Parity and Exploration Games on Infinite
Graphs

Hugo Gimbert

Université Paris 7, LIAFA, case 7014
2, place Jussieu
75251 Paris Cedex 05, France

Hugo.Gimbert@liafa. jussieu.fr

Abstract. This paper examines two players’ turn-based perfect-information
games played on infinite graphs. Our attention is focused on the classes
of games where winning conditions are boolean combinations of the fol-
lowing two conditions: (1) the first one states that an infinite play is
won by player 0 if during the play infinitely many different vertices were
visited, (2) the second one is the well known parity condition generalized
to a countable number of priorities.

We show that, in most cases, both players have positional winning strate-
gies and we characterize their respective winning sets. In the special case
of pushdown graphs, we use these results to show that the sets of win-
ning positions are regular and we show how to compute them as well as
positional winning strategies in exponential time.

1 Introduction

Two-player games played on graphs have attracted a lot of attention in computer
science. In verification of reactive systems it is natural to see the interactions
between a system and its environment as a two-person game [19,9], in control
theory the problem of controller synthesis amounts often to finding a winning
strategy in an associated game [1].

Depending on the nature of the examined systems various types of two-player
games are considered. The interactions between players can be turn-based [23,19]
or concurrent [7,8], finite like in reachability games or infinite like in parity or
Muller games, the players can have perfect or imperfect information about the
play. Moreover the transitions may be deterministic or stochastic [6,8] and finally
the system itself can be can be finite or infinite.

Another source of diversity comes from players’ objectives, i.e. winning con-
ditions.

Our work has as a framework turn-based perfect information infinite games
on pushdown graphs. The vertices of such graphs correspond to configurations of
a pushdown automaton and edges are induced by push-down automaton transi-
tions. The interest in such games comes, at least in part, from practical consider-
ations, pushdown systems can model, to some extent, recursive procedure calls.
On the other hand, pushdown graphs are one of the simplest class of infinite

graphs that admit non trivial positive decidability results and since the seminal
paper of Muller and Schupp [14] many other problems are shown to be decidable
for this class [2,13,5,18,3,22,4,17].

Let us describe briefly a play of such a game. The set of vertices is parti-
tioned into two sets: vertices belonging to player 0 and vertices belonging to his
adversary 1. Initially, a pebble is placed on a vertex. At each turn the owner
of the vertex with the pebble chooses a successor vertex and moves the pebble
onto it. Then the owner of this new vertex proceeds in the same way, and so on.
The successive pebble positions form an infinite path in the graph, this is the
resulting play.

In this framework, different objectives have been studied. Such an objective
is described in general as the set of infinite plays that are winning for player 0,
and it is called a winning condition. A lot of attention has been given to the case
where this set is regular, which gives rise to Miiller and parity winning conditions
[23,22,19] which lie on the level Ay of the Borel hierarchy. However, recently
Cachat et al. [5], presented a new winning condition of Borel complexity X3 which
still remains decidable. This Y3-condition specifies that player 0 wins a play if
there is no vertex visited infinitely often. Yet another condition, unboundedness,
was introduced by Bouquet et al. [3]. The unboundedness condition states that
player 0 wins a play if the corresponding sequence of stack heights is unbounded.
Obviously the conditions of [5] and [3] are tightly related, if no configuration of
the push-down system is visited infinitely often the the stack is unbounded. The
converse can be established as well if the winning strategies are memoryless, i.e.
do not depend on the past.

In this paper, we first transfer the condition of [3] to arbitrary infinite graphs
of finite degree. In the context of arbitrary infinite graphs we examine Exploration
condition which states that a play is won by player 0 if the pebble visits an
infinite number of different vertices. Obviously for the particular case of push-
down graphs this gives the same condition as [3]. In fact we go a step further
and consider the games whose winning conditions are boolean combinations of
Exploration condition and of the classical parity condition. We note respectively
ExpU Parity and Ezp N Parity the games obtained by taking the union and the
intersection of Exploration and Parity conditions.

We also consider a particular extension of the classical Parity condition to
the case with an infinite number of priorities and denote it Parity,, (see also
[11] for another approach to parity games with an infinity of priorities).

We prove the following results in the context of the games over any infinite
graphs:

— Both players have positional winning strategies for the game with the win-
ning condition Fzp U Parity, including the case where there is an infinite
number of priorities.

— In the case where there are finitely many priorities, player 1 has also a
winning positional strategy in the game where the winning condition for
player 0 is of type Ezp N Parity. Moreover, we can easily characterize the
winning set of player 0.

Even if general results concerning winning strategies over arbitrary infinite
graphs are of some interest we are much more interested in decidability results
for the special case of pushdown graphs. In the case where the game graph is
a pushdown graph, we prove that the sets of winning configurations (positions)
for player 0 (and thus also for player 1) are regular subsets of QI'™* where @
is the set of states of pushdown system and I" is the stack alphabet for both
types of games Exp U Parity and Exp N Parity. We provide also an algorithm
for computing a Biichi automaton with 20(¢1Q"+I') states recognizing those
winning sets, where d is the number of priorities of the underlying parity game
and @ and I' are as stated above. Moreover, we show that for both games and
both players, the set of winning positional strategies is regular and recognized
by alternating Biichi automata with O(d|Q|? + |I'|) states.

These results constitute an extension of the results of [5,3,22,18,20]: The pa-
pers [22,20,18] examine only Parity conditions with a finite number of priorities
for pushdown games. Bouquet et al. [3] were able to extend the decidability
results to the games with the winning condition of the form FExp U Buchi or
Ezp N Buchi, i.e. union and intersections of Biichi condition with Exploration
condition. However this class of conditions is not closed under boolean opera-
tions (intersecting Biichi and co-Biichi conditions with an Exploration condition
is not in this class). In our paper we go even further since we allow boolean
combinations of Ezp conditions with parity conditions. Since parity conditions,
after appropriate transformations, are closed under boolean operations we show
in fact that it is decidable to determine a winner for the smallest class of condi-
tions containing Exploration conditions and Biichi conditions and closed under
finite boolean operations.

For computing the winning sets and the winning strategies, we make use of
tree automata techniques close to the one originated in the paper of Vardi [20]
and applied in [16,12]. This is a radical departure from the techniques applied
in [21,22,3,18] which are based on game-reductions.

This paper is organized as follows. In the first part, we introduce some basic
definitions and the notions of Exploration and Parity games. In the second part,
we prove the results concerning the winning strategies for the games Exp U
Parity,, and EzpN Parity, and make some comments about the Parity,, game. In
the third part, we describe the construction of automata computing the winning
sets and the winning positional strategies. Due to space limitation, most proofs
are omitted and can be found in the full version [10].

2 Parity and Exploration Games

In this section, we present basic notions about games and we define different
winning conditions.

2.1 Generalities

The games we study are played on oriented graphs of finite degree, with no
dead-ends, whose vertices sets is partitioned between the vertices of player 0

and the vertices of player 1. Such a graph is called an arena. At the beginning
of a play, a pebble is put on a vertex. During the play, the owner of the vertex
with the pebble moves it to one of the successors vertices. A play is the infinite
path visited by the pebble. A winning condition determines which player is the
winner. Here follows the formal description of these notions.

Notations. Let G = (V, E) be an oriented graph with the set E C V x V of
edges. Given a vertex v, vE denotes the set of successors of v, vE = {w € V :
(v,w) € E}, whereas Ev is the set of predecessors of v. For a set H C E of
edges, Dom(H), the domain of H, denotes the set of the vertices adjacent to
edges of H.

Parity arenas. An arena is a tuple (V, Vg, V1, E), where (V, E) is a graph of finite
degree with no dead-ends and (Vp, V1) is a partition of V. Let ¢ € {0,1} be a
player. V; is the set of vertices of player i. We will often say that G = (V, E)
itself is an arena, when the partition (Vp, V1) is obvious. An infinite path in G is
called a play, whereas a finite path in G is called a finite play. When the vertices
of G are labeled with natural numbers with a map ¢ : V — N, @ is said to be a
parity arena.

Winning Conditions and Games. A winning condition determines the winner of
a play. Formally, it is a subset Vic C V¢ of the set of infinite plays. A game is
a couple (G, Vic) made of an arena and a winning condition. Often, when the
arena G is obvious, we will say that Vic itself is a game. A play p € V¥ is won
by player 0 if p € Vic. Otherwise, if p ¢ Vic, it is said to be won by player 1.
Vic is said to be concatenation-closed if V* Vic = Vic.

Strategies, Winning Strategies and Winning Sets. Depending on the finite path
followed by the pebble, a strategy allows a player to choose between a restricted
number of successor vertices. Let ¢ € {0,1} be a player. Formally, a strategy for
player i is a map o, which associates to any finite play v - - - v, such that v,, € V;
a nonempty subset o(vg...v,) C v, E. A play p = (v)nen € V¥ is said to be
consistent with o if, for any n such that v, € V;, v,qy1 € o(vg---v,). Given a
subset X C V of the vertices, A strategy for player ¢ is said to be winning the
game (G, Vic) on X if any infinite play starting in X and consistent with this
strategy is won by player i. If there exists such a strategy, we say that player ¢
wins (G, Vic) on X. If X =V, we simply say that ¢ wins (G, Vic). The winning
set of player i is the greatest set of vertices such that 4 wins Vic on this set.

Positional Strategies. With certain strategies, the choices advised to the player
depend only on the current vertex. Such a strategy can be simply described by
the set of edges it allows the players to use. 0 C FE is a positional strategy for
player i in the arena G if there is no dead-end in the subgraph (Dom(c),0)
induced by ¢ and o does not restrict the moves of the adversary: if v € V1_; N
Dom(o) then {v} xvE C 0. Let X CV be a subset of vertices. If Dom(o) = X,
o is said to be defined on X. We say that a player wins positionally a game Vic
on X if he has a positional strategy winning on X.

