
Towards a full multiple-inheritance virtual machine

Roland Ducournau
LIRMM – Université Montpellier 2, France

ducournau@lirmm.fr

Floréal Morandat
LIRMM – Université Montpellier 2, France

morandat@lirmm.fr

ABSTRACT
Late binding and subtyping create run-time overhead for
object-oriented languages, especially in the context of both
multiple inheritance and dynamic loading, for instance for
Java interfaces. It is, however, generally agreed that the
efficiency of Java and .Net systems comes from the fact
that, in these languages, classes are in single inheritance. In
this paper, we present the abstract architecture of a virtual
machine for unrestricted multiple-inheritance, which should
provide the same runtime efficiency as Java and .Net.

Categories and Subject Descriptors
D.3.2 [Programming languages]: Language classificat-
ions—object-oriented languages, C#, Java, Scala, Prm;
D.3.3 [Programming languages]: Language Constructs
and Features—classes and objects, inheritance;
D.3.4 [Programming languages]: Processors—compilers,
run-time environments; E.2 [Data]: Data Storage Repre-
sentations—object representations

General Terms
Experimentation, Languages, Measurement, Performance

Keywords
adaptive compiler, closed-world assumption, dynamic load-
ing, late binding, method tables, multiple inheritance, open-
world assumption, perfect hashing, subtype test, virtual ma-
chine

1. INTRODUCTION
Multiple inheritance is generally considered as a cause of

multiple difficulties from the standpoints of both semantics
and runtime efficiency. Multiple subtyping, i.e. Java-like
interfaces, was mostly proposed as a response to these diffi-
culties. In this paper, we do not address the semantic aspect,
which is discussed in [Ducournau and Privat, 2008], and we
focus on the efficiency aspect.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MASPEGHI/ICOOOLPS ’10 Maribor, Slovenia
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Multiple inheritance impacts on runtime efficiency through
three mechanisms that are typical of object-oriented pro-
gramming, namely method invocation, attribute access and
subtype testing. All three mechanisms depend on the dy-
namic type of the receiver. Moreover, in a dynamic-loading
setting which entails the open world assumption, multiple in-
heritance yields compile-time uncertainty about the position
of the accessed method, attribute or supertype.

In this paper, we present the abstract architecture of a vir-
tual machine designed for multiple inheritance which should
provide the same runtime efficiency and scalability as Java
and .Net platforms. This proposal is assessed by simulating
class loadings on a class hierarchy based on a real program,
the Prm compiler [Ducournau et al., 2009]. As an example,
the proposed approach could be substituted to the current
Java/.Net implementation of the Scala language [Odersky
et al., 2008], and the language specifications could thus drop
the class/trait distinction which seems to be inessential.

The structure of the paper is as follows. Section 2 presents
the point of object-oriented implementation, and describes
the two techniques that underly our proposal, namely single-
subtyping implementation and perfect class hashing [Ducour-
nau, 2008]. The next section describes the proposed virtual-
machine architecture which is an adaptation to dynamic
loading of the double compilation proposed for attribute ac-
cess in [Myers, 1995]. Section 4 then presents a simulation
on the class hierarchy of the Prm compiler. Conclusion and
prospects end the paper.

2. OBJECT-ORIENTED IMPLEMENTATION
Implementation techniques are concerned with object rep-

resentation, that is the object layout and the associated data
structures that support method invocation, attribute access
and subtype testing.

