
Gaël Guennebaud – IRIT – Toulouse – SPBG06 1

Gaël Guennebaud
Loïc Barthe, Mathias Paulin

IRIT – UPS – CNRS
TOULOUSE – FRANCE

http://www.irit.fr/~Gael.Guennebaud/

Splat/Mesh Blending,
Perspective Rasterization

and Transparency
for Point-Based Rendering

Gaël Guennebaud – IRIT – Toulouse – SPBG06 2

Approximate depth-peeling
for

Transparency

Gaël Guennebaud – IRIT – Toulouse – SPBG06 3

Transparency via depth-peeling

● Standard depth-peeling

● advantages:
● no pre-process
● no sort
● suitable for per-pixel lighting

● drawback:
● may requires several rendering passes

● => “approximate depth-peeling” ?

Gaël Guennebaud – IRIT – Toulouse – SPBG06 4

Approximate depth-peeling

● Idea:

● bound the number of rendering passes

● + approximate blending for the last layer

● blending heuristic:

● no deferred shading

c x=∑
i

i
'
xi ci

Gaël Guennebaud – IRIT – Toulouse – SPBG06 5

Approximate depth-peeling
(results with 2 layers)

complete
depth-peeling

only the first layer
+ a 2nd layer with approx blending

Gaël Guennebaud – IRIT – Toulouse – SPBG06 6

Approximate depth-peeling
(results with 3 layers)

complete
depth-peeling

only the first 2 layers
+ a 3th layer with approx blending

Gaël Guennebaud – IRIT – Toulouse – SPBG06 7

Splat rasterization

Gaël Guennebaud – IRIT – Toulouse – SPBG06 8

Point Cloud Rendering

● Ray-cast a reconstructed surface (MLS)
● Best quality but slow, requires pre-process...

● Rasterization (splatting)
● best quality criteria:

● perspectively correct splat rasterization
● per-pixel shading (=> deferred shading)
● high frequency filtering (aliasing)

● performance criteria:
● use the best of current GPU
● incremental calculations for the rasterization

Gaël Guennebaud – IRIT – Toulouse – SPBG06 9

Splat rasterization

● Decomposed as two stages:

● “splat setup” stage
● compute the screen space shape of the splat
● implemented in a vertex program

● rasterization stage
● generate the fragments with correct depth and weight
● implemented in a fragment program (+ point sprite)

Gaël Guennebaud – IRIT – Toulouse – SPBG06 10

splat rasterization implementations

✘ ✔ ✔ software

[Guennebaud03] ✘ ✔ ✔ 51 6

(✔) ✔ ✔ 93 8

✔ ✘ 35 13

[PBG06] ✔ (✔) ✔ 58 3

perspective
OK

EWA
filtering

suitable for
incremental
computation

instr.
setup

instr.
raster

EWA Splatting
[Zwicker01]

Perspec. Accu.
[Zwicker04]

[Botsch05]
(ray casting)

Gaël Guennebaud – IRIT – Toulouse – SPBG06 11

Perspective splatting

reconstruction kernel  (gaussian)

local splat space

screen space

s

t (u,v)

(x,y)

[
xz
yz
z] = M . [

u
v
1] = [s t p] . [

u
v
1]

p

Gaël Guennebaud – IRIT – Toulouse – SPBG06 12

Perspective splatting

local splat space

screen space

s

t (u,v)

(x,y)

[
uw
vw
w] = [

t×pT

p×sT

s×t T] . [
x
y
1]

p

reconstruction kernel  (gaussian)

Gaël Guennebaud – IRIT – Toulouse – SPBG06 13

Depth value

[
uw
vw
w

depth] = [
t×pT

p×sT

s×t T

a
s×t T

s×t T p
 [

0
0
b]

T] . [
x
y
1]

● We have and

● Hence:

w=
1
z

depth=a 1
z
b

Gaël Guennebaud – IRIT – Toulouse – SPBG06 14

GPU implementation

[
uw
vw
w

depth] = [
t×pT

p×sT

s×t T

a
s×t T

s×t T p
 [

0
0
b]

T] . [
x
y
1]

2 MAD

u , v  =   uw
w

,
vw
w 

1 projective 2D
texture access

3 vectors

computed in the
vertex program

fragment program

Gaël Guennebaud – IRIT – Toulouse – SPBG06 15

EWA filtering
● EWA filtering

● OK for affine mapping only


'
⊗hx 

reconstruction
kernel low-pass filter

● Object-space filter only


'
x

warped
reconstruction

kernel

Gaël Guennebaud – IRIT – Toulouse – SPBG06 16

EWA filtering approximations
magnification minification

magnification
+ minification

reconstruction kernel

low-pass pre-filter

EWA resampling filter

approximation
used in [BHZH05]