Subarenas and Traps. Let X C V be a subset of vertices and F' C E a subset
of edges. G[X] denotes the graph (X, E N X?) and G[X, F] denotes the graph
(Dom(F) N X,F N X?). When G[X] or G[X, F] is an arena, it is said to be a
subarena of G. X is said to be a trap for player ¢ in G if G[X] is a subarena and
player ¢ can’t move outside of X, i.e. Vv € X NV;,vE C X.

2.2 Winning conditions.

Let G = (V,Vo,V1,E) be an arena and X C V. We define various winning
conditions.

Attraction game to X. Player 0 wins if the pebble visits X at least once. The
corresponding winning condition is Attraction(X) = V*XV*¥. The winning set
for player 0 is denoted by Atto(G, X) or Atte(X), when G is obvious. Symmetri-
cally, we define Att; (G, X) and Att;(X), the sets of vertices where player 1 can
attract the pebble to X. Note that for this game, both players have positional
winning strategies.

Trap game and Biichi game to X. Player 0 wins the trap game in X if the
pebble stays ultimately in X. The winning condition is TrapX = V*X“. The
dual game is the Biichi game to X, where player 0 wins if the pebble visits X
infinitely often. The winning condition is Buchi(X) = (V*X)“.

Exploration game. This is a game over an infinite graph, where player 0 wins a
play if the pebble visits infinitely many different vertices. The winning condition
is Ezp = {vov1 --- € V¥ | the set {vg,v1,...} is infinite}.

The exploration condition is an extension of the Unboundedness condition
introduced in [3]. The Unboundedness condition concerns games played on the
configuration graph of a pushdown system. On such a graph, the set of plays is
exactly the set of runs of the underlying pushdown automaton, and 0 wins a play
if the height of the stack is unbounded, which happens if and only if infinitely
many different configurations of the pushdown automaton are visited.

The exploration condition is also closely related to the X'3-condition consid-
ered in [5], which states that 0 wins a play if every vertex is visited finitely often.
Notice that such a play is necessarily also winning for the exploration condition,
but the converse is not true. However, given an arena, it is easy to see that
each player has the same positional winning strategies for both games. Since
the Exploration game is won positionally by both players (cf. Proposition 1), it
implies both games have the same winning positions. Hence, in that sense, the
Explosion game and the ¥3-game introduced in [5] are equivalent.

Parity game. G is a parity arena equipped with ¢ : V' — N. Player 0 wins a play
if there exists a highest priority visited infinitely often and this priority is even,
or if the sequence of priorities is unbounded. The winning condition is

Parity., = {(v;)ien : l_ie_rg o(vi) € {0,2,...,+00}}

where lim;eny ¢(v;) = limen sup,>; #(v;) denotes the limit sup of the infinite
sequence of visited priorities. If G is in fact labeled with a finite number of
priorities, i.e. if there exists d € N such that ¢ : V — [0,d], we write also the
winning condition as Parity,. In this case, a classical result [9,19,23] states that
both players win this game positionally.

3 Playing the games Ezp U Parity,, and Exp N Parity,.

In this section we study the winning strategies for the games Exp U Parity.,
and Ezp N Parity,;. We show that both players win positionally Ezp U Parity,,.
Concerning the game Ezp N Parity,, we show that player 1 wins it positionally
and we give a characterization of the winning set of player 0.

3.1 The game Exp U Parity_,.
G is a parity arena equipped with ¢ : V — N.

Proposition 1. Each player wins positionally the game Exp U Parity., on his
winning set.

Proof. It is crucial to observe that Exp U Parity,, can be expressed as the limit
of a decreasing sequence of winning conditions:

Exp U Parity,, = ﬂ Viey,
neN

where

Vien, = Attraction({n + 1,n + 2,...}) U Parity.

Moreover, each game (G, Vic,,) is won positionally by players 0 and 1 on their
winning sets X, and V'\ X,,. It is easy to establish that player 1 wins positionally
(G,N,, Vicyn) on U, V\X» = V\, Xn. For winning positionally (), Vic, on
N, Xn, player 0 can manage to play in such a way that, as long as the pebble
stays in {0,1,...,n}, the play is consistent with a winning strategy for Vic,.
Then, if the pebble stays bounded in some set {n,n+1,...}, the play is won for
condition), ., Vicy, C Parity,,. If the pebble goes out of every set {0,...,n},
then the play visits infinitely many different vertices and the play is won for
Exzp. O

Since the Exp game is a special case of the Ezp U Parity,, game where all the
vertices are labeled with priority 1, we get the following corollary.

Corollary 1. Fach player wins positionally the game Exp on his winning set.

3.2 The game Parity,,.

A natural question that arises is whether the players have some positional strate-
gies for the Parity,, game. Notice that Fzp C Parity., in the special case where,
for every priority d, ¢~1(d) is finite. Indeed, any play visiting infinitely many
different vertices will visit infinitely many different priorities.

Hence, in this special case, by Proposition 1, the game Parity,, is won posi-
tionally by both players. It is not true anymore if ¢ (d) is infinite for some d.
Consider the example given by figure 1. The circles are the vertices of player 0
and the squares those of player 1. Player 0 wins Parity_, from everywhere but
has no positional winning strategy.

Fig. 1. Player 0’s strategy must recall the highest odd vertex reached by player 1 in
the lower row in order to answer with a higher even vertex in the second row.

It is interesting to note that if the winning player is determined by the lowest
priority visited infinitely often rather than by the greatest one, then both players
have positional winning strategies, even if countable many priorities are assumed
[11].

3.3 The ExpN Parity; game

The analysis of the Ezp N Parity,; game is an extension of the results of [23]. In
this section, G is a parity arena equipped with ¢ : V' — [0, d].

Proposition 2. Player 1 wins positionally the game Exp N Parity; on his win-
ning set.

Proof. Without loss of generality, we can assume that player 1 wins everywhere.
The proof is by induction on d.

If d = 0, it is impossible for player 1 to win any play and his winning set
is empty. If d is odd and d # 0, let W be the attractor for player 1 in the set
of vertices coloured by the maximal odd priority d. Since V\W is a trap for
player 1 coloured from 0 to d — 1, and by inductive hypothesis, player 1 can
win positionally (G[V\W], Ezp N Parity;) with some strategy oy\w . To win,
player 1 shall use oy inside V\W and shall attract the pebble in a vertex of

colour rd when it reaches the set W. That way, either the plays stay ultimately
in VAW and some suffix is consistent with o\ or it reaches the odd priority
d infinitely often. In both cases, player 1 is the winner.

The case where d is even is less trivial. It is easy to prove that there exists
the greatest subarena of G where player 1 wins positionally. It remains to prove
that this subarena coincides with the whole subarena.

Player 0 does not necessarily have positional winning strategies. For example,
in the game of figure 2, player 0 wins Exp N Parity, from any vertex but has no
positional winning strategy.

Fig. 2. To win the Ezp N Parity, game, player 0 has to visit new vertices arbitrarily
far to the right hand side of the arena and has also to visit the unique vertex of color
2 infinitely often.

Nevertheless, we can characterize the arenas in which player 0 wins the game
Ezp N Parity, from everywhere:

Proposition 3. Let G = (V, E) be an arena, coloured from 0 to d > 0. Let D
be the set of vertices coloured by d. Player 0 wins the game (G, Exp N Parity,)
on V if and only if there ezists a subarena G[W], coloured from 0 to d — 1 such
that one of the following conditions holds:

e Case d even: Player 0 wins the games (G[W], ExpnParity,_,) and (G, Ezp)
everywhere and she wins the game (G, Attraction(D)) on V\W.

e Case d odd: Player 0 wins the game (G, Trap(W)) with a positional strategy
Orrap(w) and wins the game (G[W, oryqpw)], Exp N Parity, ;).

The conditions of Proposition 3 are illustrated by figure 3.

Odd Case Even Case
Trap in W
Attraction in d
Explorati
Priority d xploration
— Priority d

Fig. 3. Conditions of Proposition 3.

Remark 1. Note that winning the game (G[W, orrap(w)], ExpN Parity, ;) means
that player 0 has a strategy ow winning the game (G[W], Ezp N Parity,;_;)
which advises player 0 to play moves consistent with the positional strategy

OTrap(W)-

Proof. We sketch the proof of the direct implication. In the case where d is even
this proof is simple. Consider W = V'\ Atto(D). Since V\W is a trap, player 0
wins (G[V\W], Ezp N Parity;). The other claims are trivially true.

The case where d is odd is more tricky. We establish first that the family of
subarenas of G where Proposition 3 holds is closed by arbitrary union, then we
prove that the maximal such arena is necessarily G itself.

We sketch the proof of the converse implication. We shall construct a strategy
og for player 0 winning the game (G, ExpN Parity,). This construction depends
on the parity of d.

d Odd. By hypothesis, player 0 has a positional strategy o7;qp(w) winning the

game (G, Trap(W)) and a strategy o,y winning the game

(G[W, 0rrapw)]; Bzp N Parity, ;). og is constructed in the following way:

e If the pebble is not in W, player 0 plays according to her positional strategy

OTrap(W)-

e If the pebble is in W, player 0 uses her strategy osyp in the following way: Let

p be the sequence of vertices visited up to now and let p’ be the longest suffix

of p consisting of vertices of W. Player 0 takes a move according to ogus(p')-
The strategy o is winning the game (G, Ezp N Parity,). Indeed, since ogyp

is a strategy in the arena G[W, or,qpw)], all the moves consistent with o are

consistent with or,,p(w). Hence, the play is ultimately trapped in W and is

ultimately consistent with oy, thus won by player 0.

d Even. By hypothesis and by Corollary 1, player 0 has a positional strategy
0Ezp C E winning (G, Exp). She has also a positional strategy o4 C E winning
(G, Attraction(D)) on V\W and a strategy gy, winning the game (G[W], ExpN
Parity;).

og is constructed in the following way. At a a given moment player 0 is in
one of the three playing modes: Attraction, Sub or Exploration. It can change
the mode when the pebble moves to a new vertex. Player 0 begins to play
in Ezploration mode. Here follows the precise description of the strategy og,
summarized by figure 4.

e The playing mode Ezploration can occur wherever the pebble is. Player 0
plays according to her positional strategy ogs,. When a new vertex v is
visited for the first time the mode is changed. If v € W, it is changed to Sub
mode. If v € W, it is changed to Attraction mode.

e The playing mode Attraction can occur only if the pebble is not in . Player
0 plays according to her positional strategy o 4. When a vertex of priority
d is visited, the playing mode is set to Ezploration.

e The playing mode Sub can occur only if the pebble is in W. Player 0 plays
using her strategy osyp in the following way. Let p be the sequence of vertices
visited up to now and p' the longest suffix of p consisting of vertices of W.
Then 0 takes a move according to og.,(p'). If the pebble goes out of W, the
playing mode is set to Ezploration.

