap1 represents a possible
heap before garbage collection, while Heap2 represents a possible
heap after all actors have performed all possible garbage collec-
tion steps.

On the other hand, Heap3 defined below
Heap3(↵1) = {↵1,↵2,!1,!2,!3 }
Heap3(↵2) = {↵1,↵2,!1,!2,!3 }
Heap3(↵3) = {!6,↵3 }

is invalid because even though !6 is in the heap of ↵3, and !5 is
reachable from !6, the heap of ↵3 does not contain !5.

EXAMPLE 4. In Figure 2 we show different reference count tables,
CT 1 and CT 2. We thus have possible configurations:

K1 =(Heap1,Qs1,CT 1)

K2 =(Heap1,Qs2,CT 1)

K3 =(Heap1,Qs2,CT 2)

4.3 Well-formed Configurations
In this section we define when a configuration is well-formed.
Given that the actor only uses the values in its counter table to de-
cide when to garbage collect an object, the counter for that specific
object should be consistent with the reference count of other actors
with references to it and the messages in all the queues of a configu-
ration containing a reference to it. In other words, a configuration is
well-formed, if it satisfies the conditions introduced in the previous
section, an in addition:

WF3. If there is a message in some queue containing an address ◆,
then the local reference count of ◆ is greater than zero.

WF4. If an actor ↵ can reach an address which it does not own,
then both the owner’s (local) reference count and ↵’s (foreign)
reference count for that object are greater than zero.

WF5. The sum of the local reference count and the increment-
decrement count for an address is always the same as the sum of
the total foreign reference count and total application message
count for that address.

WF6. For any prefix of any actor ↵’s queue, if we add to the
local reference count for ◆ the sum of weights of increment
and decrement messages for ◆, and subtract the number of
application messages that contain ◆, the result is greater or equal
to zero.

Given this, we define five derived counts. We define now the
first four derived counts and we leave the fith one for later. For any
address ◆ and a global configuration, K, we define:

1. The local reference count of an address ◆, LRCK(◆), gives the
reference count for ◆ in the counter table of its owner.

2. The foreign reference count of an address, FRCK(◆), is the sum
of the reference counts for ◆ from “outside”, that is, from all
actors different from the owner.

3. The increment-decrement count of an address, IDCK(◆), is the
sum of weighted references to ◆ in the current in-flight INC, DEC
messages in the queue of the owning actor.

4. The application message count of an address, AMCK(◆), is
the number of Pony-level messages which contain ◆, addresses
owned by ◆ or addresses which are reachable from ◆.

In more detail, the first four counts are defined as follows.



DEFINITION 3. For a configuration K, and address ◆, we define the
functions

FRC , LRC , AMC : RunTimeCfg ⇥ S
all

! Z
IDC : RunTimeCfg ⇥ S

all

! Z
as follows:

1. LRCK(◆) = RCK(Owner(◆), ◆)
2. FRCK(◆) =

P
↵ 6=Owner(◆) RCK(↵, ◆)

3. IDCK(◆) =
P

j

Weight(◆,MessageK(Owner(◆), j))

4. AMCK(◆) = #{ (↵, j) | MessageK(↵, j) = APP(args)
^ ◆2APP(args) }

We now define the weight of a message, Weight(◆,msg), and
the notion of an address to be contained in a message, ◆ 2 msg .

DEFINITION 4. The weight of a message, regarding an address ◆,
is given by the function

Weight : Addr ⇥Msg ! Z

Weight(◆,msg) =

8
><

>:

k if msg = INC(◆, k)

�k if msg = DEC(◆, k)

0 otherwise

DEFINITION 5. An address ◆ is contained in a Pony-level message
if and only if it is reachable from one of the arguments, or is the
owner of an object reachable from one of the arguments.

◆ 2 msg ,

8
>>><

>>>:

9◆0, ◆00.
msg = APP( , ◆0, ) ^
◆00is reachable from ◆0^
(◆ = ◆00 _ ◆ = Owner(◆00)

Note that every address is reachable from itself.