2.1 Single-subtyping implementation
In separate compilation of statically typed languages, late

binding is generally implemented with method tables, which
reduce method invocations to calls to pointers to functions
through a small fixed number (usually 2) of extra indirec-
tions. An object is laid out as an attribute table, with a
pointer at the method table. With single inheritance and
single subtyping, when classes are the only types, the class
hierarchy is a tree and the tables implementing a class are
straightforward extensions of those of its single direct super-
class (Figure 1). The resulting implementation respects two
essential invariants: (i) a reference to an object does not
depend on the static type of the reference; (ii) the position

// attribute access
load [object + #attOffset], attVal

// method invocation
load [object + #tableOffset], table
load [table + #methOffset], methAddr
call methAddr

// subtype test
load [object + #tableOffset], table
load [table + #offsetC], idC
comp idC, #targetId
bne #fail
// succeed

meth

Offset

att

Offset

methAddr

class

Offset

object

object

method table

attVal

table

id

Code sequences for the 3 basic mechanisms and the corre-
sponding diagram of object layout and method table. Point-
ers and pointed values are in Roman type with solid lines,
and offsets are italicized with dotted lines.

Figure 1: Single-subtyping implementation.

of attributes and methods in the table does not depend on
the dynamic type of the object. Therefore, all accesses to
objects are straightforward. This accounts for method invo-
cation and attribute access under the OWA. The efficacy of
this implementation is due to both static typing and single
inheritance. Otherwise, the same kind of complication may
occur when the same property name is at different places in
unrelated classes.

The technique proposed by Cohen [1991] for subtype test-
ing also works under the OWA. It involves assigning a unique
ID to each class, together with an invariant position in the
method table, in such a way that an object x is an instance
of the class C if and only if the method table of x contains
the class ID of C, at a position uniquely determined by C.
Readers are referred to [Ducournau, 2008] for implementa-
tion details that avoid bound checks and indirections.

In this implementation, the total table size is roughly lin-
ear in the cardinality of the specialization relationship, i.e.
linear in the number of pairs (x, y) such that x is a sub-
type (subclass) of y (x � y). Cohen’s display uses exactly
one entry per such pair, and the total table size is linear
if one assumes that methods and attributes are uniformly
introduced in classes. Moreover, the size occupied by a class
is also linear in the number of its superclasses. More gener-
ally, linearity in the number of classes is actually not possible
since efficient implementation requires some compilation of
inheritance, i.e. some superclass data must be copied in the
tables for subclasses. Therefore, usual implementations are,
in the worst case (i.e. deep rather than broad class hierar-
chies), quadratic in the number of classes, but linear in the
size of the inheritance relationship.

There are almost no SST languages, but this implemen-

tation is that of Java and .Net for class representation and
class-typed invocations.

2.2 Perfect hashing
In [Ducournau, 2008], we proposed a new technique based

on perfect hashing for subtype testing in a dynamic load-
ing setting. The problem can be formalized as follows. Let
(X,�) be a partial order that represents a class hierarchy,
namely X is a set of classes and� the specialization relation-
ship that supports inheritance. The subtype test amounts
to checking at run-time that a class c is a superclass of a
class d, i.e. d � c. Usually d is the dynamic type of some
object and the programmer or compiler wants to check that
this object is actually an instance of c. Classes are loaded at
run-time in some total order that must be a linear extension
(aka topological sorting) of (X,�)—that is, when d ≺ c, c
must be loaded before d.

The perfect hashing principle is as follows. When a class
c is loaded, a unique identifier idc is associated with it and
the set Ic = {idd | c � d} of the identifiers of all its su-
perclasses is known. If needed, yet unloaded superclasses
are recursively loaded. Hence, c � d iff idd ∈ Ic. This
set Ic is immutable, hence it can be hashed with some per-
fect hashing function hc, i.e. a hashing function that is in-
jective on Ic [Czech et al., 1997]. The previous condition
becomes c � d iff htc[hc(idd)] = idd, whereby htc denotes
the hashtable of c. The technique is incremental since all
hashtables are immutable and the computation of htc de-
pends only on Ic. The perfect hashing functions hc are such
that hc(x) = hash(x,Hc), whereby the hashtable size Hc is
defined as the least integer such that hc is injective on Ic.
Two hash functions were considered, namely modulus and
bit-wise and1. A recent study led us to consider that the
latter must be preferred [Ducournau and Morandat, 2010].

