
EUROGRAPHICS 2005 / M. Alexa and J. Marks
(Guest Editors)

Volume 24 (2005), Number 3

Interpolatory Refinement for Real-Time Processing of
Point-Based Geometry
G. Guennebaud and L. Barthe and M. Paulin†

IRIT - CNRS - Université Paul Sabatier - Toulouse - France

Abstract
The point set is a flexible surface representation suitable for both geometry processing and real-time rendering. In
most applications, the control of the point cloud density is crucial and being able to refine a set of points appears
to be essential. In this paper, we present a new interpolatory refinement framework for point-based geometry. First
we carefully select an appropriate one-ring neighborhood around the central interpolated point. Then new points
are locally inserted where the density is too low using a

√
3-like refinement procedure and they are displaced

on the corresponding curved Point Normal triangle. Thus, a smooth surface is reconstructed by combining the
smoothing property produced by the rotational effect of

√
3-like refinements with the points/normal interpolation

of PN triangles. In addition we show how to handle sharp features and how our algorithm naturally fills large holes
in the geometry. Finally, we illustrate the robustness of our approach, its real-time capabilities and the smoothness
of the reconstructed surface on a large set of input models, including irregular and sparse point clouds.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Model-
ing]: Curve, surface, solid, and object representations I.3.3 [Computer Graphics]: Viewing algorithms

1. Introduction
Compared with meshes, point-based geometries are connec-
tivity free and no topological consistency has to be satisfied
through geometry manipulations. Hence, point sets become
increasingly attractive as an alternative surface representa-
tion suitable for high quality rendering as well as for flexible
processing of complex 3D models [KB04].

Although it is possible to deal with dense cloud of pure
points, when performance matters, points are usually en-
riched by some attributes such as the surface normal and
an estimation of the local sampling density. Such a point is
commonly represented as an oriented disk and it is called
a splat. The visualization step is generally performed by a
surface splatting based technique [ZPvBG01]: all splats are
projected onto the screen and filtered by a Gaussian kernel.
Such techniques perform both fast rendering since they are
implementable on GPUs [BK03, GP03, ZRB∗04] and high
quality rendering as long as the screen space size of splats
remains small enough, i.e. a few pixels. Indeed, when the
point set is not dense or uniform enough, splats radii are
large, making the image blurry in the inner part of the object
and producing artifacts on the silhouette. “Phong Splatting”
like techniques [BK04] significantly improve the inner blur

† e-mail: {guenneba | lbarthe | paulin}@irit.fr

Figure 1: Illustration of the smooth reconstruction capabili-
ties of our refinement procedure on the Isis model irregularly
sampled with 3500 points (left). The right images focus on
a particularly under-sampled area, from top to bottom: the
initial sampling, after four, then six refinement steps.
using second order informations. However these approaches
consequently increase the memory consumption, reduce the
initial simplicity of points and do not solve the geometric
artifacts introduced by under-sampled models.

Thus, the idea of a refinement algorithm maintaining the

c© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

G. Guennebaud & L. Barthe & M. Paulin / Interpolatory Refinement of Point-Based Geometry

point set with uniform, dense sampling appears to be very
relevant, and for this reason, this paper focus on point-based
refinement techniques. Ideally, we would like such an algo-
rithm to exhibit the following useful features:
• increase the sampling density,
• regularize scattered sampling,
• converge on a smooth surface,
• fill large holes in the geometry,
• handle boundary and sharp creases.

Related works: Fundamentally, the problem of point cloud
refinement can be decompose in two steps: sampling (inser-
tion operators) and displacement (smoothing operators).

In order to reduce or increase its density, the sam-
pling is often controlled by a particle simulation procedure
[Tur92, PGK02]. In [ABCO∗03], Alexa et al. present an in-
sertion procedure based on a local Voronoï diagram. Even
though these two techniques can lead to a locally uniform
sampling, their computational cost remains too expensive for
real-time applications.