EXAMPLE 5. In the heap from Figure 1, we have that

• ↵1,↵2,!1,!2,!3 2 APP(!3),
• ↵2,!5 2 APP(!5),
• ↵2,↵3,!5,!6 2 APP(!6),
• ↵1,↵2,!7,!8 2 APP(!7).

EXAMPLE 6. Consider configuration K1 and in particular its ob-
ject !1, then:

FRCK1(!1) = 50 LRCK1(!1) = 50

IDCK1(!1) = 0 AMCK1(!1) = 0

On the other hand, in K2, and considering in particular objects
!5,!6,!7 and !8, we have that:

AMCK2(!6) = AMCK2(!5) = 2

AMCK2(!7) = AMCK2(!8) = 1

AMCK2(↵1) = 1 AMCK2(↵2) = 2 AMCK2(↵3) = 2

and since we have no INC/DEC messages, 8◆.IDCK2(◆) = 0.

We now define the fifth derived count, which we call pending
changes count, in short PCC . It sums the weights of INC and DEC
messages for ◆ in some queue and subtracts the number of pending
application messages containing ◆ in that queue. This last count
summed with the local reference count of ◆ will be the new local
reference count for ◆ in a configuration where all the messages of q
have been consumed by ↵.

DEFINITION 6. The pending changes count of an address ◆, in an
actor ↵, PCCK(◆,↵, q), is defined as follows:

PCC : RunTimeCfg ⇥ S
all

⇥ S
act

⇥ Msg? ! Z

PCCK(◆,↵, q) =
X

j

Weight(◆, q(j))�

(
0 if Owner(◆) 6= ↵

#{j | ◆ 2 q(j)} otherwise

EXAMPLE 7. Consider objects ! and !0 owned by the actor ↵1

and queues, q1 = INC(!0, 1), q2 = APP(!,!0), and q = q1 ::
q2, then we have PCC (!0,↵, q1) = 1 and PCC (!,↵, q1) =
0. Also, PCC (!0,↵, q2) = PCC (!,↵, q2) = �1. Therefore,
PCC (!0,↵, q) = 0 but PCC (!,↵, q) = �1.

We are now able to define when a configuration is well-formed.

DEFINITION 7. A configuration K is well formed iff 8↵, ◆.8q1, q2 2
Msg?

WF3. ◆ ✓ MessageK(↵, j) =) LRCK(◆) > 0

WF4. ◆ 2 HeapK(↵) ^ ↵ 6= Owner(◆) =)
RCK(↵, ◆) > 0 ^ LRCK(◆) > 0

WF5. LRCK(◆) + IDCK(◆) = FRCK(◆) + AMCK(◆)

WF6. q1 :: q2 = QueueK(↵) =)
LRCK(◆) + PCCK(◆,↵, q1) � 0

DEFINITION 8. An address ◆ is contained in a message msg if msg
is an Pony-level message that contains ◆ or if it is an increment or
decrement message for ◆.

◆ ✓ msg , ◆ 2 msg _ msg = INC(◆, ) _ msg = DEC(◆, )

The condition WF6 ensures that whenever consuming a mes-
sage makes the actor decrease its count for some owned address (as
we will see later), this count will not become negative.

EXAMPLE 8. It is easy to check that K1 is well-formed. On the
other hand, K2 is not a well-formed configuration as WF3 and
WF5 do not hold. WF3 does not hold because QueueK2

(↵1) =
APP(!6) even though RCK2(↵3,!6) = 0. With respect to WF5,
the AMC for the addresses ↵1,↵2,↵3,!5,!6,!7,!8 are no
longer 0. For instance:

LRCK2(!5) + IDCK2(!5) = 40 + 0

FRCK2(!5) + AMCK2(!5) = (10 + 30) + 2

K3 is a well-formed configuration. It is based on K2, but the
reference count is given by CT3 .

5. Pony-ORCA: “killing” them safely
Pony-ORCA allows an actor to collect its own objects without
checking information from other actors or from any queue. That
is, an actor does not need to check any other heap, nor does it
need to examine any queue, including its own, in order to determine
whether an object is collectable or not. In this section we argue why
it is safe to collect objects under these conditions, and what actions
the protocol needs to perform in order to preserve well-formedness.