Reaching colour d

Attraction o4y

iscovering a

—{Exploration OEzp Going out of W

Fig. 4. Rules of transition between playing modes.

Notice that, by definition of 044 and oggp, it is not possible that an infi-
nite play consistent with og stays forever in the playing modes Attraction or
Ezploration. Hence, such a play can be of two different types. Either the pebble
stays ultimately in the playing mode Sub or it goes infinitely often in the modes
Exploration and Attraction. In the first case, it stays ultimately in W and the
play is ultimately consistent with og,s;. In the second case, the pebble visits
infinitely often the even priority d and discovers infinitely often a new vertex. In
both cases, this play is won by player 0 for the Ezp N Parity, condition. O

4 Computation of the winning sets and strategies on
pushdown arenas.

In this section, we apply our results to the case where the infinite graph is the
graph of the configurations of a pushdown automaton. In this way, we get an
algorithm to compute the winning sets. Moreover, in all cases except for player
0 in the game Fzp N Parity,;, we can also compute some winning positional
strategies.

Definitions. A pushdown system is a tuple P = (Q, I, A, L) where @ is a finite
set of control states, I" is a finite stack alphabet, L is a special letter called the
stack bottom, L ¢ I"and A C Q x (I'U {L}) x (I'U{-1}) x Q is the set of
transitions.

The transition (¢, a,8,7) € A is said to be a push transition if 8 € I' and
a pop transition if = —1. In both cases, it is said to be an a-transition and
a (g, a)-transition. Concerning L, we impose the restriction that there exists no

10

pop L-transition. Moreover, we work only with complete pushdown systems, in
the sense that, for every couple (¢g,a) € @ x (I"U{L}), there exists at least one
(¢, @)-transition.

Notice that, in the sense of language recognition, any pushdown automaton
is equivalent to one of this kind, and the reduction is polynomial.

A configuration of P is a sequence ¢y, where q € and v € I'*. Intuitively, ¢
represents the current state of P while v is the stack content above the bottom
symbol L. We assume that the symbols on the right of v are at the top of the
stack. Note that L is assumed implicitly at the bottom of the stack, i.e. actually
the complete stack content is always L.

The set of all configurations of P is denoted by Vp. Transition relation Ep
over configurations is defined in the usual way: Let ¢ya, a € I', be a configura-
tion.

e (gya,rvy) € Ep if there exists a pop transition (q,a, —1,7) € A,
e (gya,ryafB) € Ep if there exists a push transition (¢, a, 8,r) € A.

Let ge be a configuration with empty stack.

e (ge,rB) € Ep if there exists a push transition (¢, L, 3,r) € A.

We will write ¢y LN rv' to express that a transition § € A of the pushdown
automaton corresponds to an edge (¢v,7v') € Ep between two configurations.
The graph Gp = (Vp, Ep) is called the pushdown graph of P.

If @ is partitioned in (Qg, @1), this partition extends naturally to the set of
configurations of P and Gp is an arena. Moreover, when the control states) are
labeled by priorities with a map ¢ : @ — [0, d], this labeling extends naturally
to Vp by setting ¢(¢y) = ¢(q). Gp is then a parity arena.

Subgraph trees and strategy trees. With any subset ¢ C Ep of the edges of a
pushdown arena we associate a tree T, : I'™* — 24 with vertices labeled by sets
of transition of P. This construction is illustrated by figure 5.

A vertex of the tree is a stack content of P. A transition § € A is in the label
of a vertex v € I'* if there exists some state ¢ €) and some configuration rv'

such that ¢y SN ry" and (gv,rv') € 0. Such a tree is called the coding tree of
o. Notice that the transformation ¢ — T, is one-to-one. If o is a strategy for
player i, we call T, a strategy tree for player i.

The next theorem states that the languages of positional winning strategies
is regular. Thus, we can build a Biichi alternating automaton of size O(d|Q|? +
|I"|) which recognizes the language of couples (og,01) such that o; is a winning
positional strategy for player ¢ and the domains of g and o are a partition of
Vp. In the case of the Parity; and Fzp U Parity, games, Proposition 1 establish
that this language is non-empty. Hence it is possible to compute a regular tree
(00, 01) of size 20(41Q+II') This regular tree can be seen as the description of
a couple of winning stack strategies for both players. This kind of strategy has
been defined in [21].

11

(r,L.,8.,q)

(r,8,8,q)
(r.8,8,r)

(g,0,—1,9)
(r,o,—1,q)
(r,o,—1,7)

Fig. 5. A finite subset of Ep and its coding tree. Only the labels of the vertices
{e, @, B, aa, B, Ba, BB} are represented. Other vertices of the coding tree are labeled
with §.

Theorem 1. Leti be a player and Vic € {Parity,, ExpUParity,, ExpNParity,}.
The language of strategy trees which correspond to winning positional strategies
for player i is regular. One can effectively construct an alternating Biichi au-
tomaton Avic,; with O(d|Q|*> + |I'|) states which recognizes it.

Proof. The construction of Avyic; uses techniques close to the one of [20,16].
Unfortunately, we couldn’t manage to make use of the results of those papers
about two-way tree automata, because we don’t know how to use a two-way
automata to detect a cycle in a strategy tree.

Our aim is to construct a tree automaton recognizing a tree t : I'* — 24 iff
there exists a winning positional strategy o such that ¢ = T,. In fact we shall
rather construct a Biichi alternating automaton recognizing the complement of
the set {T,|o winning positional strategy }. First of all it is easy to implement
an alternating automaton verifying if the tree ¢ is or is not a strategy tree. It is
less trivial to construct the automaton checking if a positional strategy o C Ep
is winning or not. However, it can be expressed by simple criterion concerning
the cycles and the exploration paths of the graph (Dom(o), o) induced by o.
Those criteria are summarized in table 1.

We have to construct automata checking each condition of table 1. They are
derived from an automata able to detect the existence of a special kind of finite
path called a jump. A jump between two vertices with the same stack - is a path
between those vertices, that never pop any letter of v (see figure 4).

This kind of path is interesting since a cycle is simply a jump from a vertex to
itself, and because the existence of an exploration path of priority ¢ is equivalent
to the existence of one of the two kinds of paths illustrated by figure 7.

Due to the high computational power of alternation, it is possible to construct
automata checking the existence of jumps and detecting the kinds of paths of
figure 7, and which have only O(d|Q?| + |I'|) control states. |

12

Winning Condition

Condition on cycles

Condition on exploration paths

Parity
Ezp U Parity,

Ezp N Parity,

= O = O Of=

Even

Odd

Even

Odd

No cycle

No condition

Even

Odd

No condition

No exploration path
Even

Odd

Table 1.

Characterization of winning positional strategies.

A

N\

Fig. 6. A jump from ¢y to rv in a strategy tree.

Fig. 7. The dotted arrows are jumps of priority less than ¢. The top-down regular
arrows are push transitions, while the down-top ones are pop-transitions. On the left
hand side, infinitely many of the jumps have priority ¢. On the right hand side, the
upper jump, which is a loop, has priority c.

13

Computation of winning sets. Using the automata recognizing languages of win-
ning positional strategies, it is possible to recognize the language of winning
positions. For each player ¢, Theorem 2 leads to an EXPTIME procedure to
compute a regular tree I'* — 29 of exponential size that associates with a stack
v the set {¢g € @ : ¢v is winning for player ¢}. Once computed, deciding if a
given position is winning for player ¢ can be done in linear time.

Theorem 2. . For each player i and winning condition

Vic € {Parity,, ExpUParity;, ExpNParity,}, the tree I'* — 2 which associates
with a stack -y the set {q € Q : g7y is winning for i} is regular. One can compute a
non-deterministic Bichi automata which recognizes it, whose size is 20(dQPP+/T])
if Vic € {Parity,, Exp U Parity, }and 20(@*1Q°+dIT]) jf Vic = Exp N Parity,.

Proof. For the games Parity; and EzpU Parity,, this Theorem is a direct corol-
lary of Theorem 1. In fact, we can build a Biichi alternating automaton which
recognizes the language of couples (o9, 01) such that o; is a winning positional
strategy for player ¢ and the domains of o9 and o are a partition of Vp. The win-
ning sets are then obtained by projection, which requires a non-determinization,
hence an exponential blowup of the state space of the alternating automaton
[15].

In the case of the Ezp N Parity; game, we use also the characterization of
the winning sets given by Proposition 3. We define the notion of winning-proof,
which is a tree on I'* labeled by tuples of subsets of A, and is defined such that
the existence of a winning-proof in an arena is equivalent to the conditions of
Proposition 3. Here follows the definition of a winning-proof in a subarena G of
a pushdown arena Gp.

In the case where d = 0, it is a strategy tree T;,,,, winning the game (G, Exp).

In the case where d > 0 and is even, it is a tuple Ty = (T", Ty, , To 5> Ta—1)
where

T' is the coding tree of a subarena G’ of G,

T,p,, is a strategy tree winning the game (G, Ezp),

T, ,.. is a strategy tree winning the game (G, Attraction(D)) on Dom(G'),
Ty—1 is a (d — 1)-winning proof in G’.

