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Abstract. Markov decision processes (MDPs) are controllable discrete
event systems with stochastic transitions. Performances of an MDP are
evaluated by a payoff function. The controller of the MDP seeks to op-
timize those performances, using optimal strategies.
There exists various ways of measuring performances, i.e. various classes
of payoff functions. For example, average performances can be evalu-
ated by a mean-payoff function, peak performances by a limsup payoff
function, and the parity payoff function can be used to encode logical
specifications.
Surprisingly, all the MDPs equipped with mean, limsup or parity payoff
functions share a common non-trivial property: they admit pure station-
ary optimal strategies.
In this paper, we introduce the class of prefix-independent and submixing
payoff functions, and we prove that any MDP equipped with such a payoff
function admits pure stationary optimal strategies.
This result unifies and simplifies several existing proofs. Moreover, it is
a key tool for generating new examples of MDPs with pure stationary
optimal strategies.

1 Introduction

Controller synthesis. One of the central questions in system theory is the con-
troller synthesis problem : given a controllable system and a logical specification,
is it possible to control the system so that its behaviour meets the specification?

In the most classical framework, the transitions of the system are not stochas-
tic and the specification is given in LTL or CTL*. In that case, the controller
synthesis problem reduces to computing a winning strategy in a parity game on
graphs [Tho95].

There are two natural directions to extend this framework.
First direction consists in considering systems with stochastic

transitions [dA97]. In that case the controller wishes to maximize the probability
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that the specification holds. The corresponding problem is the computation of
an optimal strategy in a Markov decision process with parity condition [CY90].

Second direction to extend the classical framework of controller synthesis con-
sists in considering quantitative specifications [dA98,CMH06]. Whereas a logical
specification specifies good and bad behaviours of the system, a quantitative
specification evaluates performances of the system in a more subtle way. These
performances are evaluated by a payoff function, which associates a real value
with each run of the system. Synthesis of a controller which maximizes perfor-
mances of the system corresponds to the computation of an optimal strategy in
a payoff game on graphs.

For example, consider a logical specification that specifies that the system
should not reach an error state. Then using a payoff function, we can refine this
logical specification. For example, we can specify that the number of visits to
the error states is as small as possible, or also that the average time between
two occurrences of the error state is as long as possible. Observe that logical
specifications are a special case of quantitative specifications, where the payoff
function takes only two possible values, 1 or 0, depending whether or not the
behaviour of the system meets the specification.

In the most general case, the transitions of the system are stochastic and
the specification is quantitative. In that case, the controller wishes to maximize
the expected value of the payoff function, and the controller synthesis problem
consists in computing an optimal strategy in a Markov decision process.

Positional payoff functions. Various payoff functions have been introduced
and studied, in the framework of Markov decision processes but also in the
broader framework of two player stochastic games. For example, the discounted
payoff [Sha53,CMH06] and the total payoff [TV87] are used to evaluate short-
term performances. Long-term performances can be computed using the mean-
payoff [Gil57,dA98] or the limsup payoff [MS96] that evaluate respectively av-
erage performances and peak performances. These functions are central tools in
economic modelization. In computer science, the most popular payoff function
is the parity payoff function, which is used to encode logical properties.

Very surprisingly, the discounted, total, mean, limsup and parity payoff func-
tions share a common non-trivial property. Indeed, in any Markov decision pro-
cess equipped with one of those functions there exists optimal strategies of a
very simple kind : they are at the same time pure and stationary. A strategy is
pure when the controller plays in a deterministic way and it is stationary when
choices of the controller depend only on the current state, and not on the full
history of the run. For the sake of concision, pure stationary strategies are called
positional strategies, and we say that a payoff function itself is positional if in
any Markov decision process equipped with this function, there exists an optimal
strategy which is positional.

The existence of positional optimal strategies has algorithmic interest. In
fact, this property is the key for designing several polynomial time algorithms
that compute values and optimal strategies in MDPs [Put94,FV97].



Recently, there has been growing research activity about the existence of
positional optimal strategies in non-stochastic two-player games with infinitely
many states [Grä04,CN06,Kop06] or finitely many states [BSV04,GZ05]. The
framework of this paper is different, since it deals with finite MDPs, i.e. one-
player stochastic games with finitely many states and actions.

Our results. In this paper, we address the problem of finding a common prop-
erty between the classical payoff functions introduced above, which explains why
they are all positional. We give the following partial answer to that question.

First, we introduce the class of submixing payoff functions, and we prove that
a payoff function which is submixing and prefix-independent is also positional
(cf. Theorem 1).

This result partially solves our problem, since the parity, limsup and mean-
payoff functions are prefix-independent and submixing (cf. Proposition 1).

Our result has several interesting consequences. First, it unifies and short-
ens disparate proofs of positionality for the parity [CY90], limsup [MS96] and
mean [Bie87,NS03] payoff function (section 4). Second, it allows us to generate
a bunch of new examples of positional payoff functions (section 5).

Plan. This paper is organized as follows. In section 2, we introduce notions of
controllable Markov chain, payoff function, Markov decision process and opti-
mal strategy. In section 3, we state our main result : prefix-independent and
submixing payoff functions are positional (cf. Theorem 1). In the same section,
we give elements of proof of Theorem 1. In section 4, we show that our main
result unifies various disparate proofs of positionality. In section 5, we present
new examples of positional payoff functions.

2 Markov decision processes

Let S be a finite set. The set of finite (resp. infinite) sequences on S is denoted
S∗ (resp. Sω). A probability distribution on S is a function δ : S → R such that
∀s ∈ S, 0 ≤ δ(s) ≤ 1 and

∑
s∈S δ(s) = 1. The set of probability distributions on

S is denoted D(S).

2.1 Controllable Markov chains and strategies

Definition 1. A controllable Markov chain A = (S,A, (A(s))s∈S, p) is com-
posed of:

– a finite set of states S and a finite set of actions A,
– for each state s ∈ S, a set A(s) ⊆ A of actions available in s,
– transition probabilities p : S×A → D(S) .

When the current state of the chain is s, then the controller chooses an
available action a ∈ A(s), and the new state is t with probability p(t|s, a).

A triple (s, a, t) ∈ S×A× S such that a ∈ A(s) and p(t|s, a) > 0 is called a
transition.



A history in A is an infinite sequence h = s0a1s1 · · · ∈ S(AS)ω such that for
each n, (sn, an+1, sn+1) is a transition. State s0 is called the source of h. The
set of histories with source s is denoted Pω

A,s . A finite history in A is a finite
sequence h = s0a1 · · · an−1sn ∈ S(AS)∗ such that for each n, (sn, an+1, sn+1) is
a transition. s0 is the source of h and sn its target. The set of finite histories
(resp. of finite histories with source s) is denoted P∗

A (resp. P∗
A,s).

A strategy in A is a function σ : P∗
A → D(A) such that for any finite history

h ∈ P∗
A with target t ∈ S, the distribution σ(h) puts non-zero probabilities only

on actions that are available in t, i.e. (σ(h)(a) > 0) =⇒ (a ∈ A(t)). The set of
strategies in A is denoted ΣA .

As explained in the introduction of this paper, certain types of strategies are
of particular interest, such as pure and stationary strategies. A strategy is pure
when the controller plays in a determnistic way, i.e. without using any dice, and
it is stationary when the controller plays without using any memory, i.e. his
choices only depend on the current state of the MDP, and not on the entire
history of the play. Formally :

Definition 2. A strategy σ ∈ ΣA is said to be:

• pure if ∀h ∈ P∗
A, (σ(h)(a) > 0) =⇒ (σ(h)(a) = 1) ,

• stationary if ∀h ∈ P∗
A with target t, σ(h) = σ(t) ,

• positional if it is pure and stationary.