Pony-ORCA runs on top of the Pony type system [6], which
guarantees that there will be no race conditions even though it does
not use any locking or synchronisation mechanism other than the
messaging system.

In Section 5.1 we show why it is sound to collect any actor or
object whose local reference count is 0. In Section 5.2 we describe
what actions need to be taken when the configuration changes,
i.e. upon message send, message receipt, or addresses becoming
unreachable. We show a garbage collection scenario in Section 5.3.
In Section 5.4 we discuss the role of causality. And in Section 5.5
we discuss the absence of race conditions in the system.



5.1 Application to Garbage collection
Here we will argue why it is sound to garbage collect an actor or
object when its local reference count is 0. We will use the well-
formedness conditions from sections 4.2 and 4.3 to show that under
those circumstances the object or the actor is globally unreachable.

DEFINITION 9 (Globally unreachable objects and actors). An ad-
dress ◆ is globally unreachable if and only if it does not appear in
any actor’s heap (i.e. 8↵.◆ /2 HeapK(↵)) and does not appear in
any Pony level message (i.e. 8↵, j.◆ /2 MessageK(↵, j)).

5.1.1 Collectable objects
DEFINITION 10. An object ! is collectable by an actor ↵, iff

C1. ↵ owns !, i.e., ↵ = Owner(!).
C2. ↵ has no path leading to !, i.e., ! /2 HeapK(↵).
C3. ↵’s (local) reference count for ! is 0, i.e., RCK(↵,!) = 0

These three requirements are local and therefore the actor can
garbage collect without need to consult other actors or examine any
queues, including its own.

Moreover, these three requirements guarantee that garbage col-
lection is safe. We now argue informally why in a well-formed con-
figuration any collectable object is globally unreachable.

1. From C1, C3 and Definition 3 we know that the local reference
count for ! is 0, i.e. LRCK(!) = 0.

2. From C1, C3 and WF3 we know that the counts for incre-
ment/decrement and application messages are 0, i.e., IDCK(!) =
0 and AMCK(!) = 0.

3. From 1, 2 and WF5 we know that the foreign reference count
of ! is 0, i.e. FRCK(!) = 0.

4. From C2 we obtain that ! is not reachable from ↵.
5. From 3 and WF4 we obtain that ! is not reachable from any

further actor ↵0 6= ↵.
6. From 2, we obtain that ! is not in any in-flight message.

Therefore, ! is globally unreachable.

5.1.2 Collectable actors
DEFINITION 11. An actor ↵ is collectable, iff

C1. Its local reference count for itself is 0, i.e., RCK(↵,↵) = 0.
C2. Its queue is empty, i.e., QueueK(↵) = ;

The argument that a collectable actor is globally unreachable is
similar to that for objects with the additional consideration of WF2.
In addition, we can expand the protocol so as to collect cycles of
blocked actors whose local reference count is greater than 0 [16].

5.2 Maintaining well-formedness
Language level computations, such as application message sends
and receives, and dropping of references, affect the validity of the
well-formedness conditions from section 4.3. Therefore, we need
to take corrective actions. Here we outline what these actions are.

5.2.1 Sending a Pony level message
Consider that an actor ↵ sends a message APP(args). This action
does not modify the heap, therefore WF1, WF2 and WF4 are
preserved. However it does affect the values of AMC , and thus
affects validity of WF5. Therefore, for all ◆ 2 APP(args), the actor
↵ performs the following updates:

1. If ↵ = Owner(◆) then it will increase RC (↵, ◆) by 1.
2. If ↵ 6= Owner(◆) then it will decrease RC (↵, ◆) by 1.

If decreasing the counter were to set the value of RC (↵, ◆) to 0
or below then, before sending the Pony message, an INC(◆, k + 1)
message is sent to Owner(◆) and RC (↵, ◆) is set to k, for some
k > 0. Such an increment message may be sent even if RC > 1,
to allow future sends of ◆ without requiring additional increment
messages.

These actions restore WF5 and do not affect validity of WF3
and WF6.