In a static typing setting, the technique can also be applied
to method invocation and we did propose, in the aforemen-
tioned article, an application to Java interfaces. For this,
the hashtable associates, with each implemented interface,
the offset of the group of methods that are introduced by
the interface. Of course, this easily generalizes to method
invocation in full multiple inheritance. Figure 2 recalls the
precise implementation in this context. The method table
is bidirectional. Positive offsets involve the method table it-
self, organized as with single inheritance, whereby methods
are grouped by introduction classes and these groups are ar-
bitrarily ordered. Negative offsets consist of the hashtable,
which contains, for each superclass, the offset of the group
of methods it introduces. The object header points at its
method table by the table pointer. #hashingOffset is the
position of the hash parameter (h) and #htOffset is the be-
ginning of the hashtable. At a position hv in the hashtable,
a two-fold entry is depicted that contains both the super-
class ID, that must be compared to the target class ID, and
the offset iOffset of the group of methods introduced by
the superclass that introduces the considered method. The
table contains, at the position #methodOffset determined
by the considered method in the method group, the address
of the function that must be invoked.

The efficiency of PH is rather good. From the time stand-
point, experiments in Prm show that the PH overhead is real
but low [Ducournau et al., 2009]. From the memory occu-
pation standpoint, exhaustive random simulations on large-

1 With and, the exact function maps x to and(x,Hc − 1).

// preamble
load [object + #tableOffset], table
load [table + #hashingOffset], h
and #classId, h, hv
sub table, hv, htable

// method invocation
load [htable +#htOffset], itable
load [itable +#methOffset], methAddr
call method

// subtype testing
load [htable +#htOffset-fieldLen], id
comp #classId, id
bne #fail
// succeed

h

method tablehashtable

offset
method

hashing
offset

table

hv

htOffset

itableid

methAddr

The preamble is common to both mechanisms. The grey
rectangle denotes the group of methods introduced by the
considered class.

Figure 2: Perfect hashing

scale hierarchies show that a variant called perfect class num-
bering has a quasi-linear behaviour [Ducournau and Moran-
dat, 2010]. To our knowledge, PH is the only constant-time
technique that allows for both multiple inheritance and dy-
namic loading at reasonable spatial cost and applies to both
method invocation and subtype testing.

2.3 Accessor simulation (AS)
An accessor is a method that either reads or writes an

attribute. True accessors require a method call for each ac-
cess, which can be inefficient. However, a class can simulate
accessors by replacing the method address in the method
table with the attribute offset. This approach is called field
dispatching by [Zibin and Gil, 2003]. Another improvement
is to group attributes together in the method table when
they are introduced by the same class. Then one can sub-
stitute, for their different offsets, the single relative position
of the attribute group, stored in the method table at an
invariant position, i.e. at the class offset with Cohen’s test
(Fig. 3) [Myers, 1995]. With PH, the attribute-group offset
is associated with the class ID and method-group offset in
the hashtable, yielding 3-fold table entries.

Accessor simulation is a generic approach to attribute ac-
cess which works with any method invocation technique,
and makes it work in a full multiple-inheritance setting;
only grouping can be conditioned by static typing, since
attributes must be partitioned by the classes which intro-
duce them. Among the various implementation techniques,
some apply only to method invocation and subtype testing,
e.g. perfect hashing. Hence, these techniques can be used
for Java interface implementation. Accessor simulation is a
way of applying them to full multiple inheritance.

// attribute access
load [object + #tableOffset], table
load [table + #classOffset+fieldLen], attrGroupOffset
add object, attrGroupOffset, attgr,
load [attgr + #attrOffset], value

Offset
attr

attrGroup
Offsetid

class

Offset
class

Offset
attrGroup

method table

table

valueobject

object layout

The diagram depicts the precise object representation with
accessor simulation coupled with Cohen’s test, to be com-
pared with Fig. 1. The offset of the group of attributes in-
troduced by a class (attrGroupOffset) is associated with its
class ID in the method table and the position of an attribute
is now determined by an invariant offset (attrOffset) w.r.t.
this attribute group.