The smoothing issue is related to the problem of dis-
placing the newly inserted points on a smooth surface de-
fined by the original set of points. Most reconstruction tech-
niques are based on implicit representation. For instance,
radial basis functions (RBF) reconstruct a Cn implicit sur-
face from a scattered set of point-normals [CBC∗01]. Even
though the global support of RBFs may be reduced by lo-
cal approaches [OBA∗03, TRS04], preprocessing and sur-
face evaluation remain expensive. In [Lev03], Levin intro-
duces a smooth point-based representation, called moving
least-squares (MLS) surface, where the surface is implicitly
defined by a local projection operator. Owing to the elegance
of the projection idea and the relative locality of the involved
computations, MLS surfaces have been used widely in ap-
plications ranging from surface editing [PKKG03] and ray-
tracing [AA03] to up/down-sampling [PGK02, ABCO∗03].
However, the projection operator requires a sufficiently
dense input point set. Amenta and Kil [AK04] overcome this
limitation by giving an explicit definition of the MLS sur-
faces which is able to handle a splat-based representation,
but however the MLS surface is defined, the projection pro-
cedure remains expensive.

In [MMS∗04], Moenning et al. present a meshless sub-
division framework where mesh connectivity is replaced by
intrinsic point proximity information. The subdivision op-
erator is then based on geodesic weighted averages. How-
ever, authors simply introduce the concept and it is difficult
to evaluate their method.

Targeting the real-time visualization of point clouds,
Guennebaud et al. [GBP04] present a fast refinement algo-
rithm of splat-based geometries. The input point set is iter-
atively refined by selecting a set of neighbors around each
point and inserting new points on Bézier curves and Bézier
patches. Owing to the extreme locality of these computa-
tions, their algorithm is fast enough to generate a million

points per second. However, due to the lack of robustness of
the refinement procedure, their algorithm is limited to uni-
form sampling (otherwise, the refined surface exhibits holes)
and even though the surface looks globally smooth, it gener-
ates artifacts in the form of high frequency oscillations. This
is essentially due to the non homogeneity of the smoothing
rules (a mix of bivariate and univariate reconstruction tech-
niques).

Beyond these important limitations, this last work demon-
strates the efficiency of a pure point-based refinement algo-
rithm for real-time graphics applications.

Our contribution: In this paper we present a new interpola-
tory subdivision framework which overcomes the weakness
of the Guennebaud et al. refinement procedure [GBP04].
First, in order to reconstruct a smooth surface we pro-
pose to combine a local and fast smooth surface recon-
struction method (based on curved Point-Normal triangles
[VPBM01], also called PN triangles) with an iterative

√
3-

like refinement scheme [Kob00]. The important features of
PN triangles are their locality and their interpolation power
since they interpolate both the points and their normals. For
its part, the

√
3 scheme provides a strong global smooth-

ing of the surface due to its rotation effect [Kob00] (figure
7d). Secondly, from the robustness point of view, we present
two new accurate one-ring neighborhood computations and
a new robust insertion procedure which optimizes the sam-
pling uniformity and guarantees the absence of holes. Our
new neighborhood computation procedures have the twin
advantages that they are naturally symmetric while also be-
ing able to handle sparse point clouds through carefully anal-
ysis of the closest points. Finally, we show how to refine
sharp features and we show that our approach is sufficiently
fast and robust to be suitable for both large hole filling (fig-
ure 9) and real-time rendering.

2. Overview of our refinement procedure
Let P0 = {pi} be the initial point set defining a smooth mani-
fold surface. We assume that we know for each point pi ∈ P,
its normal ni and the local density described by a scalar ri
which must be at least greater than the distance from pi to
the farthest neighbor of its natural first ring neighborhood.

In a similar fashion to subdivision surfaces, the point
set is iteratively refined, leading to a sequence of point set
P0,P1, . . . ,Pl , Since our algorithm is interpolatory, we
have Pl ⊂ Pl+1 (only the radius of points varies between two
steps) and the refined point set Pl+1 is the union of the set Pl

itself and the set of points resulting from the local refinement
of each point p ∈ Pl .