Since the definition of a stationary strategy may be confusing, let us remark that
t ∈ S denotes at the same time the target state of the finite history h ∈ P∗

A and
also the finite history t ∈ P∗

A,t of length 1.

2.2 Probability distribution induced by a strategy

Suppose that the controller uses some strategy σ and that transitions between
states occur according to the transition probabilities specified by p(·|·, ·). Then
intuitively the finite history s0a1 · · · ansn occurs with probability

σ(s0)(a1) · p(s1|s0, a1) · · ·σ(s0 · · · sn−1)(an) · p(sn|sn−1, an) .

In fact, it is also possible to measure probabilities of infinite histories. For
this purpose, we equip Pω

A,s with a σ-field and a probability measure. For any
finite history h ∈ P∗

A,s, and action a, we define the sets of infinite plays with
prefix h or ha:

Oh = {s0a1s1 · · · ∈ Pω
A,s | ∃n ∈ N, s0a1 · · · sn = h}

Oha = {s0a1s1 · · · ∈ Pω
A,s | ∃n ∈ N, s0a1 · · · snan+1 = ha} .

Pω
A,s is equipped with the σ-field generated by the collection of sets Oh and

Oha. In the sequel, a measurable set of infinite paths will be called an event.
Moreover, when there is no risk of confusion, the events Oh and Oha will be
denoted simply h and ha.



A theorem of Ionescu Tulcea (cf. [BS78]) implies that there exists a unique
probability measure Pσ

s on Pω
A,s such that for any finite history h ∈ P∗

A,s with
target t, and for every a ∈ A(t),

Pσ
s (ha | h) = σ(h)(a) , (1)

Pσ
s (har | ha) = p(r|t, a) . (2)

We will use the following random variables. For n ∈ N, and t ∈ S,

Sn(s0a1s1 · · · ) = sn the (n + 1)-th state,
An(s0a1s1 · · · ) = an the n-th action,
Hn = S0A1 · · ·AnSn the finite history of the first n stages,
Nt = |{n > 0 : Sn = t}| ∈ N ∪ {+∞} the number of visits to state t. (3)

2.3 Payoff functions

After an infinite history of the controllable Markov chain, the controller gets
some payoff. There are various ways for computing this payoff.

Mean payoff. The mean-payoff function has been introduced by Gilette [Gil57]
and is used to evaluate average performance. Each transition (s, a, t) of the
controllable Markov chain is labeled with a daily payoff r(s, a, t) ∈ R. An his-
tory s0a1s1 · · · gives rise to a sequence r0r1 · · · of daily payoffs, where rn =
r(sn, an+1, sn+1). The controller receives the following payoff:

φmean(r0r1 · · · ) = lim sup
n∈N

1
n + 1

n∑
i=0

ri . (4)

Discounted payoff. The discounted payoff has been introduced by Shapley [Sha53]
and is used to evaluate short-term performance. Each transition (s, a, t) is la-
beled not only with a daily payoff r(s, a, t) ∈ R but also with a discount factor
0 ≤ λ(s, a, t) < 1. The payoff associated with a sequence (r0, λ0)(r1, λ1) · · · ∈
(R× [0, 1[)ω of daily payoffs and discount factors is:

φλ
disc((r0, λ0)(r1, λ1) · · · ) = r0 + λ0r1 + λ0λ1r2 + · · · . (5)

Parity payoff. The parity payoff function is used to encode temporal logic prop-
erties [GTW02]. Each transition (s, a, t) is labeled with some priority c(s, a, t) ∈
{0, . . . , d}. The controller receives payoff 1 if the highest priority seen infinitely
often is odd, and 0 otherwise. For c0c1 · · · ∈ {0, . . . , d}ω,

φpar(c0c1 · · · ) =

{
0 if lim supn cn is even,
1 otherwise.

(6)



General payoffs. In the sequel, we will give other examples of payoff functions.
Observe that in the examples we gave above, the transitions were labeled with
various kinds of data: real numbers for the mean-payoff, couple of real numbers
for the discounted payoff and integers for the parity payoff.

We wish to treat those examples in a unified framework. For this reason, we
consider now that each controllable Markov chain A comes together with a finite
set of colours C and a mapping col : S×A× S → C, which colors transitions.

In the case of the mean payoff, transitions are coloured with real numbers
hence C ⊆ R, whereas in the case of the discounted payoff colours are couples
C ⊆ R× [0, 1[ and for the parity game colours are integers C = {0, . . . , d}.

For an history (resp. a finite history) h = s0a1s1 · · · , the colour of the history
h is the infinite (resp. finite) sequence of colours

col(h) = col(s0, a1, s1) col(s1, a2, s2) · · · .

Definition 3. Let C be a finite set. A payoff function on C is a measurable1

and bounded function φ : Cω → R .

After an history h, the controller receives payoff φ(col(h)) .

2.4 Values and optimal strategies in Markov decision processes

Definition 4. A Markov decision process is a couple (A, φ), where A is a con-
trollable Markov chain coloured by a set C and φ is a payoff function on C .

Let us fix a Markov decision process M = (A, φ). After history h, the con-
troller receives payoff φ(col(h)) ∈ R. We extend the definition domain of φ to
Pω
A,s :

∀h ∈ Pω
A,s, φ(h) = φ(col(h)) .

The expected value of φ under the probability Pσ
s is called the expected payoff

of the controller and is denoted Eσ
s [φ]. It is well-defined because φ is measurable

and bounded. The value of a state s is the maximal expected payoff that the
controller can get :

val(M)(s) = sup
σ∈ΣA

Eσ
s [φ] .

A strategy σ is said to be optimal in M if for any state s ∈ S,

Eσ
s [φ] = val(M)(s) .

3 Optimal positional control

We are interested in those payoff functions that ensure the existence of positional
optimal strategies. It motivates the following definition.

1 relatively to the Borelian σ-field on Cω.



Definition 5. Let C be a finite set of colors and φ a payoff function on Cω.
Then φ is said to be positional if for any controllable Markov chain A coloured
by C, there exists a positional optimal strategy in the MDP (A, φ).

Our main result concerns the class of payoff functions with the following
properties.

Definition 6. Let φ be a payoff function on Cω. We say that φ is prefix-
independent if for any finite word u ∈ C∗ and infinite word v ∈ Cω, φ(uv) =
φ(v). See [Cha06] for interesting results about concurrent stochastic games with
prefix-independent payoff functions. We say that φ is submixing if for any se-
quence of finite non-empty words u0, v0, u1, v1, . . . ∈ C∗,

φ(u0v0u1v1 · · · ) ≤ max { φ(u0u1 · · · ) , φ(v0v1 · · · ) } .

The notion of prefix-independence is classical. The submixing property is
close to the notions of fairly-mixing payoff functions introduced in [GZ04] and
of concave winning conditions introduced in [Kop06]. We are now ready to state
our main result.

Theorem 1. Any prefix-independent and submixing payoff function is positional.

The proof of this theorem is based on the 0-1 law and an induction on the
number of actions. Due to space restrictions, we do not give details here, a full
proof can be found in [Gim].

4 Unification of classical results

We now show how Theorem 1 unifies proofs of positionality of the parity [CY90],
the limsup and liminf [MS96] and the mean-payoff [Bie87,NS03] functions.