Figure 3: Accessor simulation with Cohen’s test

3. VIRTUAL MACHINE SPECIFICATIONS
In our abstract view, a virtual machine is a runtime system

which performs the following tasks: (i) it loads code units
that generally represent yet unloaded classes; (ii) it com-
putes the object representation for the newly loaded classes;
(iii) it compiles or recompiles pieces of code (generally meth-
ods); and, finally, (iv) it runs the compiled code which can,
cyclically, trigger class loadings. Furthermore, compilation
is both lazy and adaptive. Laziness is out of the scope of
this paper, but adaptiveness is a key feature. Each piece
of code is compiled under a provisory closed-world assump-
tion (CWA) which allows for efficient code sequences for the
invocation of object-oriented mechanisms. In contrast, we
only consider object representations that do not need any
recomputation, hence which must be computed under the
open world assumption (OWA).

Overall, the virtual machine specifications consist of two
parts:

• an object representation that supports two kinds of al-
ternative implementations for mechanism invocation:
(i) a general background implementation is required to
work in any situation and to present very good worst-
case efficiency; (ii) one or more optimized implementa-
tions represent shortcuts with excellent efficiency, but
they do not work everywhere and everytime;

• a protocol for selecting the appropriate implementa-
tion and propagating possible recompilations, when
the compiler must switch from an optimized imple-
mentation to a less optimized one.

3.1 Object representation
The general idea is to use perfect hashing as the under-

lying object representation, in such a way that all mech-
anisms could be invoked through PH. PH is thus coupled
with accessor simulation for attribute access. However, the
single-subtyping code can be used when the current situa-
tion verifies the position invariant, i.e. when the receiver’s

static type has the same position in all its subclasses.
With PH, attributes and methods are grouped together

in object layouts and method tables according to their in-
troduction class. When a class is loaded, its attribute and
method groups are determined according to its superclasses
and ordered according to an algorithm which will be de-
tailed hereafter. The resulting order is immutable, i.e. it
will not be changed by possible further recompilations. Per-
fect class hashing is also computed and the complete method
table is then allocated and filled. The method-table struc-
ture is thus immutable, and only the entries corresponding
to method addresses can be further changed.

In contrast, computing the order associated with a newly
loaded class, say C, may assign to some superclass of C, say
B, a position that differs from the single previous position
of B. This triggers some recompilations in B, when the SST
code that was used in B for some invocations is no longer
sound.

In the following, a self-invocation is a method invoca-
tion or an attribute access either on self, or on a receiver
which is typed by the current class (or a subtype of the
current class, but the considered method or attribute must
have been introduced by the current class). Only self-
invocations can be optimized by this adaptive approach.

When a method definition is compiled, all mechanism in-
vocations are handled in the following ways:

1. subtype testing is implemented with PH;

2. all methods introduced by the hierarchy root (i.e. Any
in Eiffel or Prm, or Object in Java or C#) are in-
voked through the SST implementation; the root has
indeed an immutable position;

3. all self-invocations of methods or attributes are in-
voked through the SST implementation when the con-
sidered method or attribute group has been imple-
mented, so far, at the same position;

4. PH is used for all other methods and attributes.

A particular method definition can use both SST for method
invocation and PH for attribute access, or conversely.

Recompiling a class is required when the positions of its
attribute or method groups have been changed in some sub-
class. It requires to change case-3 invocation sites into case-
4. Only the methods that contain still optimized self-
invocations are concerned, and a method can be recompiled
at most twice, since the recompilation must be done only
the first time the group is moved. However, the approach
does not distinguish between self-invocations of method-
s/attributes introduced by the current class (which have
actually been moved) and self-invocations of methods/at-
tributes introduced in superclasses (which may have not
been moved).