The local refinement of a single point p requires several
operations. First, a convenient one-ring neighborhood Np of
p is computed (section 4). Next, in order to match with the√

3 scheme a set of triangles from which it is relevant to in-
sert new points at their center of gravity is extracted from
the implicit triangle fan formed by the sorted neighborhood

c© The Eurographics Association and Blackwell Publishing 2005.

G. Guennebaud & L. Barthe & M. Paulin / Interpolatory Refinement of Point-Based Geometry

Figure 2: Construction of the control polygon of a PN trian-
gle interpolating three splats.

of p. These triangles are selected in order to optimize the
uniformity of the new neighborhood of p by taking into ac-
count the relative position of neighbors and the new points of
Pl+1 −Pl which have been already inserted (section 5). Fi-
nally, in order to obtain a smooth surface, the centers of grav-
ity of the selected triangles are displaced using our smooth-
ing operator (section 3).

The paper is organized as follow: in the next section (sec-
tion 3) we review the PN triangle technique from which we
derive both our smoothing operator and a set of tools which
are used in our neighborhood computations and during our
local insertion procedure. Sections 4, 5 and 6 are respectively
dedicated to the one-ring neighborhood selection, the local
refinement of a single point and the refinement of sharp fea-
tures. In section 7 we give some details on the data structures
and the real-time rendering application. Finally, we present
our results and discuss the continuity of the limit surface in
section 8.

3. Point-Normal Interpolation Framework
In this section we present the set of tools used to extrapolate
local geometric informations of the unknown surface S de-
fined by the set of points with their normals. These tools are
based on Point-Normal triangles [VPBM01]. A PN triangle
is a Bézier triangle B(u,v) of degree three interpolating three
points of the point set and their normals.

B(u,v) = ∑
i+ j+k=3

bi jk
3!

i! j!k! uiv jwk , w = 1−u− v (1)

Given three points p0, p1, p2 and their respective normals
n0, n1, n2, the nine control points bi jk of the patch (equation
1) are computed as follow (figure 2):

1. The three extremities b300, b030, b003 are respectively p0,
p1, p2.

2. The positions of the six boundary control points (bi jk,
i + j + k = 3, i 6= j 6= k) only depend on the two extrem-
ities of their respective boundary and they are all com-
puted in the same manner. For instance, the control point
b210 is the projection of b′

210 = p0 + 1
3 p0p1 onto the tan-

gent plane of p0, moved such that the length of the vector

p0b210 is equal to the third of the distance between the
two extremities p0 and p1. Let Qi(x) be the orthogonal
projection operator, projecting the point x onto the tan-
gent plane of pi, then:

Qi(x) = x+(pi −x) ·ni ∗ni (2)

b210 = p0 +
‖p0p1‖

3 ∗ Q0(b′
210)−p0

‖Q0(b′
210)−p0‖

3. The central point b111 is set to reproduce quadratic poly-
nomials by taking b111 = c+ 3

2 (e− c) where c is the cen-
ter of gravity of the three input points and e is the average
of the six boundary control points.

Our construction varies from the one of Vlachos et al.
[VPBM01] only in one point. After projection, we displace
the boundary points bi jk (i+ j +k = 3, i 6= j 6= k) while they
do not. This is done to avoid the introduction of flatness in
the reconstructed surface, especially in areas of high curva-
ture.

Smoothing Operator
We define the smoothing operator φ as the displacement of
the center of gravity (cog) onto the PN triangle. Thus, the
position of the new point pnew is:

pnew = cog(p0,p1,p2)+φ(p0,p1,p2)

where φ is the average of the six tangent vectors ti:

φ(p0,p1,p2) =
1
6

5
∑
i=0

ti (3)

with:

t0 = b210 −p0 , t1 = b120 −p1 , t2 = b021 −p1 , . . .