The parity, mean, limsup and liminf payoff functions are denoted respectively
φpar, φmean, φlsup and φlinf. Both φpar and φmean have already been defined in
subsection 2.3. φlsup and φlinf are defined as follows. Let C ⊆ R be a finite set
of real numbers, and c0c1 · · · ∈ Cω. Then

φlsup(c0c1 · · · ) = lim sup
n

cn

φlinf(c0c1 · · · ) = lim inf
n

cn .

The four payoff functions φpar, φmean, φlsup and φlinf are very different. Indeed,
φlsup measures the peak performances of the system, φlinf the worst perfor-
mances, and φmean the average performances. The function φpar is used to encode
logical specifications, expressed in MSO or LTL for example [GTW02].

Proposition 1. The payoff functions φlsup, φlinf, φpar and φmean are submixing.



Proof. Let C ⊆ R be a finite set of real numbers and u0, v0, u1, v1, . . . ∈ C∗

be a sequence of finite non-empty words on C. Define u = u0u1 · · · ∈ Cω,
v = v0v1 · · · ∈ Cω and w = u0v0u1v1 · · · ∈ Cω. The following elementary fact
immediately implies that φlsup is submixing.

φlsup(w) = max{φlsup(u), φlsup(v)} . (7)

In a similar way, φlinf is submixing since

φlinf(w) = min{φlinf(u), φlinf(v)} . (8)

Now suppose that C = {0, . . . , d} is a finite set of integers and consider
function φpar. Remember that φpar(w) equals 1 if φlsup(w) is odd and 0 if φlsup(w)
is even. Then using (7) we get that if φpar(w) has value 1 then it is the case of
either φpar(u) or φpar(v). It proves that φpar is also submixing.

Now let us consider function φmean. A proof that φmean is submixing already
appeared in [GZ04], and we reproduce it here, updating the notations. Again
C ⊆ R is a finite set of real numbers. Let c0, c1, . . . ∈ C be the sequence of
letters of C such that w = (ci)i∈N. Since word w is a shuffle of words u and v,
there exists a partition (I0, I1) of N such that u = (ci)i∈I0 and v = (ci)i∈I1 . For
any n ∈ N, let In

0 = I0 ∩ {0, . . . , n} and In
1 = I1 ∩ {0, . . . , n}. Then for n ∈ N,

1
n + 1

n∑
i=0

ci =
|In

0 |
n + 1

 1
|In

0 |
∑
i∈In

0

ci

 +
|In

1 |
n + 1

 1
|In

1 |
∑
i∈In

1

ci


≤ max

 1
|In

0 |
∑
i∈In

0

ci,
1
|In

1 |
∑
i∈In

1

ci

 .

The inequality holds since |In
0 |

n+1 + |In
1 |

n+1 = 1. Taking the superior limit of this
inequality, we obtain φmean(w) ≤ max{φmean(u), φmean(v)}. It proves that φmean

is submixing. ut

Since φlsup, φlinf, φpar and φmean are clearly prefix-independent, Proposi-
tion 1 and Theorem 1 imply that those four payoff functions are positional.
Hence, we unify and simplify existing proofs of [CY90,MS96] and [Bie87,NS03].
In particular, we use only elementary tools for proving the positionality of the
mean-payoff function, whereas [Bie87] uses martingale theory and relies on other
papers, and [NS03] uses a reduction to discounted games, as well as analytical
tools.

5 Generating new examples of positional payoff functions.

We present three different techniques for generating new examples of positional
payoff functions.



5.1 Mixing with the liminf payoff

In last section, we saw that peak performances of a system can be evaluated
using the limsup payoff, whereas its worst performances are computed using the
liminf payoff. The compromise payoff function is used when the controller wants
to achieve a trade-off between good peak performances and not too bad worst
performances. Following this idea, we introduced in [GZ04] the following payoff
function. We fix a factor λ ∈ [0, 1], a finite set C ⊆ R and for u ∈ Cω, we define

φλ
comp(u) = λ · φlsup(u) + (1− λ) · φlinf(u) .

The fact that φλ
comp is submixing is a corollary of the following proposition.

Proposition 2. Let C ⊆ R, 0 ≤ λ ≤ 1 and φ be a payoff function on C.
Suppose that φ is prefix-independent and submixing. Then the payoff function

λ · φ + (1− λ) · φlinf (9)

is also prefix-independent and submixing.

The proof is straightforward, using (8) above. According to Theorem 1 and
Proposition 1, any payoff function defined by equation (9), where φ is either
φmean, φpar or φlsup, is positional. Hence, this technique enable us to generate
new examples of positional payoffs.

5.2 The approximation operator

Consider an increasing function f : R → R and a payoff function φ : Cω → R.
Then their composition f ◦ φ is also a payoff function and moreover, if φ is
positional then f ◦ φ also is. Indeed, a strategy optimal for an MDP (A, φ) is
also optimal for the MDP (A, f ◦ φ).

An example is the threshold function f = 1≥0 which associates 0 with strictly
negative real numbers and 1 with positive number. Then f ◦φ indicates whether
the performance evaluated by φ reaches the critical value of 0.

Hence any increasing function f : R → R defines a unary operator on the
family of payoff functions, and this operator stabilizes the family of positional
payoff functions. In fact, it is straightforward to check that it also stabilizes the
sub-family of prefix-independent and submixing payoff functions.

5.3 The hierarchical product

Now we define a binary operator between payoff functions, which also stabilizes
the family of prefix-independent and submixing payoff functions. We call this
operator the hierarchical product.

Let φ0, φ1 be two payoff functions on sets of colours C0 and C1 respectively.
We do not require C0 and C1 to be identical nor disjoints.



The hierarchical product φ0 B φ1 of φ0 and φ1 is a payoff function on the set
of colours C0 ∪C1 and is defined as follows. Let u = c0c1 · · · ∈ (C0 ∪C1)ω and
u0 and u1 the two projections of u on C0 and C1 respectively. Then

(φ0 B φ1)(u) =

{
φ0(u0) if u0 is infinite,
φ1(u1) otherwise.

This definition makes sense : although each word u0 and u1 can be either finite
or infinite, at least one of them must be infinite.

Let us give examples of use of hierarchical product.
For e ∈ N, let 0e and 1e be the payoff functions defined on the one-letter

alphabet {e} and constant equal to 0 and 1 respectively. Let d be an odd number,
and φpar be the parity payoff function on {0, . . . , d}. Then

φpar = 1d B 0d−1 B · · ·B 11 B 00 .

Another example of hierarchical product was given in [GZ05,GZ06], where we
defined and establish properties about the priority mean-payoff function. This
payoff function is in fact the hierarchical product of d mean-payoff functions.
Remark that another way of fusionning the parity payoff and the mean-payoff
functions has been presented in [CHJ05], and the resulting payoff function is
not positional. In contrary, it turns out that the priority mean-payoff function
is positional, as a corollary of Theorem 1, and the following proposition, whose
proof is easy.

Proposition 3. Let φ0 and φ1 be two payoff functions. If φ0 and φ1 are prefix-
independent and submixing, then φ0 B φ1 also is.

5.4 Towards a quantitative specification language?

In the previous section, we defined two unary operators and one binary operator
over payoff functions. Moreover, we proved that the class of prefix-independent
and submixing payoff functions is stable under these operators. As a conse-
quence, if we start with the constant, the limsup, the liminf and the mean payoff
functions, and we apply recursively our three operators, we get a huge family
of sub-mixinf and prefix-independent payoff functions. According to Theorem 1,
all those functions are positional.