3.2 Protocols and algorithms

Superclass ordering. The efficiency of the approach de-
pends on the superclass ordering, which can be understood
as a linearization, in the sense of multiple-inheritance lin-
earizations [Ducournau and Privat, 2008]. Whereas multiple-
inheritance linearizations must be linear extensions, the pre-
fix condition is here essential. Given a class c, with the set
supc(c) of its direct superclasses, then there must be some

c′ ∈ supc(c) such that the order associated with c′ is a prefix
of the order associated with c. Therefore, the superclasses
of c′ (including c′) will not be moved and do not require any
recompilation. In contrast, the positions of superclasses of
c that are not superclasses of c′ are irrelevant.

In practice, c′ is selected in supc(c) as the class which
maximizes the number of self-invocations that are pre-
sumed to be at a constant position, i.e. the number f(c′) =∑

c′�d wd∗kd, whereby kd is the number of self-invocations
in the method definitions of d, and wd = 1 if d still has a
single position, 0 otherwise.

There is no need for the superclass order to be the same for
methods and attributes, since the hashtable is the only com-
mon point between the two kinds. These heuristics can also
be improved by taking classes that introduce no attributes
or methods into account.

Recompilation protocol. Once a class d has been loaded,
it maintains the following meta-information about its state:

• ad and md that represent the numbers of self-invocations
of attributes and methods in the method definitions of
d, and stand for kd in the above definition of f(c′);

• apd and mpd that represent, respectively, the single
position of the attribute or method group, or a distin-
guished value for multiple positions;

• Ad, Md and AM d that represent sets of methods de-
fined in d and candidates to possible recompilations;
methods in Ad (resp. Md) use the SST implementa-
tion for at least one attribute access (resp. method
invocation), and methods in AM d use SST for both.

When loading a class c, a direct superclass c′ is first se-
lected as previously described. Each superclass d of c that is
not superclass of c′ is then candidate to recompilation, and
the methods in Ad (resp. Md) and AM d are recompiled if the
attribute (resp. method) group has been moved. After re-
compilation, the Ad, Md or AM d sets of recompiled methods
are removed. If recompilation concerns only method invo-
cation (resp. attribute access), the AM d set is then added
to Ad (resp. Md). The algorithm for deciding which meth-
ods must be recompiled is thus straightforward. As in all
adaptive compilers, the recompilation itself can be eager or
lazy.

3.3 Example
Consider a class hierarchy made of a diamond with 4

classes A (the diamond top), B, C and D (the diamond
bottom) that are loaded in this order. When A, B and C
are successively loaded, the hierarchy is a tree, hence each
class has a single position and all self-invocations can use
the SST implementation. When loading D, multiple inher-
itance appears and a direct superclass of D must be se-
lected in {B,C} by computing f(B) and f(C). Suppose
that f(B) > f(C). According to the prefix condition, the
superclass order of D must be (A,B,C,D), and the method
definitions in C that contain self-invocations must be re-
compiled.

4. EVALUATION
The benchmark used in these tests is an abstract descrip-

tion of the class hierarchy of the Prm compiler used in the
testbed presented in [Ducournau et al., 2009].

(a) Method numbers

introduced defined inherited
total avg max total avg max total avg max

2671 4.9 126 4407 8.1 126 43803 80.1 236

(b) Attribute numbers

introduced inherited
total avg max total avg max

623 1.1 29 2588 4.7 31

(c) Invocation numbers

A-S A-O A-* M-R M-S M-ST M-O M-*

4487 26 4513 1599 2778 252 12747 17376

(d) Number of methods according to their
self -invocations

A AM M other total

1640 659 769 1339 4407

(a) Method numbers present total, per-class average and
maximum, and distinguish between whether methods are
introduced, defined or inherited in the class.
(b) The same applies to attributes, apart from the differ-
ences between introduction and definition.
(c) Invocation numbers retain the distinction between the
different kinds made in the benchmark, i.e. root/self-
invocations.
(d) The A, M and AM sets represent methods that contain
self-invocations on attributes, methods or both.