5.2.2 Receiving a Pony level message
The actions taken to preserve the well-formedness of a configura-
tion are similar to those for sending a message containing ◆, taking
into consideration that when a message is received, it is removed
from the queue. We consider an actor ↵ that receives a message
APP(args). For all addresses ◆ such that ◆ 2 APP(args) the receiv-
ing actor performs the following actions, which are essentially the
opposite to those in Section 5.2.1:

1. If ↵ = Owner(◆) then it will decrease RC (↵, ◆) by 1.
2. If ↵ 6= Owner(◆) then it will increase RC (↵, ◆) by 1.

The address ◆ is added to the heap of ↵. Validity of WF4
is trivially preserved in all four cases. Moreover, WF6 from the
previous configuration guarantees preservation of WF1 in the new
configuration.

5.2.3 Receiving an ORCA specific message
When an actor receives a message INC(◆, k) or DEC(◆, k) then, by
construction, it is the owner of ◆. Therefore,

1. When ↵ receives INC(◆, k), it increments RC (↵, ◆) by k.
2. When ↵ receives DEC(◆, k), it decrements RC (↵, ◆) by k.

Condition WF6 guarantees that WF1 and WF6 are preserved.
The other conditions are not affected.

5.2.4 Collecting in actor’s heap
An actor garbage collects its objects between the execution of its
behaviours, that is, when its stack of execution is empty. We now
show the object collection algorithm step-by-step:

1. All owned objects are marked unreachable.
2. All unowned objects with a foreign reference count greater than

zero are marked as unreachable.
3. Tracing occurs from the actor’s fields only, marking objects

reachable, whether they are owned or not.
4. All owned objects with a local reference count greater than zero

are marked as reachable.
5. Owned objects that are marked as unreachable are collected.
6. Decrement messages are sent for unowned objects that are

unreachable, and their RC is set to 0.

Soundness of step 5 has been discussed in Section 5.1. Step 6
trivially preserves WF1 and WF2. Moreover, when the actor sends
the decrement message, DEC(◆, k), where ◆ is the address to be
collected and k is the former reference count of the address ◆, both
FRC (◆) and LRC (◆) will decrease by k and WF5 is preserved.

5.3 A Garbage Collection Scenario
We will elucidate how the garbage collector works by means of
a scenario where ↵3 runs garbage collection on configuration K1.
Then ↵2 runs garbage collection, followed by ↵1, which again is
followed by ↵2. In the end, we will have collected all the globally
inaccessible actors or objects, and we will be left with a heap as in
Heap2. We explain this now in more detail:



1st Step: actor ↵3 performs garbage collection on heap Heap1
and counter table CT1. The references ↵2, !5, !6 are locally un-
reachable 2. Since the actor owns !6 and since !6’s RC entry
is 0, it will collect !6. It cannot collect ↵2 nor !5, but it will
send to ↵2 a message to decrement its RC entry for ↵2 by 1,
and its RC entry for !5 by 30. As a result we will now have
RC (↵3,↵2)=0, and RC (↵2,↵2)=1, and RC (↵2,!5)=10. Then,
because RC (↵3,↵3)=0, actor ↵3 is collected, and its heap dis-
carded.
2nd Step: actor ↵2 performs garbage collection. The references
↵1, !1, !2, !3, !5, !7 and !8 are locally unreachable. Of these
addresses, it owns !3, !5, and !8. The RC entry for all three
objects is not 0; therefore they will not be collected, and the heap
stays unmodified. The actor will set its RC entry for ↵1, !1, !2,
and !7 to 0, and will send to ↵1 a message to decrement its RC
entry for ↵1, !1, !2, and !7 by 5, 50, 3, and 10. When ↵1 consumes
this message, the RC -table will look as follows:

CT 3 :