OK

OK aliasing

max '
x  , h x 

Gaël Guennebaud – IRIT – Toulouse – SPBG06 17

EWA filtering approximations
magnification minification

magnification
+ minification

reconstruction kernel

low-pass pre-filter

EWA resampling filter

approximation
used in [BHZH05]

EWA resampling filter

our approximation

● Basic idea:
adjust the object space tangent vectors such
that the warped reconstruction kernel can
contains the screen space low-pass filter

Gaël Guennebaud – IRIT – Toulouse – SPBG06 18

EWA filtering approximation
● Tangent vectors adjustment

● only check along the tangent vector directions

t
s

p

sc
re

e
n

 s
p

a
ce

projected splat
diameter along t

low-pass filter
diameter (=2h)

t'

adjusted tangent
vector

Gaël Guennebaud – IRIT – Toulouse – SPBG06 19

EWA filtering approximation
● Provides the expected result if and only if the

projected tangent vectors are orthogonal

● => on the fly re-parametrization ?
● too much expensive

● => efficient heuristic for isotropic splats (disks):
● s = p x n
● t = n x s

● exact at the screen center
● exact for splats parallel to the screen plane
● “good” worst case

Gaël Guennebaud – IRIT – Toulouse – SPBG06 20

About depth values
and EWA filtering

low-pass filter
diameter

A
B

our approach:
constant depth values

previous approaches
=> may generate arbitrary
 depth values !

current splat

Gaël Guennebaud – IRIT – Toulouse – SPBG06 21

EWA filtering approximation
(results)

[Botsch et al. 05]

our new approximation

Gaël Guennebaud – IRIT – Toulouse – SPBG06 22

Performances

screen resolution: 1024x1024

fps (M splats/s) fps (M splats/s)

Gaël Guennebaud – IRIT – Toulouse – SPBG06 23

Hybrid rendering

Gaël Guennebaud – IRIT – Toulouse – SPBG06 24

Hybrid rendering
(motivations)

● Flat surface or large zoom
● points are inefficient (both in speed and quality)

⇒ hybrid rendering
 points and polygons are complementary

use triangles when points become less efficient

● What about the transitions ?

Gaël Guennebaud – IRIT – Toulouse – SPBG06 25

● High quality =>
to smooth the transitions

Hybrid rendering
(transition smoothing)

standard splats &
polygons rendering

splatting + ∑weights

● straightforward !

● no additional rendering cost !

hybrid rendering
with alpha-blending

● Key idea:
use the sum of
weights coming
from the splatting
to blend the
representations

Gaël Guennebaud – IRIT – Toulouse – SPBG06 26

Hybrid rendering
(transition smoothing)

● Too much straightforward ?

● Best quality => uniform sampling of the “transition edges”

Gaël Guennebaud – IRIT – Toulouse – SPBG06 27

Hybrid rendering
(implementation example)

● Multi-resolution hierarchy of points
● Leaves store both points and polygons

● At the sampling time:
● explicitly sample the edges shared by two faces stored

in two different leaves

leaf “A”

leaf “B”

“transition splats”

Gaël Guennebaud – IRIT – Toulouse – SPBG06 28

Hybrid rendering
(implementation example)

● Hybrid rendering rules:

● render the polygons (instead of the splats) of all visible
and not dense enough leaf node.

● render the transition splats shared by at least one leaf
rendered as a set of splats

Gaël Guennebaud – IRIT – Toulouse – SPBG06 29

Conclusion

● Summary:
● Approximate depth-peeling for efficient transparency
● Perspectively correct splat rasterization

● efficient on current GPU
● allows efficient dedicated implementation

(incremental computation)
● EWA filtering approximation

● same quality as full EWA filtering
● only for isotropic splats

● Splat/polygon transitions smoothing

Gaël Guennebaud – IRIT – Toulouse – SPBG06 30

Gaël Guennebaud – IRIT – Toulouse – SPBG06 31

● Ray-casting -> splatting -> EWA splatting
● splat rasterization, 2 class of approaches:

● perspective approx
● match the center or the contour (better)
● allow EWA filtering (by an analytic convolution)
● expensive splat setup
● suitable for incr. rasterization

● ray casting
● simple to implement
● perspective correct
● simple splat setup (all the computation are performed at

the fragment level)
● expensive rasterization shader
● not suitable for incr. rasterization
● coarse EWA approx.

Gaël Guennebaud – IRIT – Toulouse – SPBG06 32

EWA filtering approximation

● Basic idea:
● adjust the tangent vectors s and t such that the

warped reconstruction kernel can contains the screen
space low-pass filter

● ~ adjust the tangent vectors s and t such that their
screen space length are greater than the radius of the
screen space low-pass filter

● OK if and only if the tangent vector are still orthogonal
in the screen space and the low pass filter is radially
symmetric