Table 1: Compile-Time statistics

Benchmark. This description follows the same principle
as benchmarks commonly used in the object-oriented im-
plementation community, especially in our previous experi-
ments [Ducournau, 2008, Ducournau and Morandat, 2010],
but is more specific as it includes invocation counts. Each
class is described by the following elements: (i) class name,
(ii) superclass names, (iii) names of introduced attributes,
(iv) names of defined methods followed by the number of
invocations in the method code. Invocation numbers dis-
tinguish between method (M) and attribute (A) invocation.
Method invocations are distinguished according to whether
the method is introduced by the hierarchy root (R), the re-
ceiver is self (S) or typed by the current class (ST), or
otherwise (O). The same is applied to attribute invocations,
except they distinguish only between S and O cases. In our
benchmark, there is indeed no A-ST example, and there are
generally no A-R example in any language. M-R represent
cases that are always optimized, while A-S, M-S and M-
ST represent self-invocations that can yield recompilations,
and A-O and M-O are always unoptimized. The cardinality
of the sets A, M and AM is thus computed for each class.

Compile-Time statistics. Table 1 presents various statis-
tics about (i) the number of attributes and methods, (ii) the
number of invocation sites per invocation kind (A or M; R,
S, ST or O), and (iii) the total sizes of the A, M and AM
sets, i.e. the number of method definitions according to the
kinds of invocations they contain.

Random load-time statistics. Whereas these first statis-
tics are static, i.e. they could be done at compile-time on
the whole hierarchy (under the CWA), the next statistics are
dynamic and they should be done at load-time. Therefore,

(a) Numbers of class and method recompilations

class rcp meth rcp | rcp load

59 60.8 64 229 239.8 247 28 33.1 37

(b) Variable-position self-invocations

variable A-S total variable M-S total

77 77.5 78 4487 261 268.8 278 3030

Each random datum is depicted by its minimum, average
and maximum values over all tested class-loading orders.

Table 2: Load-Time statistics

class loading has been simulated, and class-loading orders
are generated at random as in [Ducournau and Morandat,
2010]. For each class loading, the number of recompiled
classes, recompiled methods, variable-position methods and
attributes, and variable-position invocation sites are com-
puted, and Table 2 depicts the statistics on these numbers
(minimum, average and maximum values).

Discussion. The most interesting numbers are the invoca-
tion numbers (Table 0(c)). As a consequence of a strict en-
capsulation discipline, almost all attribute accesses are self-
invocations, hence can be optimized. In contrast, only 30%
of method invocations are or can be optimized. The ran-
dom simulation (Table 1(b)) shows that only a few percent of
self-invocations cannot be optimized. Therefore the result-
ing program would be as efficient as Java or .Net systems
for attribute access, since more than 98% of attribute access
sites would be optimized. In contrast, only 25% of method
call sites would be optimized, and this would looks like a
Java program making an heavy use of invokeinterface.
By extrapolation from the measures presented in [Ducour-
nau et al., 2009], one can conclude that the proposed ap-
proach should have a runtime efficiency slightly higher than
that of PH coupled with attribute coloring, hence only a few
percent slower than the reference coloring implementation.

The load-time recompilation cost is also interesting. At
most 37 class loadings yield some recompilation on a total of
547 (‘rcp load’ column in Table 1(a)), and these recompila-
tions concern at most 64 classes (‘class rcp’ column) and 247
methods (‘meth rcp’ column), on 3068 methods containing
self-invocations. Recompilation should thus represent less
than 5% of the compilation cost. This is an upper bound,
since compilation would likely be lazy, and recompilation
of a method might be triggered before its first compilation.
Moreover, classes are not loaded one at a time, and several
related classes are often loaded together. It will allow us to
improve the used heuristics with more global optimizations
which should also reduce the recompilation number.