We hope that this result is a first step towards a rich quantitative specification
language. For example, using the hierarchical product, we can express properties
such as: “Minimize the frequency of visits to error states. In the case where
error states are visited only finitely often, maximize the peak performances.”
The positionality of those payoff functions gives hope that the corresponding
controller synthesis problems are solvable in polynomial time.



6 Conclusion

In that paper, we have introduced the class of prefix-independent and submixing
payoff functions, and we proved that they are positional. Moreover, we have
defined three operators on payoff functions, that can be used to generate new
examples of MDPs with positional optimal strategies.

There are different natural directions to continue this work.
First, most of the results of this paper can be extended to the broader frame-

work of two-player zero-sum stochastic games with full information. This is on-
going work with Wies law Zielonka, to be published soon.

Second, the results of the last section give rise to natural algorithmic ques-
tions. For MDPs equipped with mean, limsup, liminf, parity or discounted payoff
functions, the existence of optimal positional strategies is the key for designing al-
gorithms that compute values and optimal strategies in polynomial time [FV97].
For examples generated with the mixing operator and the hierarchical product, it
seems that values and optimal strategies are computable in exponential time, but
we do not know the exact complexity. Also it is not clear how to obtain efficient
algorithms when payoff functions are defined using approximation operators.

To conclude, let us formulate the following conjecture about positional payoff
functions. “Any payoff function which is positional for the class of non-stochastic
one-player games is positional for the class of Markov decision processes”.
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[Grä04] E. Grädel. Positional determinacy of infinite games. In Proc. of STACS’04,

volume 2996 of LNCS, pages 4–18, 2004.
[GTW02] E. Grdel, W. Thomas, and T. Wilke. Automata, Logics and Infinite Games,

volume 2500 of LNCS. Springer, 2002.
[GZ04] H. Gimbert and W. Zielonka. When can you play positionally? In Proc. of

MFCS’04, volume 3153 of LNCS, pages 686–697. Springer, 2004.
[GZ05] H. Gimbert and W. Zielonka. Games where you can play optimally without

any memory. In CONCUR 2005, volume 3653 of LNCS, pages 428–442.
Springer, 2005.

[GZ06] H. Gimbert and W. Zielonka. Deterministic priority mean-payoff games as
limits of discounted games. In Proc. of ICALP 06, LNCS. Springer, 2006.
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Appendix

A Proof of Theorem 1

This appendix gives a proof of Theorem 1 and is organized as follows. In the first
subsection, we establish two useful elementary lemmas. Then in subsection A.2,
we prove Theorem 2, which is Theorem 1 for the special case of Markov chains.
In subsection A.3, we establish that the expected value of histories that never
reach their initial state is no more than the value of that state. Then in subsec-
tion A.4, we introduce the notion of a split of an arena. Basic properties of the
split operation are described in Proposition 4, and Theorem 4 shows how one
can simulate a strategy in an arena with strategies in the split of that arena.
Theorem 5 and 6 are the key results to show that value of a state in an arena
is no more than its maximal value in splits of the arena, i.e. Corollary 1. End of
proof of Theorem 1 is given in subsection A.7.

A.1 Preliminary lemmas

In the proof of Theorem 1, we will often use the following lemmas. First one is
called the shifting lemma.

Lemma 1 (shifting lemma). Let A be a controllable Markov chain, s, t ∈ S
some states, h ∈ P∗

A,s a finite history with source s and target t, σ a strategy in
A, and X a real valued random variable such that sup X 6= +∞ or inf X 6= −∞.
Then

Eσ
s [X | h] = Eσ[h]

t [ X[h] ], (10)

where σ[h] is the strategy defined as σ[h](s0a1 · · · sn) = σ(ha1 · · · sn) and X[h] is
the random variable defined by X[h](s0a1s1 · · · ) = X(ha1s1 · · · ).

The proof is elementary, we give it for the sake of completness.

Proof. First observe that since sup X 6= +∞ or inf X 6= −∞, the values of (10)
are well-defined. Let l ∈ P∗

A,s and Xl be the indicator function of the set Ol.
We are going to show that (10) holds when X = Xl.

First suppose that l is a prefix of h, then Eσ
s [Xl | h] = 1 and Xl[h] = 1

hence (10) holds in that case.
Now suppose that h is a prefix of l, then there exists a1s1a2 · · · sn ∈ (AS)∗

such that l = ha1s1a2 · · · sn. Then, using the definition of Pσ
s , i.e. equations (1)

and (2), we get:

Eσ
s [Xl | h] = Pσ

s (l | h)
= σ(h)(a1) · p(s1|t, a1) · · ·σ(ha1s1 · · · sn−1)(an) · p(sn|sn−1, an)

= Pσ[h]
t (ta1s1 · · · ansn)

= Eσ[h]
t [Xl[h]] .



Hence (10) holds in that case.
Now suppose that h is not a prefix of l, and l is not a prefix of h. Then the

events Ol and Oh are disjoints, and Xl[h] is uniformly equals to 0. Hence we get
Eσ

s [Xl | h] = Pσ
s (Ol | Oh) = 0 = Eσ[h]

t [ Xl[h] ], and again (10) holds in that last
case.

Hence, for any l ∈ P∗
A,s, equation (10) holds for X = Xl = 1Ol

. Since the
class of sets Oh generates the σ-field on Pω

A,s, we get that (10) holds for any
random variable. ut

The following lemma will also be very useful.

Lemma 2. Let A be a controllable Markov chain, s a state of A, E ⊆ Pω
A,s an

event and σ and τ two strategies. Let us suppose that σ and τ coincide on E, in
the sense that for all finite history h ∈ P∗

A,s,

(h is a prefix of an history in E) =⇒ (σ(h) = τ(h)) .

Then,
Pσ

s ( | E) = Pτ
s ( | E) . (11)

Again the proof is elementary and we give it for the sake of completness.

Proof. We start with proving:

Pσ
s (E) = Pτ

s (E) (12)

Let h ∈ P∗
A,s and E = Oh. Then equality (12) is a direct consequence of the

definition of Pσ
s and Pτ

s . Since the sets Oh generate the σ-field over Pω
A,s, equa-

tion (12) is true for any event E.
Let F be an event. Then σ and τ coincide on E ∩ F . Applying (12) with

E ∩ F , we get Pσ
s (E ∩ F ) = Pτ

s (E∩F ). Together with (12), we get (11). ut

A.2 About Markov chains

Second step consists in proving theorem 2, which establishes a property of
Markov chains. A controllable Markov chain A is a Markov chain when ∀s ∈
S, |A(s)| = 1. In that case, there is a unique strategy σ in A. The measure of
probability on Pω

A,s associated with that unique strategy is denoted Ps instead
of Pσ

s .

Theorem 2. Let M = (A, φ) be MDP. Suppose that A is a Markov chain and
φ is prefix-independent. Let s be a recurrent state of A. Then

Ps(φ > val(M)(s)) = 0 . (13)

Proof. Let E be the event:

E = {φ > val(G, s)}.

We first prove that E is independent of Oh, for any h ∈ P∗
A,s.



Let t ∈ S be a state and h ∈ P∗
A,s a finite history with target t. The case

where Ps(h) = 0 is clear hence we suppose that Ps(h) > 0. Since φ is prefix-
independent, 1E [h] = 1E . Using the shifting lemma 1 we obtain :

Ps(E | h) = Pt(E). (14)

Let Ct,s be the set of finite history with source t, target s, and that reaches s
only once. Since Ps(h) > 0, states s and t are in the same recurrence class, hence

1 = Pt({∃n, Sn = s}) =
∑

l∈Cs,t

Pt(l) . (15)

Hence Pt(E) =
∑

l∈Cs,t

Pt(l) · Pt(E | l) =
∑

l∈Cs,t

Pt(l) · Ps(E) = Ps(E) , (16)

where the first equality follows from (15), the second is similar to (14) and the
third from (15) again. Together with (14), we obtain:

Ps(E | h) = Ps(E) . (17)

Hence we have proven that for any h ∈ P∗
A,s, event E is independent of Oh.

