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Abstract

In a recent paper de Alfaro, Henzinger and Majumdar [8] observed that discounting
successive payments, the procedure that is employed in the classical stochastic game
theory since the seminal paper of Shapley [16], is also pertinent in the context of
much more recent theory of stochastic parity games [7,6,5] which were proposed as
a tool for verification of probabilistic systems.

We show that, surprisingly perhaps, the particular discounting used in [8] is in
fact very close to the original ideas of Shapley. This observation allows to realize
that the specific discounting of [8] suffers in fact from some needless restrictions.
We advocate that dropping the constraints imposed in [8] leads to a more general
and elegant theory that includes parity and mean payoff games as particular limit
cases.
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1 Stochastic Games

The proper framework for our presentation are stochastic games introduced
by Shapley [16].

Such games are played by two players 4 : the player 0 and the player 1. We
are given a finite set 5 of states S, for each state s ∈ S we have two finite sets
of actions : A(s) – the actions of player 0 and B(s) the set of actions of player
1. If the system is at the state s ∈ S both players choose simultaneously and
independently actions a ∈ A(s) and b ∈ B(s) respectively and the system goes
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4 We consider here exclusively two players’ zero sum games even if some definitions can
obviously be stated in the broader framework of many players non zero sum games.
5 Finiteness of the state space is not really necessary.
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to a new state s′ with the probability p(s′ | s, a, b) that, as we can see, depends
on the current state and the chosen actions. We suppose that the conditional
probabilities are correctly and consistently defined, i.e., 0 ≤ p(s′ | s, a, b) ≤ 1
and

∑
s′∈S p(s′ | s, a, b) = 1.

A play in such a game is an infinite sequence

p = (s0, a0, b0), (s1, a1, b1), (s2, a2, b2), . . .

of triples (si, ai, bi) belonging to the set

T = {(s, a, b) | s ∈ S and a ∈ A(s), b ∈ B(s) }

whose elements will be called transitions. Intuitively, the play p describes the
sequence of the visited states and the actions chosen by both players at each
stage i of the game.

A payoff mapping u maps each possible play p to a real number u(p) —
the payment received by player 0 from player 1 resulting from the play p. The
obvious aim of 0 is to play in a way that maximizes his gain while player 1
tries to minimize his loss. Both players use strategies, that indicate how they
should play at each stage of a game, i.e., which available action will be chosen.
In general the choice of the next action can depend on the past history and
can be probabilistic in nature, i.e., strategies provide a conditional probability
distribution over the actions that are available at the current stage, see any of
the following textbooks and monographs [18,10,19,17] for a formal definition.
Fixing the strategies σ of player 0 and τ of player 1 and an initial state s
yields a unique probability measure µs,σ,τ over the Borel sets of plays starting
at s. Now we can state more formally that the aim of player 0 is to choose, if
possible, a strategy maximizing his expected payment

Es,σ,τ (u) =

∫
u(p)µs,σ,τ (dp)

where the integral is taken over the set of all plays p starting at s (we assume
tacitly that u is integrable).

Varying the payment mapping u we obtain different classes of stochastic
games.

We say that a game starting at s has a value for a payment map u if

sup
σ

inf
τ
Es,σ,τ (u) = inf

τ
sup

σ
Es,σ,τ (u),

where σ and τ range over all strategies of both players. The equation above
means that both players have ε-optimal strategies.

There are two simpler but important subclasses of stochastic games.

In perfect information stochastic games the set S of states is partitioned
onto the sets S0 and S1 of states of player 0 and player 1 respectively. For the
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states of Si belonging to player i the set of actions available to his adversary
contains just one element. Such games allow a description simpler than that
of general stochastic games. We can assume that with each state s there is
associated a finite set A(s) of actions. When we are at the state s the owner
i of s (s ∈ Si) choses an action a ∈ A(s) to execute and the execution of a
leads to a new state s′ ∈ S with a fixed probability p(s′ | s, a). Again we
assume that p(· | s, a, b) is a fixed conditional probability distribution with∑

s′∈S p(s′ | s, a) = 1 for all s and a ∈ A(s).