The normal of the new point is the cross product of the two
tangent vectors at the center of the PN triangle (u = v = 1

3):

Bu(1
3 , 1

3) = 7(p1 − p0) + b120 − b102 + b012 − b210 + 2(b021 − b201)

Bv
(

1
3

,
1
3

) = 7(p2 − p0) + b102 − b120 + b021 − b201 + 2(b012 − b210)

Geodesic Distance
With respect to the Euclidean distance, the geodesic dis-
tance is useful for evaluating the relative position of points
on a surface. Following our local point-normal surface re-
construction we define the local geodesic distance G̃(p0,p1)
between two relatively close points p0 and p1 as the length
of a cubic Bézier curve interpolating the two points and their
normals. In our construction, this curve is the boundary of a
PN triangle (figure 2). However the exact computation of the
length of a Bézier curve is too expensive for our purpose. We
rather use a sufficient approximation given by the length of
the control polygon:

G̃(p0,p1) =
2
3‖p0p1‖+‖b210 −b120‖ (4)

c© The Eurographics Association and Blackwell Publishing 2005.

G. Guennebaud & L. Barthe & M. Paulin / Interpolatory Refinement of Point-Based Geometry

Figure 3: Our “curved angle” between two point-normals
pi, pi+1 relatively two a third point p is specially usefull for
areas of high curvature. On this example there is a ratio of
two between the geometric angle and our “curved angle”.

“Curved-Angle”
Measuring the angle between two points p0, p1 relatively to
a third point p is especially useful when analyzing the neigh-
borhood of p. However when points are bound to a surface,
the geometric angle may be not significant enough (figure 3).
Thus, following our previous geodesic distance approxima-
tion, we define the “curved-angle” Ãp (p0,p1) as the sum of
three angles taken along the control polygon of the boundary
curve interpolating p0, p1:

Ãp (p0,p1) = p̂0pb210 + ̂b210pb120 + ̂b120pp1 (5)

Bounds on Point-Normal Interpolation
The construction by projection of the control points of a
PN triangle boundary is not always consistent. Indeed, as
illustrated in figure 4a, certain configurations of the posi-
tions and normals of the two boundary extremities yield a
surface reconstruction which is inconsistent with respect to
the normal’s orientation (inside/outside). This situation oc-
curs when the point p1 is inside the infinite cone of apex p0
and axis n0 + n1 (figure 4b). In this case, a specific (global)
treatment could be applied in order to re-establish the normal
consistency. However this would mean that we try to recon-
struct a highly under-sampled surface from a r-sampling P0

with r > 2 [ABK98] and hence, it is more natural to consider
that the points p0 and p1 are not neighbors. Thus two points
are not neighbors if the following condition is not satisfied:

∣∣∣∣(n0 +n1) ·
p0p1

‖p0p1‖

∣∣∣∣ > 1+n0 ·n1 (6)

4. One-ring Neighborhoods
The selection of a pertinent one-ring neighborhood is a crit-
ical step of the algorithm. Indeed, it is from this set of points
that new points will be inserted around the refined point p,
and hence, the robustness of the refinement process as well
as its capacity to fill large holes directly depend on the qual-
ity of this neighbor selection. A simple neighborhood def-
inition such as the common k-nearest neighbors leads to a
very poor selection and the development of a more accurate
method is essential. Advanced techniques use a Voronoï di-
agram [UMA04] or angle criterion [LP02, GBP04] after an

Figure 4: (a) The relative positions and orientations of the
points p0 and p1 are such that the construction by projection
is inconsistent. (b) Given the position p0 and the two nor-
mals n0, n1: the point p1 must be outside the yellow cone.

orthogonal projection of the nearest neighbors in the local
tangent plane. At the same time as it simplifies the neighbor
selection, the orthogonal projection to a 2D domain signif-
icantly reduces accuracy. Indeed the elevation information
which is crucial for dealing with low local density and high
curvature areas are lost.

For these reasons we propose two new neighborhood
computation procedures significantly improving the toler-
ance to under-sampled and/or scattered point sets. The first
has the advantage of being naturally symmetric (if pi is a
neighbor of p j then p j is also a neighbor of pi) while the sec-
ond improves the selection in under-sampled areas in spite
of being slightly more expensive and losing the symmetry
property.