But E is member of the σ-field generated by the sets Oh. It implies that E is
independent of itself, hence

Ps(E) = Ps(E ∩ E) = Ps(E)2 ,

which proves that Ps(E) is either 0 or 1 2.
Suppose for a moment that Ps(E) = 1 and find a contradiction. Then

Ps(φ > val(G, s)) = 1, hence Es[φ] > val(G, s), which contradicts the defini-
tion of val(G, s).

We deduce that Ps(E) = 0 whch gives (13) and achieves the proof of this
theorem.

A.3 Histories that never reach again their initial state

Consider the definition of Ns given by equation (3). The event {Ns = 0} means
that the history never reaches again s after the first stage. The following theorem
states a property about the expected value of those histories.

Theorem 3. Let M = (A, φ) be a Markov decision process, s a state of A and
σ a strategy. Suppose that φ is prefix-independent. Then

Eσ
s [φ | Ns = 0] ≤ val(M)(s). (18)

2 For the sake of completeness, we gave all details, although this part of the proof
is classical. An event E such that (17) holds is called a tail-event. The fact that
probability of a tail event is either 0 or 1 is called Levy’s or Kolmogorov’s law [Dur96].



Proof. Let f : P∗
A,s → P∗

A,s be the mapping that “forget cycles on s”, defined
by:

f(s0a1 · · · sn) = skak+1 · · · sn, where k = max{i | si = s} .

Let τ the strategy that consists in forgetting the cycles on s, and apply σ.
Formally τ is defined by τ(h) = σ(f(h)). We are going to show that:

Eσ
s [φ | Ns = 0] = Eτ

s [φ], (19)

which implies immediatly (18), by definition of the value of a state. Even if (19)
may seem obvious, we proof it for the sake of completness.

We suppose that
e = Pσ

s (Ns = 0) > 0 , (20)

otherwise (18) is not defined, and there is nothing to prove. First we show that

Pτ
s (Ns = ∞) = 0. (21)

Let K ⊆ P∗
A,s the set of simple cycles on s, i.e.:

K = {s0a1 · · · sn ∈ P∗
A,s | s0 = sn = s and for 0 < k < n, sk 6= s}.

Then for any n ∈ N,

Pτ
s (Ns ≥ n + 1) =

∑
h∈K

Pτ
s (Ns ≥ n + 1 | h) · Pτ

s (h)

=
∑
h∈K

Pτ [h]
s (Ns ≥ n) · Pτ

s (h)

=
∑
h∈K

Pτ
s (Ns ≥ n) · Pτ

s (h)

= Pτ
s (Ns ≥ n) · Pτ

s (Ns > 0)
= Pτ

s (Ns ≥ n) · (1− e)

The first equality is a conditionning on the date of the first return on s, for the
second we use the shifting lemma. The third equality holds since by definition
of τ and K, ∀h ∈ K, τ [h] = τ . The fourth equality is by definition of K, and the
fifth by definition (20) of e.

Taking the limit of this equation when n tends to ∞, we get Pτ
s (Ns = +∞) =

Pτ
s (Ns = +∞) · (1− e) . Using (20), we obtain (21).

We can now achieve the proof. Define lasts, the last date where history
reaches s:

lasts = sup{n ∈ N, Sn = s}.
Then {Ns = ∞} = {lasts = ∞}, hence (21) implies Pτ

s (lasts < ∞) = 1, and

Eτ
s [φ] =

∑
n∈N

Eτ
s [φ | lasts = n] · Pτ

s (lasts = n).

=
∑
n∈N

∑
h∈P∗A,s

Eτ
s [φ | lasts = n, Hn = h] · Pτ

s (lasts = n, Hn = h). (22)



Let n ∈ N and h ∈ P∗
A,s such that Pτ,s(lasts = n, Hn = h) > 0. Then

Eτ
s [φ | lasts = n, Hn = h] = Eτ [h]

s [φ | lasts = 0]
= Eτ

s [φ | lasts = 0]
= Eσ

s [φ | lasts = 0]. (23)

The first equality is obtained using the shifting lemma and the prefix-independence
of φ. The second equality comes from the fact that since Pτ,s(lasts = N,HN =
h) > 0, h is s and by definition of τ , τ [h] = τ . The third equality comes from
the fact that τ and σ coincide on the set {lasts = 0}, and applying the lemma 2.

Eventually, (23) and (22) give Eτ
s [φ] = Eσ

s [φ| lasts = 0]. Since {Ns = 0} =
{lasts = 0}, we get

Eτ
s [φ] = Eσ

s [φ|Ns = 0] . (24)

By definition of the value of a state, val(G)(s) ≥ Eτ
s [φ], which together with (24)

gives (18) and achieves the proof of this theorem. ut

A.4 Submixing payoff functions and split of an MDP

The proof of 1 is by induction on the number of actions in the MDP. For that
purpose, we introduce the notion of split of an MDP, and associated projections.

Definition 7. Let A be a controllable Markov chain and s ∈ S a state such that
|A(s)| > 1. Let (A0(s),A1(s)) a partition of A(s) in two non-empty sets.

Let A0 = (S,A0, (A0(s))s∈S, p, col) be the controllable Markov chain obtained
from A = (S,A, (A(s))s∈S, p, col) in the following way. We restrict the set of
actions available in s to A0(s). For t 6= s, nothing changes, i.e. A0(t) = A(t).
The transition probabilities p and the coulouring mapping col do not change. Let
A1 be the controllable Markov chain obtained symetrically, restricting the set of
actions available in s to A1(s).

Then (A0,A1) is called a split of A on s. For MDPs M = (A, φ), M0 =
(A0, φ) and M1 = (A1, φ), we also say that (M0,M1) is a split of M on s.

Now consider a split (A0,A1) of a controllable Markov chain A on a state
s. There exists a natural projection (π0, π1) from finite histories h ∈ P∗

A,s to
couples of finite histories (h0, h1) ∈ P∗

A0,s×P∗
A1,s. Let us decribe informally this

projection.
Consider a finite history h ∈ P∗

A,s. Then h factorizes in a unique way in a
sequence

h = h0h1 · · ·hkhk+1 , (25)

such that

• for 0 ≤ i ≤ k, hi is a simple cycle on s,
• hk+1 is a finite history with source s, which does not reach s again.



For any 0 ≤ i ≤ k + 1, the source of hi is s hence the first action ai in hi

is avaialable in s, i.e. ai ∈ A(s). Since (A0(s),A1(s)) is a partition of A(s),
we have either ai ∈ A0(s) or ai ∈ A1(s). Then π0(h) is obtained by deleting
from the factorization (25) of h every simple cycle hi which first action ai is in
A1(s). Symetrically, π1(h) is obtained by erasing every simple cycle hi such that
ai ∈ A0(s).