Yet even simpler class of games is composed of deterministic games. This
are perfect information games where for each state s and each action a ∈ A(s)
there is one state s′ such that p(s′ | s, a) = 1, i.e., the choice of a determines
unambiguously the next state.

2 Pieces of the Puzzle

Different types of game models share the same framework described in the
previous section and differ only by their payoff mappings.

2.1 Mean-payoff and Discounted Games

Let us suppose that for each transition (s, a, b) ∈ T we have a real number
r(s, a, b) — a one day payoff.

In the mean payoff games we look at the long run mean value of one day
payoffs. For a play p = (s0, a0, b0), (s1, a1, b1), (s2, a2, b2), . . . let r = (ri)

∞
i=0

be the sequence of corresponding one day rewards (ri = r(si, ai, bi)) and
σn(r) = 1

n+1

∑n
i=0 ri their mean value over the first n + 1 days. Since the

limit limn→∞ σn(r) need not exist we consider either upper or lower limits:

lim sup
n→∞

σn(r) = lim
n→∞

sup
i≥n

σi(r) and lim inf
n→∞

σn(r) = lim
n→∞

inf
i≥n

σi(r)

and take one of them as the payment umean(p) corresponding to the play p.

In discounted games we fix a discount factor λ ∈ (0; 1) and the payoff of
the play p = (s0, a0, b0), (s1, a1, b1), (s2, a2, b2), . . . is given by

uλ(p) = (1− λ)
∞∑
i=0

riλ
i, where ri = r(si, ai, bi). (1)

Shapley [16] showed that discounted games have values and that both
players have optimal positional strategies. Bewley and Kohlberg [1,2,3] showed
that the limit of the value of a discounted game exists as λ ↗ 1. Subsequently
Mertens and Neyman [12] proved that this limit gives in fact the value of the
mean payoff stochastic game. The proofs of the results of Bewley, Kohlberg,
Mertens and Neyman are difficult [10].
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2.2 Parity Games and How to Discount Them

Let us recall that parity games were first defined in the framework of de-
terministic games in Emerson and Jutla [9] (and Mostowski[13]) with two
applications: the complementation problem for automata over infinite trees
and modal µ-calculus.

Stochastic parity games were introduced and investigated in detail in a
series of paper by de Alfaro et al. [6,5,7]. The last of these papers proves, by
means of µ-calculus, that such games have a value. In stochastic parity games
the one day rewards, that are sometimes called colors in this setting, are non
negative integers, r(s, a, b) ∈ N, (s, a, b) ∈ T , and the payoff of the play
p = (s0, a0, b0), (s1, a1, b1), (s2, a2, b2), . . . is given by

uparity(p) = (lim sup ri) mod 2, where ri = r(si, ai, bi).

Thus uparity(p) is either 0 or 1 depending on the parity of the maximal one day
payoff visited infinitely often 6 . Although there are many apparent similarities
between mean payoff and parity games, especially in the deterministic case,
[4,15], the exact relation between these two types of games remained elusive.
In part at least this was due to the absence of appropriate discounted parity
games. In fact, one of the most striking features of mean payoff games is the
possibility of approximating them by discounted games. Therefore it seems
that, unless we find discounted counterpart for parity games, the analogies
between parity and mean payoff games should be considered as superfluous.

It turns out, however, that discounted version of parity games has already
been discovered by de Alfaro, Henzinger and Majumdar [8]. More exactly, the
paper [8] deals mainly with discounted µ-calculus and the references to games
are cursory and concern only the simplest cases like reachability, safety and
Büchi games. Probably this is the reason why the potential residing in this
approach was not fully exploited up to now. In fact it seems rather improbable
to unify mean payoff and parity games through µ-calculus. Stochastic mean
payoff games need much more sophisticated tools and their theory is related
to the theory of nonexpansive mappings [14], that, in general, may have no
fixed points. Therefore game theory seems to offer a broader perspective than
µ-calculus. The first task is then to translate discounted µ-calculus to games,
i.e., to provide an appropriate payoff mapping for infinite plays. There is no
need to provide the corresponding formula immediately since we can realize
quickly that the payoff mapping obtained by this translation is just a very
special case of the discounted payoff considered originally by Shapley [16].