In the case where d is odd, it is a tuple Tyq = (I", Ty ,,, Tq—1) where

e T' is the coding tree of a subarena G' of G,
e Ty, is a strategy tree winning the game (G, Trap(Dom(G"))),
e Ty 4 is a (d — 1)-winning proof in G'.

Each one of those conditions O(d) is checkable with some alternating au-
tomaton with d|Q|? + |I'| states. The corresponding automata constructions are
very close to the ones of Theorem 1. Hence, the language of d-winning proofs is
regular and recognized by an alternating automata with O(d?|Q|* +d|I'|) states.

Asin the positional case, by projection, we obtain the desired non-deterministic
automaton with 20(@*1QP+dII') sates. O

14

5

Conclusions.

The framework of Zielonka has enabled us to prove some characterizations of the
ExpN Parity and ExpU Parity games played on infinite graphs of finite degree. In
the special case of pushdown graphs, we have presented algorithms to compute
efficiently

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controlers with
partial observation. Theoretical Computer Science, 303(1):7-34, 2003.

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Applications to model checking. In CONCUR’97, LNCS, volume 1243,
pages 135-150, 1997.

A. Bouquet, O. Serre, and 1. Walukiewicz. Pushdown games with unboudedness
and regular conditions. In Proc. of FSTTCS’03, LNCS, volume 2914, pages 8899,
2003.

T. Cachat. Symbolic strategy for games on pushdown graphs. In Proc. of 29th
ICALP, LNCS, volume 2380, pages 704-715, 2002.

T. Cachat, J. Duparc, and W. Thomas. Pushdown games with a o3 winning
condition. In Proc. of CSL 2002, LNCS, volume 2471, pages 322-336, 2002.

K. Chatterejee, M. Jurdziriski, and T.A. Henzinger. Simple stochastic parity games.
In CSL’08, volume 2803 of LNCS, pages 100-113. Springer, 2003.

L. de Alfaro and T.A. Henzinger. Concurrent w-regular games. In LICS’00, pages
142-154. IEEE Computer Society Press, 2000.

L. de Alfaro, T.A. Henzinger, and O. Kupferman. Concurrent reachability games.
In FOCS’98, pages 564-575. IEEE Computer Society Press, 1998.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. of 82th FOCS, pages 368-377. IEEE Computer Society Press, 1991.

H. Gimbert. Parity and exploration games on infinite graphs, full version.
www.liafa.jussieu.fr/ "hugo.

E. Gradel. Positional determinacy of infinite games. In STACS 2004, LNCS,
volume 2996, pages 4—-18, 2004.

O. Kupferman, N. Piterman, and M. Vardi. Pushdown specifictaions. In Proc. of
LPAR’02, LNCS, October 2002.

O. Kupferman and M.Y. Vardi. An automata-theoretic approach to reasoning
about infinite state systems. In Proc. of CAV’00, LNCS, volume 1855, pages 36—
52, 2000.

D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata and
second order logic. Thoretical Computer Science, 37:51-75, 1985.

D. E. Muller and P. E. Schupp. Simulating alternating tree automata by non-
deterministic automata. Theoretical Computer Science, 141:69—107, 1995.

N. Piterman and M.Vardi. From bidirectionnality to alternation. Theoretical Com-
puter Science, 295:295-321, 2003.

O. Serre. Games with winning conditions of high borel complexity, to appear in
proc. of icalp’04.

O. Serre. Note on winning positions on pushdown games with omega-regular con-
ditions. Information Processing Letters, 85(6):285-291, 2003.

15

19. W. Thomas. On the synthesis of strategies in infinite games. In Proc. of
STACS’95,LNCS, volume 900, pages 1-13, 1995.

20. M. Vardi. Reasoning about the past with two-way automata. In Proc. of ICALP’98,
LNCS, volume 1443, pages 628—641, 1998.

21. 1. Walukiewicz. Pushdown processes: Games and model checking. In Proc. of
CAV’96, LNCS, volume 1102, pages 62-74, 1996.

22. 1. Walukiewicz. Pushdown processes: Games and model checking. Information and
Computation, 164(2):234-263, 2001.

23. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science, 200:135-183, 1998.

16

Appendix

A Playing the games Exp U Parity,, and Exzp N Parity,.

A.1 Elementary lemmas.
Throughout this appendix, we shall need the following elementary two lemmas.

Lemma 1. Let T be a trap for player i and X CT.
Any strategy for i winning (G, Vic) on X wins (G[T], Vic) on X.
Any strategy for 1 — i winning (G[T), Vic) on X wins (G, Vic) on X.

Lemma 2. If Vic C V¥ is concatenation closed, the winning set of player 1 is
a trap for player 0.

A.2 Tools for building positional winning strategies.

The following lemmas are useful to prove the existence of positional winning
strategies. The first one is used in [23].

Lemma 3. Let Vic be concatenation closed. Let W C V. If player 0 wins posi-
tionally (G[V\ Atto(W)], Vic), then she wins positionally (G, Vic UBuchi(W)).

Lemma 4. Construction of positional strategies by intersection

Let (Vicy)nen be a decreasing sequence of winning conditions and (X,)nen a
sequence of subsets of V' such that for any n € N, player 0 wins positionally the
game Vic, on X,,. Then player 0 wins positionally the game Exp U [Vie,

on Vpen Xn-

Proof. Tt is sufficient to prove this lemma in the case where G is connected.
Since G is of finite degree, V' is countable and we can suppose that V = N. We
shall construct a strategy o for player 0 winning the game Ezp U,y Vic, on
Nnen Xn- The main idea is that 0 will always be playing consistently with an
infinite number of positional strategies, each one winning one of the games Vic,.

To make this construction nicely, we use Koenig’s Lemma in a tree whose
vertices are positional strategies. Let Strat) be the set of positional strategies
winning for 0 on X =, .y X» for condition Vic,, and

neN

Strat, = {(c N[0,n —1]*,n) : o € Strat®}
their restrictions to the set of vertices < n. Let also

Strat = U Strat,
neN

We give to Strat a structure of a directed graph by adding an edge between
a vertex (o,n) € Strat, and a vertex (1,n+ 1) € Strat,s if o is the restriction
of 7 to [0,n — 1]°. Let (Strat, F) be this graph.

17

It is straightforward to check that (Strat, f) is a directed tree whose root
is (0,0) and whose set of vertices of depth n is Strat,. Since, by hypothesis,
each Strat® is nonempty, Strat is infinite. Moreover, since for any integer n € N
Strat,, C 200n=11" x {n}, (Start, f) is a tree of finite degree.

By Koenig’s lemma, there exists an infinite path (09,0), (01, 1), ... in (Strat, F')
starting from the root (§,0).

Then it is easy to check that

o= Jon

is a positional strategy for player 0, defined at least on X. We shall prove that
o wins EzpU (), oy Vic, on X.

Let p be consistent with ¢ and starting in X. If p is winning for the game
Ezp, it is, by hypothesis, won by 0. In the opposite case, it stays in a set [0, k]
for some integer k. For n € N, let 0% € Strat® such that o, = 6% N[0,n — 1]°.
Since o}, C 041 C ..., the play p is consistent with every ¢, for n > k. Thus,
pE nngiC" =Nyen Vica. i

Lemma 5. Construction of positional strategies by union.

Let (Vicy)ner be a family of winning conditions and (Y,)ner o family of
subsets of V' such that for any n € I, player 0 wins positionally the game Vic,
on Y, and such that | J,,o; Vic, is closed by concatenation. Then player 0 wins
positionally the game |J,,c; Vicn, on |J,c; Ya-

Proof. Let < be a well founded order on I. For each n € I, let ¢, be a positional
strategy winning on Y,, the game Vic,. We can easily build a positional strategy

o winning on |J Y;, the game Vic = |J Vic,. For any vertex v, define index(v) =
nel nel
min<{n € I : v € Y, }. On a vertex v, o consists to take a move in o;pgeq(v) (v)-

Let p = vovy ... be a play consistent with o. The Y,, induce traps for 1, thus
the sequence index(vg),index(vy1),... is a <-decreasing,hence stationary equal
to an index m from a rank N. Since p is ultimately consistent with o,,, some
suffix of p is a play won by 0 for the condition Vic,, C Vic. The closeness of Vic
by concatenation implies that p is won by 0. Finally, ¢ is a positional strategy
winning the game Vic. O

A.3 The game Exp U Parity

Proposition 1. Fach player wins positionally the game Exp U Parity,, on his
winning set.

Proof. Tt is sufficient to prove this proposition in the case where G is connected.
Since G is of finite degree, V is countable and we can suppose that V = N.
Consider, for each vertex n € N, the game Vic, where player 0 wins if she
reaches a vertex strictly greater than n or if she wins the Parity_, game.

18

Vic, = Attraction([n + 1, 4+00]) U Parity

Notice that player 0 wins a play of the exploration game if and only if the
pebble reaches arbitrarily high vertices, hence (1, oy Vic, = Exp U Parity,.
For each n € N, we are going to construct a set of vertices X,, C N such
that player 0 and player 1 win positionally the game Vic, on X,, and V\X,,
respectively. According to Lemmas 4 and 5, it implies that player 0 and player
1 win positionally Ezp U Parity_ on [, .x Xn and V\ (), .n Xn, respectively,
which proves Proposition 1.

Construction of X,,. For every subset W C N such that G[W] is a subarena,
let Paro(W) denote the winning set of player 0 for the game (G[W], Parity,).
The construction of X, is illustrated by figure 8.

neN neN

X, winning for 0 for the game Vic,.

Paro(V\Z,)

Zy, = Atto([n + 1, 4+00[)

Pari(V\Z,)

V\X,, winning for 1 for the game Vic,.

Fig. 8. Construction of X,,.