4.1. Fuzzy BSP Neighborhood

The definition of our first neighborhood N f
p is based on a

BSP neighborhood [Pau03]. However, our selection is per-
formed without projection (allowing the neighborhood re-
lation to be symmetric) and we replace the too selective
discriminant planes by more flexible fuzzy planes (better
suited for scattered sampling). We start by computing the
Euclidean neighborhood Nε

p of p as the indices of all points

Figure 5: Illustration of Fuzzy planes. (a) Computation of
the badness value wi j between two points. (b) The red grad-
uation represents the variation of the badness value wi from
0 (white) to ≥ 1 (red), when wi1 (resp. wi0) is the max of the
successor’s (resp. predecessor’s) badness.

c© The Eurographics Association and Blackwell Publishing 2005.

G. Guennebaud & L. Barthe & M. Paulin / Interpolatory Refinement of Point-Based Geometry

Figure 6: Illustration of our “geodesic projection”. For instance,
the “geodesic projection” q′

1 of p1 onto the tangent plane of p is the
orthogonal projection q1 of p1 moved such that its distance to p is
the geodesic distance between p and p1.

pi included in the ball of center p and radius r:

Nε
p = {i |pi ∈ Pl , pi 6= p, ‖p−pi‖ < r} (7)

Following the previous section we first remove from Nε
p all

neighbors pi, i ∈ Nε
p which do not satisfy the condition 6.

Next, in order to get a pertinent one-ring we remove
all neighbors which are strongly “behind” another one or
slightly “behind” two others. For this purpose, we introduce
a badness value wi j stating to what extent the neighbor pi is
“behind” the neighbor p j . This value depends on the signed
angle between the vector p jpi and the plane of normal pp j
passing through p j (figure 5). Let αi j be this angle and θ f a
given tolerance angle (typically π

6). Then:

wi j =

{
0 if αi j < −θ f
1
2

(
sin(αi j)
sin(θ f)

+1
)

otherwise

with sin(αi j) =
pp j

‖pp j‖ ·
p jpi

‖p jpi‖ . Let Succi (resp. Predi) be the
set of successors (resp. predecessors) of the point pi, i ∈ Nε

p
such that Succi = { j ∈ Nε

p |0 < q̂ipq j < π} where qi and q j
are the orthogonal projections of the points pi and p j on the
tangent plane of p (resp. Predi = { j ∈ Nε

p | − π < q̂ipq j <
0}). We point out that the projections are only used to sort
the points as successors and predecessors. Next, we com-
pute a badness value wi for each neighbor pi as the sum of
the two maximal values wi j of the successors and wik of the
predecessor:

wi = max
j∈Succi

(wi j)+ max
j∈Predi

(wi j) (8)

As soon as a neighbor pi has a badness value wi greater than
1 it is removed from the neighborhood of p (figure 5b) yield-
ing the final one-ring neighborhood N f

p . Finally, the neigh-
bors pi, i ∈ N f

p are sorted by increasing angles of their pro-
jection qi onto the tangent plane of p, so that this neighbor-
hood implicitly forms a triangle fan around p.

4.2. Accurate Neighborhood
Our second neighborhood definition Ng

p is a variant of the
previous one where the computation of the weights wi j is
performed after the “geodesic projection” of all neighbors
pi, i ∈ Nε

p onto the tangent plane of p. This projection tech-
nique differs significantly from the standard orthogonal pro-
jection since the geodesic distance between p and its neigh-
bors pi (equation 4) is also the distance between p and the
projection q′

i of pi (the figure 6). Thus q′
i is computed as

follow:

q′
i = p+ G̃(p,pi)

qi −p
‖qi −p‖ (9)

where, qi is the orthogonal projection of the point pi on the
tangent plane of p. From here, the neighborhood Ng

p is se-
lected as N f

p except that the weights wi j are computed with
the projections q′

i , q′
j instead of the initial positions pi, p j .

The usefulness of this projection is illustrated figure 6: if we
apply directly our fuzzy plane filtering without projection,
the two points p0 and p1 will be selected. An orthogonal
projection is even less precise (because only p1 would be
selected) while after our “geodesic projection” it clearly ap-
pears that p1 is not a neighbor of p.