↵1 ↵2

↵1 0 0
↵2 1 1
!3 10 10
!5 10 10
!8 10 10

3rd Step: actor ↵1 performs garbage collection. The references !4,
!5, !7 and !8 are locally unreachable. Of these addresses, the ac-
tor owns !4 and !7, and as their RC entry is 0, both objects will be
collected. We will now have Heap(↵1) = {↵1,↵2,!1,!2,!3 }.
The actor will also send to ↵2 messages to decrement its RC
entry for !5 and !8 by 10 and 10. When this message is con-
sumed, we will have RC (↵1,!5) = 0 = RC (↵1,!8), and also
RC (↵2,!5) = 0 = RC (↵2,!8).
4th Step: actor ↵2 performs garbage collection. As the references
!5, !8 are locally unreachable, and as their RC has value 0, the
actor will collect !5, !8. We now have Heap(↵2) = {↵2 }. Our
heap will have the contents as in Heap2. The contents of the RC -
table is as in CT4, shown below.
CT 4 :

↵1 ↵2

↵1 0 0
↵2 1 1
!3 10 10

Any further garbage collection steps will make no difference,
unless, of course, the heaps or queues were to change. If the queue
of ↵1 or ↵2 becomes empty then they can be collected.

5.4 Causality
Causality is sufficient in Pony-ORCA to maintain WF4 and WF6,
and consequently WF1. Consider namely a situation where an actor
↵ whose RC entry for an object ! is 1, sends to ↵0, the owner of
!, a message containing !, then ! becomes locally inaccessible in
↵ and then ↵ performs garbage collection. In this case, ↵ will send
to ↵0 a message INC(!, k + 1) for some value for k > 0, followed
by APP(!), followed by DEC(!, k).

Causality considers that INC(!, k + 1) is a cause of APP(!),
and that APP(!) is a cause of DEC(!, k), and therefore guarantees
that they will arrive at ↵0 in that order. Therefore, if the value of
RC (↵,!) was k0, then upon consumption of these steps it would
become k0 + k + 1, then k0 + k, and k0, and thus stay positive.

2 The garbage collector considers an object or actor as locally reachable
from some actor ↵ if there exists a path from ↵ to that object or actor .

However, if we allowed the messages to overtake each other,
and if we allowed the delivery to be APP(!), DEC(!, k), INC(!, k+
1) then the values would be k0 � 1 (thus possibly breaking WF4),
k0 � k � 1 (thus possibly breaking WF6) and k0.

In future work we will investigate in how far weaker message
delivery strategies are sufficient to preserve well-formedness.

5.5 Absence of race conditions in Pony-ORCA
To ensure the absence of race conditions we need to be certain
that tracing and garbage collection in one actor cannot interfere
with tracing, garbage collection, or normal behaviour in another
actor. We guarantee this through the type system of the underlying
language [6], which ensures that whenever an actor has a readable
path to an object, no other actor can write to it. Therefore, by
creating a different tracing function for each class according to
the read capabilities of each of the fields in that class, we ensure
that tracing does not interfere with any other actor’s activity. And
since garbage collection only removes globally unreachable actors
or objects, we also ensure that garbage collection does not interfere
with any other actor’s activity.

6. Discussions
The message overhead of our approach is low. Reference counts
(RC) are not tied to heap references but rather to messages, which
means no ORCA specific messages are required for heap mutation.
When receiving a message, no ORCA specific messages are gen-
erated, because the receiving actor can simply decrease its RC for
objects it owns and increase its RC for other actors and objects.
When sending a message, increment messages are only generated
when the sending actor has an RC of 1 for a sent actor or object
it does not own; otherwise, the sending actor simply increases its
RC for objects it owns and decreases its RC for other actors and
objects. In addition, when sending does require an increment mes-
sage, the cost is amortised by creating a large RC, allowing many
future sends of an object without additional increment messages.
This is coupled with the ability to send increment messages that re-
fer to many objects, which means that a message send that requires
increment messages generates at most one increment message for
any given actor, which also reduces message overhead.

Because the disappearance of a reference from an actor’s reach-
able heap is detected only during garbage collection, decrement
messages are generated lazily. These decrement messages are
also combined, as for increment messages, such that at most one
decrement message is generated for any given actor. This reduces
the ORCA specific message bounds from O(unreachable) to
O(Owner(unreachable)).

Causal message delivery allows us to never require an acknowl-
edgement for an ORCA specific message. This means that there is
no ORCA specific message related latency due to requiring a round
trip.