Since V\Z, is finite, the game (G[V\Z,], Parity.,) is the classical parity
game with a finite number of priorities and both players win it positionally.
Moreover, since V\Z, is a trap for player 0, and according to Lemma 1, the
positional strategy for player 1 that wins (G[V'\Z,], Parity,,) on Pari(V\Z,)
wins also (G, Parity,,) on Par;(V\Z,). The positional strategy for player 0
winning on X, is defined as follows. On Parq(V\Z,), she uses her positional
strategy winning the game (G[V'\Z,], Parity,). Since Paro(V\Z,) is a trap for
player 1 in G[V\Z,], if player 1 makes the pebble go out of Parg(V\Z,), it
necessarily reaches Z,,, and player 0 can use her positional strategy to attract it
to [n+ 1, 00]. O

A.4 The Expn Parity; game

Proposition 3.
Let G = (V, E) be an arena, coloured from 0 to d > 0. Let D be the set of
vertices coloured by d. Player 0 wins the game (G, Exp N Parity;) on V if and

19

only if there exists a subarena G[W], coloured from 0 to d — 1 such that one of
the following conditions holds:

e Case d even: Player 0 wins the games (G[W], ExpnParity,_,) and (G, Exp)
everywhere and she wins the game (G, Attraction(D)) on V\W.

e Case d odd: Player 0 wins the game (G, Trap(W)) with a positional strategy
OTrap(w) and wins the game (G[W, orrqp(w)], Exp N Parity,).

The conditions of Proposition 3 are illustrated by figure 9.

Odd Case Even Case
Trap in W
Attraction in d
Explorati
Priority d Xploration

— ‘ Priority d

Fig. 9. Conditions of Proposition 3.

Remark 2. Note that winning the game (G[W, or,qp(w)], ExpN Parity,) means
that player 0 has a strategy ow winning the game (G[W], Ezp N Parity,;_;)
which advises player 0 to play moves consistent with the positional strategy
OTrap(W)-

Proof of the converse implication in the case where d is even. By hypothesis and
by Corollary 1, player 0 has a positional strategy oggp C E winning (G, Exp).
She has also a positional strategy o4 C E winning (G, Attraction(D)) on V\W
and a strategy osyp winning the game (G[W], Ezp N Parity,_,).

o is constructed in the following way. At a a given moment player 0 is in
one of the three playing modes: Attraction, Sub or Exploration. It can change
the mode when the pebble moves to a new vertex. Player 0 begins to play
in Exploration mode. Here follows the precise description of the strategy og,
summarized by figure 10.

e The playing mode FExploration can occur wherever the pebble is. Player 0
plays according to her positional strategy oggzp. When a new vertex v is
visited for the first time the mode is changed. If v € W, it is changed to Sub
mode. If v ¢ W, it is changed to Attraction mode.

e The playing mode Attraction can occur only if the pebble is not in W. Player
0 plays according to her positional strategy os. When a vertex of colour d
is visited, the playing mode is set to Exploration.

20

e The playing mode Sub can occur only if the pebble is in W. Player 0 plays
using her strategy osyp in the following way. Let p be the sequence of vertices
visited up to now and p' the longest suffix of p consisting of vertices of W.
Then 0 takes a move according to og.,(p'). If the pebble goes out of W, the
playing mode is set to Ezploration.

Attraction o4y

Reaching colour d

- Discovering a new vertex v
Exploration ogzp

Going out of W

Fig. 10. Rules of transition between playing modes.

Notice that, by definition of 044 and oggp, it is not possible that an infi-
nite play consistent with og stays forever in the playing modes Attraction or
Exploration. Hence, such a play can be of two different types. Either the pebble
stays ultimately in the playing mode Sub or it goes infinitely often in the modes
Exploration and Attraction. In the first case, it stays ultimately in W and the
play is ultimately consistent with og,;. In the second case, the pebble visits
infinitely often the even colour d and discovers infinitely often a new vertex. In
both cases, this play is won by player 0 for the Ezp N Parity, condition. O

Proof of the converse implication in the case where d is odd. By hypothesis,

player 0 has a positional strategy oryqp(w) winning the game (G, Trap(W)) and

a strategy ogyp winning the game

(GIW, 01rapw)], Bzp N Parity,). og is constructed in the following way:

e If the pebble is not in W, player 0 plays according to her positional strategy

OTrap(W)-

o If the pebble is in W, player 0 uses her strategy osyp in the following way: Let

p be the sequence of vertices visited up to now and let p’ be the longest suffix

of p consisting of vertices of W. Player 0 takes a move according to oguy(p').
The strategy o is winning the game (G, Ezp N Parity,). Indeed, since ogyp

is a strategy in the arena G[W, oryqp(w)], all the moves consistent with og are

consistent with or,,pw). Hence, the play is ultimately trapped in W and is

ultimately consistent with oy, thus won by player 0.

Proof of the direct implication. Proving the direct implication in the case where
d is even is simple. Consider W = V\ Atto(D). Since V\W is a trap, and from

21

Lemma 1, player 0 wins (G[V\W], ExpN Parity,). The other claims are trivially
true.

The proof is harder in the case where d is odd. We establish first that the
family of subarenas of G where Proposition 3 holds is closed by arbitrary union,
then we prove that the maximal such arena is necessarily G itself.

We need the following notion of a good tuple:

Definition 1. A tuple (X, W, o) is good if

1. X CVisatrap for1l and W C X.

2. G[W] is a subarena of G[X] coloured from 0 to d — 1.

3. o is a positional strategy for 0 winning for the game (G[X], Trap(W)).
4. Player 0 wins the game (G[W, o], Exp N Parity;_,).

Let (X, Wy, 0n)ner be the family of good tuples in G and X = (X,,)ner-
Then showing the direct implication of Proposition 3 in the case where d is odd
is equivalent to showing that V' € X. This is a direct consequence of the following
lemmas 6 and 7, which concludes the proof. O

Lemma 6. Let (Xy, Wy, 0n)ner be the family of good tuples in G. Then|J,,c; Xn
is also a good tuple.

Proof. Let X = U,c; Xn, W = U,,c; Wn and let < be a well-founded order on
I. For any v € X, the indezx of v is index(v) = min{n € I : v € X,,}. Define
o ={(v,w) : (v,w) € Tingex(v)}- We shall prove that (X, W, o) is a good tuple.

Condition 1 is verified because a union of traps is a trap. Condition 2 is
trivially verified.

Let us prove that condition 3 is also verified. It is easy to check that o is a
positional strategy for 0 in G[X]. Let p = vgv; ... be an infinite play consistent
with o. Since the X s are traps for 1, the sequence index(vp)index(vy)... is
<-decreasing. As < is a well-founded order, this sequence is stationary equal to
a level n(p) € I. Hence, p is ultimately played in the arena X,), consistently
with 0,(,), and a suffix of p is ultimately trapped in W,y C W. Hence o wins
(GIX], Trap(W))

To achieve the proof that (X, W, o) is a good tuple, we show that condition 4
is verified, by constructing a strategy 7 winning (G[W, o], Ezp N Parity,_,). For
each n € I, let 1, be a strategy for player 0 winning (G[W,, o,], EzpN Parity, ;).
Let p be a finite play in G[W, o] ended in a vertex v of player 0. Let p’ be its
longest suffix which is a play consistent with T;,,4.,(,)- Note that p’ exists since
(v) is such a suffix. Define 7(p) = Tinges(v)(P')- Let ¢ be an infinite play in
G[W, o] consistent with the strategy 7. Since 7 is consistent with the positional
strategy o, we know (proof of condition 3 above) that g is ultimately trapped in
Wh(q)- Hence g is ultimately consistent with 7,4, and ¢ is won by player 0 for
the game (G[W, o], Exp N Parity,_,). |

Lemma 7. If player 0 wins (G, Exp N Parity,) then |, .; Xn =V.

nel

22

Proof. The key of this proof (and of the one of Proposition 2) is Lemma 8.
Let X = J,c; Xn and suppose that V\X # @. We are going to show that it
contradicts the maximality of X in X. To achieve this, we shall build a good
tuple of the form (X UY,.,.), where Y ¢ X.

First, let’s prove that V\X is a trap for 0. Let 044 be a positional strategy
for 0 winning Attraction(X) on Attg(X). Let ¢’ be the strategy consisting in
playing o4+ on Atto(X)\X and playing o on X. Then, since X is a trap for 1,
it is straightforward to check that (Atto(X),W,o') is a good tuple. Hence, by
maximality of X in X, X = Attq(X), which implies that V\ X is a trap for 0.

Now, we shall use lemma 8 to contradict the maximality of X in X. Since
V\X is a trap for 0 and from Lemma 1, 0 wins (G[V\X], EzpN Parity,;). Applying
Lemma 8 to G[V\X], we obtain a set of vertices § #Y C V\X, coloured from
0 to d — 1, which is a trap for 1 in the arena G[V\X] and such that 0 wins
(G[Y], ExpN Parity,). If, during a play in the arena G, the pebble is in ¥ and 1
moves it out of Y, then, as Y is a trap for 1 in V'\ X, the pebble necessarily goes
in X. Hence, TrapU (Y x (Y U X)) N E is a positional strategy for 0 winning
for the game (G[X UY], Trap(W UY)). With this remark, since X is a trap for
1, it is straightforward to check that (X UY, W UY,TrapU (Y x X)NE) is a
good tuple. It contradicts the maximality of X in X. O

Lemma 8. Let G be a parity arena labeled by ¢ : V — [0,d], such that 0 wins
(G,Exp N Parity,). Then there exists a non-empty trap Y for 1 in G, coloured
from 0 to d — 1, such that 0 wins the game (G[Y], Exp N Parity,_,).

Proof (of the Lemma 8.). X = V\Att1(D) is a trap for 1 coloured from 0 to
d—1.Let Y C X be the winning set for 0 for the game (G[X], EzpN Parity,;_;).
According to lemma 2, Y is a trap for 1 in G[X] hence it is a trap for 1 in
G. According to lemma 1, 0 wins the game (G, Ezp N Parity, ;) on Y. Now,
to achieve the proof, we show that ¥ # (. Let us suppose that ¥ = and
find a contradiction. ¥ = () means that 1 wins the game (G[X], Ezp N Parity,).
In this case, applying lemma 3, we deduce that 1 wins the game (G, Exp N
Parity; N (V¥\Buchi(D))) = (G, Ezp N Parity,). Since, by hypothesis, 0 wins
(G, Ezp N Parity,), it is a contradiction O

Proposition 2. Player 1 wins positionally the game Exp N Parity,; on his
winning set.