5. The Local Refinement Algorithm
In this section, we detail the local refinement of the current
point p from its neighborhood Np computed with one of the
previous methods (sections 4.1 and 4.2). The choice of the
method depends on the sampling quality and we comment
on this in next sections. The challenge is now to build a
relevant new neighborhood N′

p around p. This new neigh-
borhood corresponds to one refinement step around p and it
must both fill holes and regularize the sampling.

We first initialize the set N′
p with the indices of the points

of Pl+1 which can be considered as newly inserted points
i.e. the points which are at a distance from p smaller than
λ1r with λ1 = 1/

√
3 (figures 7a and 7b). The value of λ1 is

taken according to the scale factor of a
√

3 refinement in the
regular case [Kob00].

We consider that the refinement of p is complete as soon
as the maximal “curved angle” (equation 5) between two
consecutive points of N′

p is smaller than a given threshold
θc = π

2 . Hence if the initialization does not provide a com-
plete neighborhood, new points must be inserted. To do so,
we define three terms (figure 7b and 7c):

• Yp is the set of points already inserted which are suffi-
ciently close to p but not close enough to be selected in
N′

p:

Yp = {h |ph ∈ Pl+1 −Pl , λ1r < ‖ph −p‖ < r}, (10)

• Dp is the discard space avoiding oversampling and redun-
dancy. It is the union of the spheres of radius r

2 centered
on the points of Yp:

Dp = {x ; h ∈ Yp, ‖x−ph‖ < λ2rh} (11)

c© The Eurographics Association and Blackwell Publishing 2005.

G. Guennebaud & L. Barthe & M. Paulin / Interpolatory Refinement of Point-Based Geometry

Figure 7: Local refinement of the current point p. (a) The neighborhood of the point p before its own refinement. It is composed
of its neighbors Np and the closest points already inserted during the previous refinement of two of its neighbors. (b) Initializa-
tion of the new neighborhood N′

p (in green) and illustration of the discard space Dp around the points of Yp. The arrow shows
the area where the insertion of new points will begin in order to complete N ′

p. (c) New points of Lp are computed and the best
one filling the previous area is selected and inserted. (d) After the insertion of two new points (in red) and the failure of two
other insertions due to the discard space (in blue) the new neighborhood N ′

p of p is complete. Four new points remain in Lp;
these are ignored because they are superfluous. Note the rotation effect between Np and N′

p of our
√

3-like refinement.

• Lp is the set of all possible new points, i.e. it is the set of
points resulting from the application of our smoothing op-
erator (equation 3) on the center of gravity of all triangles
of the implicit triangle fan formed by the sorted neighbor-
hood Np:

Lp = {cog(p,pi,pi+1)+φ(p,pi,pi+1) | i ∈ Np} , (12)
The insertion procedure is as following:
While the neighborhood N′

p is not complete repeat
1. Select the pair of consecutive points p j , p j+1 in N′

p hav-
ing the maximal “curved angle” (figure 7b).

2. Select the new point in Lp which best balances point sam-
pling (figure 7c). A good candidate is the point pk ∈ Lp
such that the minimum of the two angles p̂ jppk and
̂pkpp j+1, is maximal.

3. If this point is not in the discard space Dp, it is inserted in
N′

p and Pl+1, otherwise no new point is inserted in Pl+1

and the point pk is replaced in N′
p by the closest point

in Yp (figure 7d). Hence, if the samples are locally dense
enough, no new point is inserted.
When this process terminates, the radius of the point p is

updated according to its new neighborhood N ′
p. The new ra-

dius r′ is set to the maximum distance between p and the
points of N′

p: r′ = max j∈N′

p
(‖p− p j‖) (figure 7d). The ra-

dius r j of each new neighbor p j , j ∈ N′
p is set to the max-

imum of the four values: r j , ‖p j − p‖, ‖p j − p j−1‖ and
‖p j − p j+1‖.

6. Sharp features
A common and efficient way to handle sharp creases with
point-based geometry is to use clipped splats [ZRB∗04]. Al-
though clipped splats are sufficient for the rendering, geom-
etry processing requires, in addition, that splats share the

same center [PKKG03, GBP04]. Thus our crease splat is just
a single point with two different normals.