Let us formalize this construction in an inductive way. First we define induc-
tively the mode of a play. For h ∈ P∗

A,s, a ∈ A(h) and t ∈ S

mode(hat) =


mode(h) if the target of h is not s.
0 if the target of h is s and a ∈ A0(s)
1 if the target of h is s and a ∈ A1(s)

(26)

For i ∈ {0, 1}, the projection πi is defined by πi(s) = s, and for h ∈ P∗
A,s,

a ∈ A(h) and t ∈ S,

πi(hat) =

{
πi(h)at if mode(hat) = i

πi(h) if mode(hat) = 1− i.
(27)

The definition domain of π0 and π1 naturally extends to Pω
A,s, in the following

way. Let h = s0a1s1 · · · ∈ Pω
A,s be an infinite history, and for every n ∈ N, let

hn = s0a1 · · · sn. Then for every n ∈ N, π0(hn) is a prefix of π0(hn+1). If the
sequence (π0(hn))n∈N is stationary equal to some finite word h′ ∈ P∗

A0,s, then we
define π0(h) = h′. Otherwise, the sequence (π0(hn))n∈N has a limit h′ ∈ Pω

A0,s,
and we define π0(h) = h′. Let us define the random variables:

Definition 8. The two random variables

Π0 = π0(S0A1S1 · · · ) with values in P∗
A0,s ∪Pω

A0,s

Π1 = π1(S0A1S1 · · · ) with values in P∗
A1,s ∪Pω

A1,s

are called the projections associated with the split (A0,A1).

Useful properties of Π0 and Π1 are summarized in the following proposition.

Proposition 4. Let A be a controllable Markov chain, s, t states of A, (A0,A1)
a split of A on s, and Π0 and Π1 the projections associated with that split.

• Let h0 ∈ P∗
A0,s be a finite history in A0, with source s and target t, and

a ∈ A0(t). Let v be the prefix order relation on finite and infinite words.
Then

∀r ∈ S, Pσ
s (h0ar v Π0 | h0a v Π0) = p(r|t, a). (28)

• Let x ∈ R and φ be a prefix-independent submixing payoff function. Then

{Ns = ∞ and φ > x} ⊆
{Π0 is infinite and Ns(Π0) = ∞ and φ(Π0) > x}⋃

{Π1 is infinite and Ns(Π1) = ∞ and φ(Π1) > x} . (29)



Proof. We first prove (28). Let π0 and π1 be the functions defined by (27)
and (26) above. Remark that their definition show that hey are bothv-increasing.
Remember that for h ∈ P∗

A,s we denote the event {h v S0A1S1 · · · } as Oh.

Y = {h ∈ P∗
A,s | π0(h) = h0 and ∃r ∈ S, π0(har) = h0ar}.

Let us start with proving

∀r ∈ S,
⋃

h∈Y

{Ohar} = {h0ar v π0} . (30)

We start with inclusion ⊆. Let r ∈ S, h ∈ Y and l ∈ Pω
A,s such that har v l.

Since h ∈ Y , and by definition (26) and (27), we deduce that ∀r, mode(har) =
0 and π0(har) = h0ar. Since π0 is v-increasing, and har v l, we get π0(har) v
π0(l), hence h0ar v π0(l) thus l ∈ {h0ar v Π0}. It proves inclusion ⊆ of (30).

Let us prove now inclusion ⊇ of (30). Let r ∈ S and l ∈ {h0ar v Π0}.
Then h0ar v π0(l). Rewrite l as l = s0a1s1 · · · . Since Π0 is v-increasing,
∃n ∈ N s.t. h0ar v π0(s0 · · · sn−1ansn) and h0ar 6v π0(s0 · · · sn−1). Define h =
s0a1 · · · sn−1, then last equation rewrites as h0ar 6v π0(h) and h0ar v π0(hansn).
According to definition (27) of π0, it necessarilly means that h0 = π0(h) and
h0ar = π0(h)ansn. Hence h ∈ Y , an = a and sn = r, thus har v l and
l ∈ ∪h∈Y {har}. It achieves to prove (30).

Let X the prefix-free closure of Y , i.e.

X = {h ∈ Y |6 ∃h′ ∈ Y s.t. h′ 6= h and h′ v h} .

Then
∀r ∈ S,

⋃
h∈Y

{har} =
⋃

h∈X

{har},

and the second union is in fact a disjoint union. Hence,

∀r ∈ S, (Ohar)h∈X is a partition of {h0ar v π0} , (31)

and (Oha)h∈X is a partition of {h0a v π0} . (32)

From (31), we get for r ∈ S,

Pσ
s (h0ar v π0) =

∑
h∈X

Pσ
s (Ohar)

=
∑
h∈X

p(r|t, a) · Pσ
s (ha) from (2)

= p(r|t, a) ·
∑
h∈X

Pσ
s (ha)

= p(r|t, a) · Pσ
s (h0a v π0) from (32),

It achieves the proof of (28).
Now let us prove (29). Let φ be a prefix-independent submixing payoff func-

tion, and x ∈ R. Let h ∈ {Ns = +∞ and φ > x}.



Suppose first that π1(h) is a finite word. Then according to (27), the set
{h′ ∈ P∗

A,s | h′ v h and mode(h′) = 1} is finite. According to (27) again,
it implies that h and π0(h) are identical, except for a finite prefix. Since φ is
prefix-independent, it implies φ(h) = φ(π0(h)). Moreover, since Ns(h) = +∞,
we have Ns(π0(h)) = +∞. This two last facts prove (29) in the case where π1(h)
is finite.

The case where π0(h) is finite is symmetrical.
Let us suppose now that both π0(h) and π1(h) are infinite. We prove that

there exists u0, v0, u1, v1 ∈ (SA)∗ such that

h = u0v0u1v1 · · ·
π0(h) = u0u1u2 · · · (33)
π1(h) = v0v1v2 · · · .

Write h = s0a1s1 · · · . Let

{n0 < n1 < . . .} = {n > 0 | mode(s0a1 · · · sn) = 0 and mode(s0a1 · · · sn+1) = 1} ,

{m0 < m1 < . . .} = {m > 0 | mode(s0a1 · · · sm) = 1 and mode(s0a1 · · · sm+1) = 0} .

Then, by definition (26),

∀i ∈ N, sni
= smi

= s . (34)

Without loss of generality suppose a1 ∈ A0(s). Then by (26), mode(s0a1s1) = 0
hence 0 < n0 < m0 < n1 < · · · . Define u0 = s0a1 · · · sn0−1an0 , for i ∈ N define
vi = sni

· · · ami
and for i ∈ N define ui+1 = smi

· · · ani+1 . Then by (27) we
get (33).

Since φ is submixing, (33) implies φ(h) ≤ max{φ(π0(h)), φ(π1(h)}. Since
φ(h) > x we deduce x < max{φ(π0(h)), π1(h)}, i.e.

(φ(π0(h)) < x) or (φ(π1(h)) < x). (35)

Moreover, by (34) and (33), histories π0(h) and π1(h) reaches infinitely often
s, hence Ns(π0(h)) = Ns(π1(h)) = +∞ . This last fact together with (35)
implies (29) which achieves this proof. ut

The following theorem shows that any strategy σ in A can be simulated by
a strategy σ0 in A0, in a way that for any Π0-measurable event E in A, the
probability of E under σ in A is less than the probability of Π0(E) under σ0 in
A0.

Theorem 4. Let A be a controllable Markoc chain, σ a strategy in A, s a state
of A such that |A(s)| ≥ 2, (A0,A1) a split of A on s, and Π0 he associated
projection. Then there exists a strategy σ0 in A0 such that for any event E0 ⊆
Pω
A0,s

Pσ,s(π0 ∈ E0) ≤ Pσ0,s(E0). (36)



Proof. The symbol v denotes the prefix ordering on finite and infinite words.
For two words u, v, we write u @ v if u is a strict prefix of v i.e. if u v v and
u 6= v.