5. CONCLUSION AND PROSPECTS
In this paper, we propose an abstract architecture of a

virtual machine for full multiple-inheritance languages with
dynamic loading. This proposal is based on perfect hash-
ing for the object-representation side, and is derived from
the double compilation proposed by Myers [1995]. However,
Myers’s double compilation was only concerned by attribute
access and the choice was done at link-time under the CWA,
whereas we extended the proposal to method invocation and
applied it at load-time. A first simulation on a real pro-
gram has been done, following the methodology developped

for assessing the PH efficiency. It shows that the result-
ing efficiency should be close to that of multiple-subtyping
languages, from both run-time and load-time standpoints.

This simulation-based approach is a worthwhile alterna-
tive to runtime tests. Developping a runtime system, or a
compiler, is hard work, hence it is far better to first select
suitable techniques by abstract assessment, e.g. simulation.
However, simulation is not only a way to spare time and
pains. Indeed, with dynamic loading, the class-loading order
is crucial, and techniques like PH and recompilations closely
depend on it. Therefore, random simulation may well be the
only way to evaluate their worst-case efficiency. In contrast,
runtime tests often represent only best-case assessments.

Of course, the adaptive compiler of an object-oriented vir-
tual machine must include many other optimizations, but
they are independent of the multiple-inheritance feature.
For instance, a key optimization amounts to restricting the
PH use to the method-invocation sites that actually require
it. Monomorphic call sites should thus be identified at compile-
time, and provisionnally considered as static calls. This can
be done in two ways: (i) the method call can be generated
as a static call, and the compiled method is memorized as a
possible recompilation for the time when the called method
will become polymorphic; (ii) the method call can be gen-
erated as a static call to a thunk which statically jumps to
the called method, and this thunk is memorized as a pos-
sible recompilation. This involves a tradeoff between load-
and run-time efficiencies. In the former case, the increase in
method recompilation number might be high. In the latter
case, a thunk with a static jump should be more efficient
than an inlined PH sequence, whereas a thunk adds extra
overhead when it consists of a PH sequence. Hence, the
number of thunks that eventually consist of a PH sequence
must be estimated. Our next experimentation will be a sim-
ulation of both approaches, in order to provide an abstract
assessment of their respective efficiencies.

References
N. H. Cohen. Type-extension type tests can be performed

in constant time. ACM Trans. Program. Lang. Syst., 13
(4):626–629, 1991.

Z. J. Czech, G. Havas, and B. S. Majewski. Perfect hashing.
Theor. Comput. Sci., 182(1-2):1–143, 1997.

R. Ducournau. Perfect hashing as an almost perfect subtype
test. ACM Trans. Program. Lang. Syst., 30(6):1–56, 2008.

R. Ducournau and F. Morandat. Perfect class hashing and
numbering for object-oriented implementation. Research
Report LIRMM-10012, Université Montpellier 2, 2010.

R. Ducournau and J. Privat. Metamodeling semantics of
multiple inheritance. Research Report LIRMM-08017,
Université Montpellier 2, 2008.

R. Ducournau, F. Morandat, and J. Privat. Empirical as-
sessment of object-oriented implementations with multi-
ple inheritance and static typing. In Gary T. Leavens,
editor, Proc. OOPSLA’09, SIGPLAN Not. 44(10), pages
41–60. ACM, 2009.

A. Myers. Bidirectional object layout for separate compila-
tion. In Proc. OOPSLA’95, SIGPLAN Not. 30(10), pages
124–139. ACM, 1995.

Martin Odersky, Lex Spoon, and Bill Venners. Programming
in Scala, A comprehensive step-by-step guide. Artima,
2008.

Y. Zibin and J. Gil. Two-dimensional bi-directional object
layout. In L. Cardelli, editor, Proc. ECOOP’2003, LNCS
2743, pages 329–350. Springer, 2003.

	Introduction
	Object-oriented implementation
	Single-subtyping implementation
	Perfect hashing
	Accessor simulation (AS)

	Virtual machine specifications
	Object representation
	Protocols and algorithms
	Example

	Evaluation
	Conclusion and prospects