With our
√

3-like up-sampling strategy the refinement of
boundaries and creases is more fussy than with a diadic re-
finement as used in [GBP04] because new points are never
explicitly inserted between two points. With the mesh-based√

3 subdivision scheme [Kob00] Kobbelt proposes the in-
sertion of two vertices on each boundary and crease seg-
ment at each odd refinement step only. However, with point-
based geometry, there is no connectivity and after two re-
finement steps, the crease (or boundary) points will proba-
bly not be neighbors anymore so that no special treatment
can be applied between them. Hence we explicitly store a
list of crease and boundary segments; this solution has the
advantage of being robust and functional. This list is com-
puted during the first refinement step. Crease segments be-
tween two crease splats are detected in the same manner as
in [GBP04]. For the boundaries, a point p ∈ P0 is said to
be a potential boundary splat if there exist two consecutive
points pi and pi+1, i ∈ Np such that the angle pippi+1 is
greater than a given threshold θb ∈

]
2π
3 ,π

]
. Then if p is

a potential boundary point and pi, i ∈ Np is also a poten-
tial boundary point, the pair (p,pi) is inserted in the list of
boundary segments. Note that the choice of θb allow us to
choose how strongly to smooth the boundary: if pi, p, pi+1
have an angle smaller than θb but they are effectively on a
boundary then the inserted point between them will have
a larger angle, and hence the boundary will be effectively
detected after a few refinement steps. The interpolation be-
tween two crease/boundary points uses a cubic Bézier curve
(as in [GBP04]) except that two points are inserted at the
thirds of the curve at each odd refinement step instead of
inserting a single points in its middle at every step.

c© The Eurographics Association and Blackwell Publishing 2005.

G. Guennebaud & L. Barthe & M. Paulin / Interpolatory Refinement of Point-Based Geometry

7. Data structures and Implementation
Closest points query
As in a lot of point-based processing methods, a critical
time-consuming part of our method is the closest points
query necessary to compute the Euclidean neighborhood Nε

p
(equation 7). To improve efficiency, points must be spatially
sorted into a data structure, like a kd-tree or a 3D grid, with
a fine granularity.

Moreover, the local refinement step of a single point p ∈
Pl (section 5) also requires us to find the closest points al-
ready inserted into Pl+1 (to compute the sets N′

p and Yp).
Assuming that new points are sequentially inserted into a list
of points, our solution is to associate to each point p ∈ Pl the
indices of the first and last new points inserted during its own
refinement. We call these points the children of p. Thus, the
set of new points already inserted into Pl+1 close to p is in-
ferred from all children of all neighbors pi, i ∈ Nε

p of p. This
solution has the advantage that it naturally creates a hierar-
chy of bounding spheres (a radius is associated with each
point) which is also used to perform efficient closest points
queries with a very low memory consumption: we only store
two indices per point. We only have to structure the initial
point set P0 once: no additional data structure has to be built
for other levels and no insertion has to be performed, and
hence a static data structure (e.g. a kd-tree) can be efficiently
used. A closest points query around the current point p at a
level l with l 6= 0 is done by performing a recursive traversal
of the bounding spheres hierarchy while the starting bound-
ing spheres (points of the set P0) are found by performing a
closest points query using the initial data structure.

Real-Time Refinement
On one hand, the data structure presented above is espe-
cially useful for real-time applications, i.e. when some parts
of the model must be dynamically refined. For instance, in
a real-time rendering system, such as the one presented in
[GBP04], the refinement procedure is used to maintain a
screen space splat size smaller than a given threshold (e.g.
two pixels). According to the relative position of the camera,
under-sampled regions of the models are refined (yielding to
the insertion of new points stored in a cache) while outdated
generated points are removed in order to free the memory
cache. In this context, our neighbor search algorithm is par-
ticularly well suited because insertion and deletion of points
is trivial, the memory cost is very low and levels are well
separated. The clear separation of levels is essential when
the model is not globally refined since different parts of the
model are refined at different levels while new points of the
level l+1 must be interpolated from points of the set Pl only.