For any state t 6= s, let us choose in an arbitrary way an action at ∈ A(t),
and let us also choose an action as ∈ A0(s). For any h ∈ P∗

A0,s with target t
and for any action a ∈ A(t), we define

σ0(h)(a) =


Pσ

s (ha v Π0 | h @ Π0) if Pσ
s (h @ Π0) > 0

1 if Pσ
s (h @ Π0) = 0 and a = at

0 if Pσ
s (h @ Π0) = 0 and a 6= at

Then σ0 is a strategy in A0 since by definition of @,

Pσ
s (h @ Π0) =

∑
a∈A(t)

Pσ
s (ha v Π0) .

We first show (36) in the particular case where there exists h0 ∈ P∗
A0,s such

that E0 = {l ∈ Pω
A0,s | h v l}. Remember that we abuse the notation and write

simply E0 = h. With this notation, we wish to prove that:

∀h′ ∈ P∗
A0,s, Pσ

s (h′ v Π0) ≤ Pσ0
s (h′). (37)

We prove (37) inductively. If h′ = s then since Π0 has values in P∗
A,s ∪ Pω

A,s,
we get Pσ

s (s v π0) = 1 = Pσ0
s (s). Now let us suppose that (37) is proven for

some finite history h ∈ P∗
A0,s. Let t be the target of h and a ∈ A0(t), and let

us prove that (37) holds for h′ = hat. First case is Pσ
s (h @ Π0) = 0, then a

fortiori Pσ
s (har v Π0) = 0, and (37) holds for h′ = hat. Now let us suppose

Pσ
s (h @ Π0) 6= 0. Then,

Pσ
s (har v Π0) = p(r|t, a) · Pσ

s (ha v Π0)
= p(r|t, a) · Pσ

s (ha v Π0 | h @ Π0) · Pσ
s (h @ Π0)

= p(r|t, a) · σ0(h)(a) · Pσ
s (h @ Π0)

≤ p(r|t, a) · σ0(h)(a) · Pσ
s (h v Π0)

≤ p(r|t, a) · σ0(h)(a) · Pσ0
s (h)

= Pσ0
s (har).

The first equality comes from (28), and the third is by definition of σ0. The last
inequality is by induction hypothesis and the last equality by (1) and (2). It
achieves the proof of equality (37).

Let us achieve the proof of Theorem 4. Let E be the collection of events
E0 ⊆ Pω

A0,s such that (36) holds. Then observe that E is stable by enumerable
disjoint unions and enumerable increasing unions. According to (37), E contains
all the events (Oh0)h0∈P∗A0,s

. Since E is stable by enumerable disjoint unions,
it contains the collection {

⋃
h0∈H0

Oh0 | H0 ⊆ P∗
A0,s}. This last collection is a

Boolean algebra. Since E is stable by enumerable increasing union, it implies
that E contains the σ-field generated by (Oh0)h0∈P∗A0,s

, i.e. all measurable sets
of Pω

A0,s. It achieves this proof. ut



A.5 Histories that never come back in their initial state.

We deduce from theorem 3 the following result.

Theorem 5. Let M = (A, φ) be an MDP, s a state, σ a strategy and (M0,M1)
a split of M on s. Let us suppose that φ is prefix-independent. Then

Eσ
s [φ | Ns < ∞] ≤ max{val(M0)(s), val(M1)(s)}. (38)

Proof. Let us define v0 = val(M0, φ) and v1 = val(M1)(φ). For any action
a ∈ A(s) we denote σa the strategy in A defined for h ∈ P∗

A,s by:{
σa(h) = σ(h) if the target of h is not s

σa(h) chooses action a with probability 1 otherwise.

Remark that the strategy σa always chooses the same action when plays reaches
state s, and it is either a strategy in A0 or a strategy in A1. From Theorem 3,
we deduce

∀a ∈ A(s), Eσa
s [φ | Ns = 0] ≤ max{v0, v1}. (39)

Since σ and σa coincide on {Ns = 0, A1 = a}, lemma 2 implies :

Eσ
s [φ | A1 = a,Ns = 0] = Eσa

s [φ | A1 = a,Ns = 0]
= Eσa

s [φ | Ns = 0] ,

where the last equality holds since by definition of σa, Pσa
s (A1 = a) = 1. Together

with (39), we get Eσ
s [φ | A1 = a,Ns = 0] ≤ max{v0, v1}, whatever be action a

and strategy σ. It implies :

∀σ ∈ ΣA, Eσ
s [φ | Ns = 0] ≤ max{v0, v1}.

Conditioning on the last moment where history reaches s, and using the shifting
lemma anf the prefix-independence of φ, this last equation implies :

Eσ
s [φ | Ns < ∞] ≤ max{v0, v1}.

It achieves the proof of Theorem 5. ut

A.6 Histories that infinitely often reach their initial state.

The following theorem shows that if an history reaches infinitely often its initial
state, then its value is no more than the value of that state.

Theorem 6. Let M = (A, φ) be an MDP, s a state and σ a strategy. Suppose
that φ is prefix-independent and submixing. Then

Pσ
s (φ > val(M)(s) | Ns = ∞) = 0. (40)

Moreover, suppose that |A(s)| ≥ 2 and let (M0,M1) be a split of M on s. Then

Pσ
s (φ > max{val(M0)(s), val(M)(s)} | Ns = ∞) = 0. (41)



Proof. We prove that theorem by induction on N(A) =
∑

s∈S(|A(s)| − 1).
If N(A) = 0 then A is a Markov chain. In that case, Pσ

s (Ns = ∞) > 0 iff s
is a recurrent state iff Pσ

s (Ns = ∞) = 1. Hence (40) is a direct consequence of
Theorem 2. Moreover, since N(A) = 0, then ∀s, |A(s)| = 1 and we do not need
to prove (41).

Now let us suppose that N(A) > 0 and that Theorem 6 is proven for any
A′ such that N(A′) < N(A). We first prove (41). Let s be a state, σ a strategy,
suppose that |A(s)| > 2 and let (A0,A1) be a split of A on s. Let M0 = (A0, φ),
M1 = (A1, φ), v0 = val(M0, φ), v1 = val(M1, φ), and Π0,Π1 the associated
projections. Let

E0 = {h0 ∈ Pω
A0,s | φ(h0) > v0 and Ns(h0) = +∞}

E = {h ∈ Pω
A,s | π0(h) ∈ E0} .

We start with proving that
Pσ

s (E) = 0. (42)

From Theorem 4, there exists a strategy σ0 in A0 such that Pσ
s (Π0 ∈ E0) ≤

Pσ0
s (E0). Hence

Pσ,s(E) = Pσ,s(Π0 ∈ E0) ≤ Pσ0,s(E0)
= Pσ0,s(φ > v0 and Ns = +∞)
= 0,

where this last equality holds by induction hypothesis, since N(A0) < N(A).
Hence we have shown (42) and by symmetry, we obtain for i ∈ {0, 1},

Pσ
s (Πi is infinite and Ns(Πi) = ∞ and φ(Πi) > vi) = 0 .

Now consider (29) of Proposition 4, with x = max{v0, v1}. Together with the
last equation, it gives (41).