Proof. Without loss of generality, we can assume that player 1 wins everywhere.
The proof is by induction on d. Again, D = ¢ '(d) denotes the set of vertices
of priority d.

If d = 0, it is impossible for player 1 to win any play and his winning set is
empty.

If d is odd and d # 0, consider the set W = Att1 (D).

From Lemma 1, player 1 wins (G[V\W], Exp N Parity;) and we can ap-
ply the inductive hypothesis to the arena G[V\W], which is coloured from 0
to d — 1. Then Lemma 3 shows that player 1 wins the game Exp N Parity; U
(V¥\Buchi(D)) = Ezp N Parity,.

23

The case where d is even is less trivial. From Lemma 5, we deduce immedi-
ately that there exists the greatest subarena of G where player 1 wins position-
ally. It remains to prove that this subarena coincides with the whole subarena.

Let X = (X,,)ner be the family of subsets X,, C V such that X, is a trap for
0 and 1 wins positionally the game Ezp N Parity; on X,,. According to lemma
5, this family is stable by union. Let X = J,,c; X» and ox be an associated
positional strategy winning the game Ezp N Parity,; on X.

To achieve the proof, we shall prove that X = V. Let Y = V\X. Suppose

that Y # (). To obtain a contradiction, we are going to show that Y is a trap for
1 and that 0 wins (G[Y], Ezp N Parity,). According to lemma 1, it implies that
0 wins (G, Ezp N Parity,) on Y which contradicts the hypothesis stating that 1
wins (G, Exp N Parity,) on V.
Y is a trap for player 1: Since X is a trap for player 0, player 1 wins po-
sitionally (G, Exp N Parity;) on Att,(X). For that, while the pebble stays in
Att1 (X)\X, player 1 can attract it positionally in X. When the pebble reaches
X, he can then play its positional strategy winning on X. Hence, Att;(X) € X
and by maximality of X, X = Att;(X). It proves that Y = V\X is a trap for
player 1.

To show that 0 wins (G[Y], EzpN Parity,) on Y, we prove that the sufficient
conditions of Proposition 3 are verified by the arena G[Y], relatively to the set
W =Y\ Atto(G[Y], D).

0 wins the game (G[Y], Exp): Let Yg be the winning set for 1 for the game
(G[Y], Ezp). According to proposition 1, 1 holds a positional strategy og win-
ning for (G[Y], Exzp) on Yg.

Since X is a trap for player 0, ox Uog UYE x X is a positional strategy for
player 1 in G. Moreover, it wins the game (G, EzpN Parity,;) on X UYg. In fact, a
play p consistent with this strategy can be of two types. Either p doesn’t reach X
and is consistent with og. In this case, only a finite number of vertices are visited,
and the play is lost by player 0 for the EzpN Parity,; game. Or the play p reaches
X and from this moment stays in X and is consistent with ox. In this last case,
some suffix of p is lost by player Ofor the game (G[X], Ezp N Parity,). In both
cases, the play is won by player 1. Hence, we proved that 1 wins (G, ExpN Parity,)
on X U YE

By maximality of X in X, Yg = 0. By definition of Yg, player 0 wins

(Gly], Ezp).
0 wins the game (G[W], ExpN Parityy_,): Let Wi be the winning set for 1
for the game (G[W], Ezp N Parity,;_,). Since W is coloured from 0 to d — 1, by
inductive hypothesis, 1 holds a positional strategy Ty, winning for (G[W], Ezpn
Parity,_,) on W. It is easy to see that o UW; x X Uox is a positional strategy
for 1 winning the game (G, Exp N Parity;) on X U W;. By maximality of X in
X, Wy =0.

Hence, the sufficient conditions of Proposition 3 are verified, which proves
that 0 wins (G[Y], Ezp N Parity,). It is a contradiction with the hypothesis that
states that player 1 wins (G, Ezp N Parity,). O

24

B Computing the winning sets and strategies on
pushdown arenas.

B.1 Preliminaries.

We recall briefly the definitions of an alternating Biichi or co-Biichi automata,
a successful run and of the language recognized by such automata.

Boolean formulas. Given a set S, the set BT(S) denotes the set of all positive
formulas over the set S with TT and Ll meaning respectively true and false. We
say that a subset S’ C S satisfies a formula ¢ € B*(S) (denoted S’ |= ¢) if by
assigning TT to all members of S’ and false to all members of S\S’ the formula
¢ evaluates to TT. Given a formula ¢, its dual ¢ is obtained by replacing A by
V, TT by LL and vice-versa.

Alternating automata. An alternating Biichi automaton on trees I'* — X is a
tuple A =< S, 89, T, F >, where

— S is a finite set called the set of states,

— 50 € S is the initial state,

—T:Sx X — BT((I'x 9)) is the set of transitions,
— F C S is a set of final states.

A run of this automaton over a tree t : I'* — X is a tree r C (I" x S)*, such
that

— (rn(I"'x8)) | T(s0),
— for any word u € D*, for any couple (a,s) € I' x Q,

{(8,t) € I' x S :u(a,s)(B,t) € r} |=T(s)

We can now define acceptance by alternating automata. A run r C (I" X S)
on t is accepting if any infinite branch of r visits the set I' x F' infinitely often.

If there exists an accepting run of 4 on ¢, we say that ¢ is accepted or
recognized by the Biichi automaton A. L£(A) is the set of trees accepted by A.

A co-Biichi alternating automaton is defined exactly the same way except
that a run is accepting if any branch of it visits the set I" x F finitely often.

A simple alternating automaton is also defined the same way except that
any run is accepting. In fact, a simple alternating automaton is a special case of
Biichi automaton, when F' = S.

Given a simple (resp. Biichi, co-Biichi) alternating automaton A =< S, s9, T, F' >,
its dual A is the simple (resp. co-Biichi, Biichi) automaton A =< S, s, T, F >,
where T'(s) = (T'(s)). The automaton 4 and A accept complementary languages
[14].

We shall need the following elementary result.

Proposition 4. Let A =< S,sq,T, F > be an alternating co-Biichi automaton.
One can compute an alternating Biichi automaton recognizing the same language
and whose state space is twice bigger than the state space of A.

25

Proof. Koenig Lemma implies that for every accepting computation » C (I" x
S)*, of a co-Biichi alternating automaton, there exists some integer n € N such
that for every m > n,

(70,50) -+ - (YmsSm) €T = S & F

Hence, during a successful computation, after some time, every copy of the au-
tomaton never meets again a final state. Roughly speaking, the equivalent Biichi
automaton shall guess this moment.

To get the Biichi alternating automaton B equivalent to A, it suffices to
duplicate the state space of 4. The state space of B is SU {new} x (Q\F'). The
final states of B are {new} x (Q\F). The transition function of B is T' defines
as follows. Given a boolean positive formula f € B¥(), (new, f) denotes the
formula of BT ({new} x S) obtained from f by replacing every occurrence of
s € S by (new,s)if s¢g Fandby 1L if s€ F. Fors€ S and a € X,

T'(s) =T(s) V (new,T(s)) and T'((new, s)) = (new,T(s)).

Non-determinization of alternating automata.

B.2 Computation of the winning sets and strategies.

Theorem 1. Leti be a player and Vic € {Parity,, ExpUParity,;, ExpNParity,}.
The language of strategy trees which correspond to winning positional strategies
for i is regular. One can effectively construct an alternating co-Biichi automaton
Avie,i with O(d | Q |> + | I'|) states which recognizes it.

Proof. The construction of Ayic; uses techniques close to the one of [20,16].
Unfortunately, we couldn’t manage to make use of the results of those papers
about two-way tree automata, because we don’t know how to use a two-way
automata to detect a cycle in a strategy tree.

Our aim is to construct an alternating co-Biichi automaton accepting a tree
t : I'* — 24 iff there exists a winning positional strategy o such that ¢t = Ty,.
In fact we shall rather construct a Biichi alternating automaton recognizing the
complement of the set {T,|o is a winning positional strategy}.

B.3 Testing whether a tree is a strategy tree.

First of all it is easy to implement an alternating simple automaton verifying if
the tree t is or is not a strategy tree. We give the details of this construction,
which is based on the following lemma.

Lemma 9. Let t : I'* — 22 be a tree. Then t is a strategy tree for player i if
and only if Vy € I'* Yo, € I''Vq,r € Q

1. t(€) only contains L-transitions and t(ya) only contains a-transitions.

26

2. If t(ya) contains a pop-transition to a state r, then t(y) contains a 7-
transition.

3. If t(y) contains a [-push-transition to a state r then t(yB) contains a 7-
transition.

4. If t(vy) contains a (g, a)-transition and q € Q1_; then t(7y) contains every
(g, @) transitions.

Moreover, the language of strategy trees for player i is recognized by a Biichi
alternating automaton with 2 + |I'| + 2|Q)| states.

Proof. Condition (1) is equivalent to the fact that there exists a subgraph G’
of Gp such that ¢ is the coding-tree of this subgraph. Conditions (2) and (3)
are equivalent to the fact that there are no dead-end in G'. Conditions (4) is
equivalent to the fact that the moves of player 1 — ¢ are not restricted.

For each condition C € {1,2,3,4}, we construct an alternating automaton
Ac which accepts a tree ¢ : I'* — 24 if and only if it verifies the condition C.