Our approach only runs a garbage collection pass on an actor
when that actor is not executing a behaviour. As a result, GC only
occurs when there is no stack. This means there is no requirement
for a stack map or a stack crawler.

We do not require any form of read or write barrier [38]. This is
achieved by combining a data-race free type system with handling
all RC changes when sending and receiving messages.

While this does mean that data structures are traced when they
are sent and received, it eliminates the need to treat objects with a
local reference count greater than zero as GC roots. Instead, such
objects are simply marked as reachable and need not to be traced
any further. This is a key element of the system: it protects such
objects from collection by the owning actor when some other actor
is in the process of mutating them. This allows heaps to be garbage
collected entirely independently, as mutation in another actor does
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not affect GC. We have not modelled this in our current paper, as
we do not model the tracing of structures, but will describe this in
more detail in further work.

The combination of having no stack when garbage collecting
and garbage collecting each actor’s heap independently means safe-
points [25] are not required. Any actor can GC its own heap without
waiting for a safepoint to be reached.

Independent actor heap collection functions as both a concur-
rent GC mechanism (actors can GC concurrently) and an incre-
mental GC mechanism (actors can GC separately). This allows op-
timisations to both the tracing algorithm and the memory allocator.

We use a mark-and-don’t-sweep collector [24] that keeps mark
bits, rather than pointers, in the heap data structure. By moving
the mark bit out of the object, object contents are never written to
during GC. Moreover, unreachable objects are not marked or swept.
These two approaches together minimise cache pollution, eliminate
page misses on unreachable objects, and reduce the trace phase to
O(reachable) rather than O(reachable + unreachable).

This approach also results in a memory allocator that works like
a bump allocator [24]. No best/first-fit search is required, and free
list maintenance is handled by page (or group of pages) rather than
by object. Memory allocation cost is amortised to the cost of a
single find-first-set bit operation.

These optimisations are made possible because independent
actor heap collection guarantees mutation does not affect either
tracing or allocation semantics.

This protocol was implemented in the Pony compiler which
was benchmarked against other actor-model languages with the
CAF [13] benchmark suite [1] and against MPI with HPC Chal-
lenge LINPACK GUPS [2]. We now report the results of these ex-
periments taken from [6]. Benchmarking was done on a 12-core
2.3 GHz Opteron 6338P with 64 GB of memory across 2 NUMA
nodes. The results shown are the average of 100 runs.

The first benchmark, shown in Figure 3 shows the performance
of creating large numbers of actors. In particular, the performance
of garbage collecting the actors [17] and passive objects. It shows
better results than the other existing systems (except CAF which is
not garbage collected).

In Figure 4, we can see the performance of a highly contended
mailbox, where additional cores tend to degrade performance. The
third experiment, illustrated in Figure 5, shows performance of a
mixed case, where a heavy message load is combined with brute
force factorisation of large integers. Finally, Figure 6 shows a
benchmark that is not tailored for actors: we take the GUPS bench-
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mark from high-performance computing, which tests random ac-
cess memory subsystem performance, and demonstrate that Pony’s
implementation is significantly faster than the highly optimised
MPI implementation.

7. Conclusions and Further Work
Pony is a concurrent and distributed object-oriented, actor-based
programming language which supports (passive) objects. One of
the features of Pony is its message-based garbage collection mecha-
nism. This allows the collection of dead actors, as presented in [17].
We have presented the garbage collection for passive objects in
Pony. We have formally defined what constitutes a runtime config-
uration, with respect to the data structures that the garbage collector
maintains, and in particular what constitutes a well-formed config-
uration which allows the deallocation of passive objects. Moreover,
we informally describe how to keep a runtime configuration consis-
tent when certain operations are executed.

We plan to give a full formal model, including a model of the
heap and reachability, and proof of soundness. We want to inves-
tigate in how far we can weaken the requirements for causality.
Finally, we want to adapt ORCA to cater for applications to further
language features such as futures or promises.
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tive actors: a scalable software platform for distributed, heterogeneous
environments. In Proceedings of the 2013 workshop on Program-
ming based on actors, agents, and decentralized control, pages 87–96.
ACM, 2013.
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