More precisely, Shapley [16] considered total payoff stochastic games where
for each state s ∈ S there is a fixed probability α(s) that the game stops when
visiting s. As it is well-known (and can be seen easily) the expected total

6 Usually, one day payoffs or colors used in parity games are associated with states, i.e., it
is assumed that each state s ∈ S is colored by r(s) ∈ N. We prefer to color the “transitions”
in order to allow a more uniform setting for parity/mean payoff/discounted games.
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payoff under the stopping condition is the same as the expected payoff for
infinite non stopping games where each passage though a state s results in
discounting all subsequent one day payoffs by the factor λ(s) = 1 − α(s).
Thus Shapley games can be seen as games where the payoff of an infinite play
p = (s0, a0, b0), (s1, a1, b1), (s2, a2, b2), . . . is given by

uShapley(p) =
∞∑

n=0

λ0 . . . λnrn, where ∀i ∈ N, λi = λ(si) and ri = r(si, ai, bi).

(2)
The idea of many different discount factors was abandoned in all subsequent
papers and textbooks relating discounted games since it turned out essentially
useless and many discount factors add only unnecessary clutter. It is the
formula (1), with one discount factor, that is universally applied.

However, as observed in [8], many different discount factors are essential
for discounting parity games. But the formula (2) is inappropriate when we
want to investigate the limit payment as various discount factors tend to 1.
To this end we should first amend (2) and add to it supplementary factors of
the form (1− λi). This yields our final multi-discount payment mapping.

Let λ be a mapping that for each transition (s, a, b) gives a discount factor
λ(s, a, b) ∈ (0; 1) (which can be different for different transitions) and let
r(s, a, b) ∈ R be, as previously, the corresponding one day reward. For a play
p = (s0, a0, b0), (s1, a1, b1), (s2, a2, b2), . . . we set ∀i ∈ N, λi = λ(si, ai, bi) and
ri = r(si, ai, bi). Then multi-discount payoff for p is given by

umulti(p) =
∞∑

n=0

(1− λn)λ0 · · ·λn−1rn. (3)

The discounted µ-calculus of de Alfaro et al.[8] corresponds in fact to the
payoff (3) with the additional constraint:

(A) the one day rewards r(s, a, b) take only the values 0 and 1.

Yet another restriction appears in [8] when the limit of the multi-discount
payoff is considered with various discount factors tending to 1. To explain it
precisely we should change first the semantics of discounted factors. Instead
of supposing that λ maps the transitions to fixed real numbers from the in-
terval (0; 1) we shall assume that there is a finite set Λ of discount variables
or parameters and that λ is a mapping from the set of transitions into the
set Λ of variables, with different transitions that can be mapped to the same
variable. Then the multi-discount payment umulti(p) can be viewed as a func-
tion of the variables Λ and we can examine what happens if the variables of Λ
tend to 1. When investigating such limits [8] imposes an additional condition
restricting syntactically the occurrences of discount factors in µ-calculus for-
mulas. Roughly speaking, in the game framework this restriction translates
to the following condition:

(B) if two transitions are mapped to the same discount variable then the one
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day rewards for these transitions are also equal, i.e.,
for all (s′, a′, b′), (s, a, b) ∈ T ,
if λ(s′, a′, b′) = λ(s, a, b) ∈ Λ then r(s′, a′, b′) = r(s, a, b).

It turns out, however, that the most interesting things happen precisely
when we relax either (A) or (B) or both these restrictions and examine (3)
when discount variables tend to 1 in some order. This leads in the limit to
several new games that generalize either parity or mean payoff games or both
of them. This approach turns out to be very fruitful, we can profit largely
from the accumulated knowledge concerning classical stochastic games [10] to
establish effortlessly results about parity games and their extensions. On the
other hand, this method suggests also how to define “prioritized” versions of
classical stochastic games which can be of some interest for game theory. This
subject is developed extensively in [11].
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