Construction of A;. Instead of constructing the Biichi automaton A;, we con-
struct its dual Al, which is a co-Biichi automaton. 4; looks for a vertex ~v whose
label contains a transition not consistent with the top letter of «y. It only needs
to keep track of the top of the current stack, hence its state space is 'U{_L}. The
initial state is L. All the states are final, hence the accepting runs are exactly
the finite runs. The transition relation T is defined as follows :

VA C ANVaeI'U{L},

TTif AZ A,

T(a,A) = \ (B, B3) otherwise.
ger

Construction of As and A3. We only describe the construction of A, since A3
is similar to A,. Once again, we construct A, instead of As. It looks for a vertex
v, a state r and a letter a, such that a transition (.,.,—1,r) is in ¢(ya) but no
r-transition is in ().

Its state space is {search} U Q. search is the initial state and once again all
the states are final. In a first time, .45 moves non-deterministically to the vertex
v in the state search, which is the initial state. Then it guesses some r € @) and
a € I' such that there is no r-transition in the label of v and moves to the vertex
~a in the state 7. There he checks that some transition (.,.,—1,7) is in the label
of ya. The transition relation T is defined as follows:

VA C A,
T (search, A) = \/ (a, search) vV \/ (a,1)
ael {reQ:FnA,=0}
a€l’
TT if a transition (.,.,—1,7) isin A

11 otherwise.

T(r,A) = {

27

Construction of Ay. The construction of the dual A4 of A4 is trivial. We ex-
plain it in the case where player ¢ is player 0. This automaton moves non-
deterministically in the tree, looking for a vertex <, such that 7 contains a
(¢, @)-transition but not every (g, a) transition, for some state ¢ € J; and some
letter o € I'. It has only one state. O

B.4 Testing Whether a strategy tree is winning.

Now that we have constructed an automaton which checks whether a tree 1™ —
24 is a strategy tree, we must construct an automaton checking if the strategy o
associated to such a strategy tree is winning or not. For each winning conditions
we study, it can be expressed by some simple conditions about the cycles and
the exploration paths of the graph (Dom(o), o) induced by o. Those criteria are
summarized in table 1. An exploration path is a play winning for the game Exzp,
i.e. a path visiting an infinite number of different vertices.

Game i |Condition on cycles|Condition on exploration paths
Parity 0 |Even Even
110dd Odd
Ezp U Parity,| 0 |Even No condition
1|0dd No exploration path
Ezp N Parity,| 0 |No cycle Even
1 [No condition Odd

Table 1. Characterization of winning positional strategies.

To prove Theorem 1, we shall first construct some alternating automata for
checking the various conditions on cycles and exploration paths listed in table
1. Then, by taking boolean combinations of those alternating automata (which,
according to Proposition 4, induces only a linear blowup of the state space), we
obtain some automata checking the different conditions of table 1, which proves
Theorem 1.

The crucial observation is that any cycle and any exploration path can be
factorized with a simple kind of finite path called a jump.

A N\

Fig.11. A jump from ¢y to ry in a strategy tree.

28

Factorizing cycles and exploration paths with jumps.

Definition 2. A jump of priority ¢ from a configuration qy to a configuration
77 s a path in o from qvy to rvy, of length # 0, such that:

e every configuration on the path is of the form syy' where s € Q and~' € I'*.
o The mazimum priority met along the path is c.

This definition is illustrated by Figure 9.

Clearly, a cycle of colour ¢ is exactly a jump of colour ¢ from a vertex to
itself. The decomposition of exploration paths with jumps is described by the
following Lemma and illustrated by fig. 12.

Lemma 10. Let G be a subgraph of Gp. There exists an exploration path of
priority ¢ in G if and only if

1. Fither there exists an infinite sequence jo,j1,.-. of finite nonempty paths

such that,

(a) jojij2--- is a path in G, and for each i >0,

(b) ji is either a jump or a single vertex and ¢(j;) < c,

(c) the transition from the last vertex of j; to the first vertex of ji+1 is a
push transition,

(d) limen ¢(j;) = c.

2. or there exists an infinite sequence jo,lo, j1,11,-- - of finite nonempty paths

such that,

(a) jojija--- andlyl,—1---lo are paths in G,

(b) each path j; and l; is either a jump or a single vertex of priority less
than c,

(c) the transition from the last vertex of j; to the first vertex of jii1 is a
push transition,

(d) the transition from the last vertex of ;11 to the first vertex of l; is a pop
transition,

(e) there exists a jump of priority less than ¢ from the last vertex of j; to
the first vertex of l;,

(f) the first vertex of jo is identical to the last vertex of lo and there is a
jump of priority ¢ from this vertex to itself.

Proof. Let p = (goY0)(q171) - - - be an exploration path of priority ¢ in G. Then,
since lim ¢(q;) = ¢, there exists some index j > 0 such that the states g;,i > j
are of priority equal or less than ¢. Without restriction, we suppose that 7 =0,
since any suffix of p is also an exploration path of priority c.

There are two cases, depending on whether lim, y |7v;| = +oc.

In the case where lim; |vi| = +00, we show that condition 1 of Lemma
10 holds. Let us define inductively the sequence jo,j1,..., which is simply a
factorization of p, i.e. jo - - - j; is a prefix of p (hence lim;en ¢(5;) = ¢(p) = ¢). Tt
is defined in such a way that the conditions 1a, 1b, 1c and 1d of Lemma 10 hold
and that the stack associated with the last vertex of a j; is never reached again

after jo -« -ji, i.e. vi & {vk : k> |jol +--. + |Jil}-

29

Fig. 12. Two types of exploration paths of priority c¢. The dotted lines are jumps. All
the jumps priorities are less than ¢. On the left hand side, infinitely many j/s priority
are exactly c. On the right hand side, the upper jump, which is a loop, has priority c.

Suppose that jg, ..., j; is already constructed and let n be the index of the
last vertex of j; in p. Since lim;y |v;| = +00 and @ x {yn41} is finite, p reaches
only finitely often a vertex whose stack is ¥, 41. Let m = max{k > n : v, = Yn41}
be the last moment where it occurs and let j; 11 = (gna1Vns1) -« - (gmYm)-

By definition of m, the inductive hypothesis holds for the sequence jg, j1, - - -, ji-
Since joj1 - --Jjiji+1 is a prefix of p, condition 1la holds, and since v,41 = Ym,
condition 1b holds. Let us check condition 1c. If (gnYn, @nt1¥n+1) were a pop-
transition then v,+1 would be a strict prefix of 7,. Since the set Q x Prefiz(y,)
is finite and p is an exploration path, the stack 7, should occur one more time
in p, which contradicts the inductive hypothesis.

In the case where lim;_|v| € N, we show that condition 2 of Lemma
10 holds. In this case, some vertex goyo must occur infinitely often in p. By
choosing 7o of minimal length and taking some suffix of p, we can restrict to the
case where gy~ is the first vertex of p and 7y is a prefix of every stack ~y;,7 € N.

We define inductively the sequence (j;) and (l;), as well as some sequence
(gi,73,vi)ien such that

i there is a push transition from the last vertex of j; to g;vi,
ii a pop transition from r;y; to the first vertex of [;,
iii and such that there are jumps of arbitrary high depth and of priority < ¢
from g;v; to riv;.

We begin the induction with jo = goyo = 70v0 = lo. Now suppose that the
sequence has been defined until rank 7 and that conditions 2 of lemma, 10 as well

30

as conditions (i), (ii) and (iii) hold. Let J; be the set of jumps of priority < ¢
from g;y; to r;y;- Let j € J; be a jump of depth m > 2. Then, by definition of a
jump, there exists a factorization j = uvw, such that v and w are jumps on the
stack 7; and v is a jump of depth (m — 1) from some vertex ¢(j)v;a(j) to some
vertex r(j)v;a(j) with q(j),r(j) € Q and a(j) € I

According to condition (iii), J; is infinite. Since Q? x I' is finite, there exists
some triple (git1,7it1,;) such that (giy1,7i41,0:) = (¢(j),r(4),a(j)) for in-
finitely many j € J; of arbitrarily high depth. Let v;41 = v;a; and j;11vl;41 be
a factorization of a jump j € J; such that v is a jump from ¢;19;4+1 tO r441¥541
of priority < c¢. By definition of ¢;+1 and r;41, condition 2e holds. By inductive
hypothesis (i) and (ii) g;v;, which is the first vertex of j;y1, is a successor of
the last vertex of j;, whereas r;v;, the last vertex of l;;1, is a predecessor of the
first vertex of I;, which proves that condition 2a, 2b, 2¢, 2d , (i) and (ii) hold.
Condition (iii) hold by definition of the triple (g1, 7i+1, ;). O

Testing the existence of a jump in a strategy tree. To prove Theorem
1, we shall first construct an alternating automaton Aj,m,, that can check the
existence of a jump. Once done, it is easy to modify it in order to obtain an
automaton checking the existence of a jump or of an exploration path of a given
priority.

We use the following notations. For v € I'* and t : I'* — 24, t[y] denotes
the tree v/ — t(vy'). Given an automaton A and a state ¢ of this automaton,
Alq] denotes the automaton obtained by setting the initial state of A4 to be q.

Lemma 11. There exists an alternating Biichi automaton Ajump with state
space

([0, d] U {pop}) x Q* such that, given (c,q,r) € [0,d] x Q2, a coding treet : I'* —
24 of a subgraph G of Gp and some vertex vy of t, there exists a jump of priority
¢ from gy to ry in G if and only if Ajumpl(c,q,T)] accepts t[7].

Proof. Suppose that there exists a jump of colour ¢ from gy to rvy and let

J = (90%0, @171, - - »qnYn), Where govo = ¢y and ¢y, =17y

be such a jump. Consider the set {i € [0,n] : 7; = 7} of indices where the jump
j comes back on the stack . We sort it:

{ielo,n]:vi=9}={0=ip<i1 <...<ir=n}

Remark that when we selected a jump of priority ¢ from g~ to vy, we could have
chosen one such that there exists at most one couple {({,1') : I < I'} such that
¢i, = ¢i, - (In fact, we can delete almost all the cycles in j, possibly keeping one
such cycle if its priority is ¢) Suppose that we have selected such a jump, then
k<|QI+1.