Now we prove that (40) holds.
First we show that (40) holds for any state s such that |A(s)| ≥ 2. Any

strategy in A0 or A1 is a strategy in A, hence val(M)(s) ≥ max{v0, v1} and we
deduce from (41) that Pσ

s (φ > val(M)(s) | Ns = ∞) = 0. Hence the set

T = {s ∈ S | ∀σ ∈ ΣA, Pσ
s (φ > val(M)(s) and Ns = ∞) = 0} (43)

contains any state s ∈ S such that |A(s)| ≥ 2. Hence (40) holds for any s such
that |A(s)| ≥ 2. Let U = S\T . We have proven that :

∀s ∈ U, |A(s)| = 1 . (44)

For achieving the proof of (40) we must prove that T = S, i.e. U = ∅. Suppose
the contrary, and let us search a contradiction. If U 6= ∅, then the set

W = {s ∈ U | val(M)(s) = min
t∈U

val(M)(t)}



is not empty and contains a state s ∈ W . According to (44), there exists a unique
action a available in s.

Now we show that ∀t ∈ S such that p(t|s, a) > 0,

if t ∈ U then val(M)(t) ≥ val(M)(s) (45)
if t ∈ T then val(M)(t) > val(M)(s) . (46)

The case where t ∈ U is clear since we choose s with minimal value in U . Now
let t ∈ T such that p(t|s, a) > 0 and let us prove 46. Since s ∈ U , s 6∈ T and by
definition of T ,

∃σ ∈ ΣA s.t. Pσ
s (φ > val(M)(s) and Ns = ∞) > 0 . (47)

Now remark that since p(t|s, a) > 0 we have Pσ
s (Nt = ∞ | Ns = ∞) = 1.

Together with (47), it implies

Pσ
s (φ > val(M)(s) and Nt = ∞) > 0 .

Conditioning this probability on the first moment the history reaches state t,
we deduce that there exists a finite history h ∈ P∗

A,s with source s and target t
such that

Pσ
s (φ > val(M)(s) and Nt = ∞ | h) > 0 .

Since φ is prefix-independent, and according to the shifting lemma it implies :

Pσ[h]
t (φ > val(M)(s) and Nt = ∞) > 0.

Since t ∈ T , the definition of T implies :

Pσ[h]
t (φ > val(M)(t) and Nt = ∞) = 0 .

Those two last equations imply val(M)(t) > val(M)(s), which achieves the proof
of (46).

Now we are close to get the contradiction we are looking for. Since φ is
prefix-independent, we deduce :

val(M)(s) =
∑

t:p(t|s,a)>0

p(t|s, a) · val(M)(t).

Together with (46) we get :

∀t ∈ S, (p(t|s, a) > 0) =⇒ (t ∈ U) and (val(M)(t) = val(M)(s)) .

This last equation holds for any s ∈ W . Thus any transition with source in W
has target in W . It implies that any history in A with source in W stays in W
with probability 1, hence the restriction A[W ] of A to the set of states W is a
controllable Markov chain, and

∀s ∈ W, val(M)(s) = val(M[W ])(s) (48)



Let M[W ] = (A[W ], φ). By definition of U , there exists a strategy σ in A[W ]
such that Pσ,s(φ > val(M)(s) and Ns = ∞) > 0 and together with (48) we get

Pσ
s (φ > val(M[W ])(s) and Ns = ∞) > 0 .

Since W ⊆ U and according to (44), A[W ] is a Markov chain. According to
the last equation, PsNs = ∞ > 0 hence s is a recurrent state. Hence the last
equation contradicts Theorem 2.

Finally we get a contradiction, hence U = ∅. This achieves the proof of
Theorem 6. ut

A.7 Proof of Theorem 1

Remark that we can synthesize the results of this appendix as follows.

Corollary 1. Let M = (A, φ) be an MDP, s a state of A and (M0,M1) a split
of M on s. Suppose that φ is prefix-independent and submixing. Then

val(M)(s) = max{val(M0)(s), val(M1)(s)}. (49)

Proof. Let σ ∈ ΣA. Then

Eσ
s [φ] = Eσ

s [φ | Ns < ∞] · Pσ
s (Ns < ∞) + Eσ

s [φ | Ns = ∞] · Pσ
s (Ns = ∞)

≤ max{val(M0)(s), val(M1)(s)} · (Pσ
s (Ns < ∞) + Pσ

s (Ns = ∞))
= max{val(M0)(s), val(M1)(s)}

The second inequality is a consequence of Theorems 6 and 5. Since it is true for
any strategy σ, we get :

val(M)(s) ≤ max{val(M0)(s), val(M1)(s)} .

To conclude, notice that a strategy for the MDP M0 or M1 is also a strategy for
the MDP M, hence val(M0)(s) ≤ val(M)(s) and val(M1)(s) ≤ val(M)(s). ut

Now we can achieve the proof of Theorem 1.

Proof. of Theorem 1. We prove Theorem 1 by induction on N(A) =
∑

s∈S(|A(s)|−
1).

First case is the case where N(A) = 0, i.e. A is a Markov chain. In that case,
there exists a unique strategy, which is necessarilly optimal and positional.

Now let us suppose that N(A) =
∑

s∈S(|A(s)| − 1) > 0 and that Theorem 1
is proven for any A′ such that N(A′) < N(A). Since N(A) > 0, there exists a
state s of A such that |A(s)| ≥ 2. Let (M0,M1) be a split of M on s. Without
loss of generality, we can suppose that :

val(M0)(s) ≥ val(M1)(s) , (50)

and according to corollary 1, we deduce :

val(M0)(s) = val(M)(s) . (51)



By inductive hypothesis, there exists a positional strategy σ0 optimal for
the MDP M0. We are going to prove that σ0 is also optimal for MDP M. Let
σ ∈ ΣA and t ∈ S. Then

Eσ
t [φ] = Eσ

t [φ | ∃n, Sn = s] · Pσ
t (∃n, Sn = s)+

Eσ
t [φ | ∀n, Sn 6= s] · Pσ

t (∀n, Sn 6= s). (52)

Let τ ∈ ΣA defined as follows :

τ(s0a1 · · · sn) =

{
σ(s0a1 · · · sn) if ∀0 ≤ i ≤ n, si 6= s,

σ0(sn) otherwise.

Then we have the three following equalities. First, since σ and τ coincide on the
event {∀n, Sn 6= s}, lemma 2 implies :

Eσ
t [φ | ∀n, Sn 6= s] · Pσ

t (∀n, Sn 6= s) = Eτ
t [φ | ∀n, Sn 6= s] · Pτ

t (∀n, Sn 6= s). (53)

Second, by definition of τ ,

Pσ
t (∃n, Sn = s) = Pτ

t (∃n, Sn = s) . (54)

And finally,

Eσ
t [φ | ∃n, Sn = s] ≤ val(M)(s) (55)

= val(M0)(s) (56)
= Eσ0

s [φ] (57)
= Eτ

t [φ | ∃n, Sn = s] , (58)
(59)

where the inequality comes from the shifting lemma and the prefix-independence
of φ, the first equality from (50), the second from the fact that σ0 is optimal in
M0 and the third by the shifting lemma again.

Finally, (54), (53) and (58) together with (52) prove that

∀t ∈ S, ∀σ ∈ ΣA, Eσ
t [φ] ≤ Eτ

t [φ] . (60)

By definition, τ always chooses an action of A0(s) when the history has target
s, hence τ is a strategy in A0. Since σ0 is optimal in M0 hence we get :

∀t ∈ S, Eτ
t [φ] ≤ Eσ0

t [φ] .

Since σ0 is also a strategy in A, this last equation together with (60) proves that
σ0 is optimal in M. Since σ0 is positional, it achieves the proof of the inductive
step, and of Theorem 1. ut