The jump j can be factorized as

3= (i) - Jo - (@i,) - -~k - (@i Y)- (1)

31

where the j;’s are non-empty paths.

We can remark a few things about this factorization. From the definition of
a jump, it appears that, for each 1 < i < k, the path j; is either a single vertex
or a jump from a configuration r;va; to another configuration s;ya;, where
ri,8; € @ and a; € I'. On figure 9, those two cases correspond respectively to
the right and left parts of the jump. Moreover, since j is a path in G, we deduce
that for each 1 <1 < k —1, (g;,7,myu) and (s;yoaq,qi,,7y) are edges of G,
corresponding respectively to an o;-push transition and a pop-transition of P.
From the definition of the priority, we get

¢(j) = max{¢(q;,),c : | € [0,k]}, where ¢; = ¢(ji).

The construction of Ay mp is directly inspired by those remarks. When A;ymp
is in the state (c,q,r) on a stack -, it guesses the sequence

(qizarlaalaSlaqiz-i-l)cl)OSlSk—l € (Q2 x I' x Q2 X [Oad])S|Q|+15

with & < |Q| + 2. Then Ajyump has to verify that this sequence is really the
sequence associated with a jump j of priority ¢ from ¢y to rvy. For that, it shall
check that, for 0 <1<k —1:

gi, = q and Qippn =T,

t(y) contains a push transition (g;,, ., a,).

(r; = sy and @(r;) = ¢;) or there exists a jump of color ¢; from rvay to s;yay,
t(yay) contains a pop transition (s, o, —1, i,),

max{(a), e -0 <1<k} =c.

A s

The verification of conditions 1,2 and 5 can be made without moving from the
vertex 7.

For checking condition 4, Ajyump shall send a copy of itself in the direction
ay, to check that the transition (s;, oy, —1,¢i4+1) is in the label of the vertex ya.
This copy needs to record the couple (s;,q1+1) € Q% and its state is (pop, s, gi41)-

Let consider condition 3. If r; = s; and ¢(r;) = ¢, condition 3 holds and
Ajump does nothing. In the opposite case, it sends a copy of itself in direction
oy to check the existence of a jump of priority ¢; from r;yay to s;ya;. This copy
must record the tuple (¢, 7, ;) € [0,d] x Q% and its state is (c;, 71, 5;)-

Finally, the state space of Ajump is {pop} x Q2 U [0,d] x Q2 it has no final
state, and its transition table is:

32

VAC Aand Vae I'U{Ll},

TT if some pop-transition (s,.,—1,¢) is in A

T((pop,s,q),A) = {J_L otherwise.
T((c,1,58),A) = \/

((Il77'laal7slyql+1,cl)oslsks|Q|
s.t. condition 1,2 and 5 are verified.

/\ ((ala(POP;Sthl)) A ((Otl, (ci,71,51)) V TTmi=s))

0<I<k ¢(r)=c

TT if C is a true condition
whereTT ¢ means]
11 otherwise.

Since there are no final state, an accepting computation of Aj,m, is exactly
a finite computation where all the copies reaches eventually the state TT. An
induction on the height of this tree and on the height of the jumps proves Lemma
11.

Checking the existence of cycles or exploration paths in strategy trees.
Now that Ajump has been constructed, we begin the constructions of the au-
tomata checking the conditions of Table 1.

Concerning the conditions on cycles, those constructions consist in trivial
modifications of A;ymp, since a cycle is simply a jump from a vertex to itself
(Lemma 10).

We also have to construct an automaton A,q:, checking the existence of an
exploration path of priority ¢ in a strategy tree ¢. Roughly speaking, App tries
to guess a sequence jo,j1,J2 --- OF jo,lo,j1,01 ... which meet the conditions of
Lemma, 10.

First case of lemma 10. Let jojijo ... be as in Lemma 10, §; be the push
transition between the last vertex r;y; of j; and the first vertex ¢; 111 of jit+1,
and ¢; = ¢(j;). During a computation, one of the copy of Apaen, that we will
call the main copy, tries to guess the sequences dg,d1,... and ¢1,ca,. .., while
the other copies are verifying the existence of the jumps 71, jo, - - ..

The main copy starts in an initial state called search and goes non-deterministically
in this state to the vertex 7. Here, it guesses dg = (79, -, @0, q1),r1and and ¢y,
such that &g is in the label of . Either ¢ = r, in this case ¢(q;) should be
¢1, or ¢ # r1. In this last case, Apq.sn launch a copy of Ajump in the direction
ag and the state (c¢1,41,71) to check the existence of a jump of priority ¢; from
G1YoQ = ¢171 to Tt

Then, the main copy goes in the direction ag. It must record in its state that
it is discovering an exploration path that reaches the vertex r1v1. If ¢4 = ¢, its
state is a Biichi state called (hit,r;), otherwise it is a non-Biichi state called
(regular,rq).

33

In an accepting computation, infinitely many of the jumps are of priority c,
hence the priority of the exploration path is c.

Second case of lemma 10. This construction is similar. Some main copy
guesses the sequence of push and pop transitions associated to the sequences
Jo,J1,--- and lg,lq, ..., and uses Ajump to check the existence of the different
jumps. O

Theorem 2. For each player i and winning condition

Vic € {Parity,, Exp U Parity,, Exp N Parity,}, the tree which associates with a
stack -y the set {q € Q : gy is winning for i} is regular. One can compute a non-
deterministic Bichi automata which recognizes it, whose size s 20(dQP+I1) if
Vic € {Parity,, Exp U Parity,} and 20(IQP+dITY) £ Vic = Exp N Parity,.

Proof. For the games Parity,; and ExzpU Parity,, this Theorem is a direct corol-
lary of Theorem 1. In fact, we can build a Biichi alternating automaton which
recognizes the language of couples (o9, 01) such that o; is a winning positional
strategy for player ¢ and the domains of o9 and o are a partition of Vp. The win-
ning sets are then obtained by projection, which requires a non-determinization,
hence an exponential blowup of the state space of the alternating automaton
[15]. For the game EzpN Parity,, the situation is less simple since player 0 does
not necessarily hold any positional strategy, and we shall make use of Proposition
3, that we recall:

Proposition 3. Let G = (V,E) be an arena coloured from 0 to d # 0. Let D
be the set of vertices coloured by d. 0 wins the game (G, Exp N Parity,) on V if
and only if there exists a subarena G[W], coloured from 0 to d — 1 such that:

e Case d even: 0 wins the game (G[W], ExpNParity, ,), the game (G, Exp)
and wins the game (G, Attraction(D)) on V\W.

e Case d odd: 0 wins the game (G,Trap(W)) with a positional strategy
Orrap(w), and wins the game (G[W, 0ryqpw)], Exp N Parity, ;).

We define the notion of winning-proof, which is a tree on I'* labeled by tuples
of subsets of A, and is defined such that the existence of a winning-proof in an
arena is equivalent to the conditions of Proposition 3. Here follows the definition
of a winning-proof in a subarena G of a pushdown arena Gp.

In the case where d = 0, it is a strategy tree T;,,,, winning the game (G, Exp).

In the case where d > 0 and is even, it is a tuple Ty = (T", Ty ,,, To 5, Ta—1)
where

T' is the coding tree of a subarena G’ of G,

Ty, is a strategy tree winning the game (G, Exp),

Ty, is a strategy tree winning the game (G, Attraction(D)) on Dom(G'),
Ty—1 is a (d — 1)-winning proof in G’.

In the case where d is odd, it is a tuple Ty = (7", Ty ,,,, T4 1) Where

e T'is the coding tree of a subarena G’ of G,

34

e Ty, is a strategy tree winning the game (G, Trap(Dom(G"))),
e Ty_1is a (d — 1)-winning proof in G'.

Proposition 3 implies that the language of d-winning proofs in G is non-
empty if and only if player 0 wins (G, Exp N Parity;). Moreover, a construction
similar to that of the proof of Theorem 1 proves that this language is regular
and recognized by an alternating automaton with O(d | @ |? + | I' |) states.

Instead of simply constructing an automaton checking whether a tree T :
I'* — 24 ig a strategy tree, we must construct some automaton recognizing the
language of couples (T,T") : I'* — 24 x 24 such that T" is the coding tree of a
subarena of Gp and T is the coding tree of a subarena of T' (resp. is a strategy
in T"). Tt only requires a few elementary changes in subsection B.1.

Let o be a positional strategy in an arena G. As in the case of the games
{Parityy, Exp U Parity,, Exp N Parity,}, there are simple conditions about the
cycles and the exploration paths of (Dom(o), o) for deciding whether o wins the
games (G, Attraction(D)) and (G, Trap(Dom(G'"))):

o does not win the game (G, Attraction(D)) if there is a cycle or an explo-
ration path in (Dom(o), o) which visits no vertex of priority d.

o does not win the game (G,Trap(Dom(G"))) if (Dom(c),0) contains a
cycle that reach a vertex outside Dom(G') or contains an infinite exploration
path that reaches infinitely often a vertex that is not in Dom(G"). We modify
Ajump and Apqs in the following way.

Instead of reading a tree T : I'* — 24, those automata will read a couple
of trees (T,T") : I'* — 24 x 24, such that T is a strategy tree in the arena G’
coded by T".

We can modify the transition table of Ajy,mp in such a way that they consider
the priority of a state ¢y € @ to be 1 if there is some g-transition in the label
T'(y) and to be 0 otherwise. With this new colouring, an infinite exploration
path reaches infinitely often a vertex that is not in Dom/(G") if and only if its
priority is 0, and we can use Apq¢, to look for those paths.

Finally, to check that some tree is a winning-proof, we need to check O(d)
conditions using an alternating automata with at most O(d | Q |* + | I |) states.
We obtain an alternating automaton with O(d? | Q |?> +d | I' |) states.

Thus, we can apply the same technique as in the positional case to construct
the desired non-deterministic Biichi automaton. O

35