On the other hand, still in the context of a rendering ap-
plication, the selection of points that have to be refined is
equivalent to a visibility and level-of-details (LOD) point
selection which is generally performed by spatially sorting
points into a hierarchy of bounding volumes (e.g. kd-tree
or octree). Our hierarchy of bounding spheres could also
be used for this purpose (in a way it looks like the QSplat

representation [RL00]), however, it has been shown that a
too fine data structure is inefficient for high-level point se-
lection [DVS03, EF04]; such a data structure should contain
approximately one or two thousands points per cell. More-
over, no regular hierarchical data structure matches the

√
3

refinement. Thus, in our real-time rendering system, we have
opted for a more flexible hierarchy of bounding boxes (sim-
ilar to the point-octree [Sam89]) where the goal is to keep a
constant number of points per node. We start from a set of
axis aligned bounding boxes (the root nodes). Then, when a
node is refined, according to its actual number of points, it
is:

• not split (the node has only a single child),
• split in two or three along its maximal dimension,
• split in four along its two maximal dimensions.

With respect to our fine hierarchy of points, to memory con-
sumption and to efficient GPU rendering requirements, the
points of a node must be stored sequentially in a single chunk
of video memory (shared by all nodes). Thus, a node has just
to store an axis aligned box, its points as a range of indices
(the indices of its first and last points) and from zero to four
children. In order to respect the sequential storage of points
per nodes, a node is refined as follow:

• split the current node into 1, 2, 3 or 4 children (see above),
• for each child, refine all points which are in its bounding

box.

At the end of this process the bounding box of each child
must be updated, i.e. contracted and/or extended in each di-
rection in order to be as small as possible and to guarantee
that it effectively contains all its points (the new points in-
serted during the refinement of one point of the child may be
outside its initial box).

In order to maintain a real-time frame rate (above 24 fps)
the time allowed for the refinement procedure must be bound
(implying a breadth-first order traversal). Owing to the time
consumed by the point selection and the rendering itself, the
remaining time per frame for the refinement procedure is
very limited, and we have measured with our implementa-
tion that a point generation rate above 300k points per sec-
ond is the minimal performance required for a comfortable
navigation.

Simplifications/Optimizations
The technique presented above has been designed to handle
under-sampled and scaterred point clouds. However, for rel-
atively well sampled models and/or after a few refinement
steps a lot of expensive tests can be safely optimized:

1. Approximate the geodesic distance by the Euclidean dis-
tance: G̃(p0, p1) ≈ ‖p1 − p0‖

2. Approximate the “curved-angle” by the simple geometric
angle: Ãp(p0, p1) = p̂0 pp1

3. Use the N f
p instead of the Ng

p neighborhood.
4. Approximate the position of a new point by the center

of gravity during the refinement process and apply the

c© The Eurographics Association and Blackwell Publishing 2005.

G. Guennebaud & L. Barthe & M. Paulin / Interpolatory Refinement of Point-Based Geometry

smoothing operator if and only if the new point is effec-
tively inserted.

These optimizations allow us to significantly improve the
performance of the algorithm (by a speedup factor from 1.5
to 2).

8. Results and Discussion
We have tested our new approach on a wide variety of point-
based models. The refinement of textured models is illus-
trated in figure 12: the color of a new point is linearly inter-
polated from the three extremities of the PN triangles. Figure
10 illustrates the refinement of sharp features.

Robustness evaluation: In order to evaluate the robustness
of our method, it has been tested on several irregularly down-
sampled models: for instance in figure 1 our refinement al-
gorithm is applied to 3500 points randomly selected from a
set of 150k points representing a statue of Isis. Figure 9 illus-
trates the use of our refinement method on an especially large
hole. To fill this hole we have simply adjusted the radius of
points such that they overlap the hole and we have applied
our refinement algorithm several times. Figure 11 illustrates
the usefulness of our “geodesic projection” and our “curved
angle” on an highly under-sampled area. In this example, the
boundary of the David’s eye exhibits holes if these tools are
not used.

Performances: We have tested our implementation on an
Athlon 3500+ system with an nNidia GeForce 6800 graph-
ics card. Our algorithm is able to generate from 350k to 450k
points per second depending of the local regularity of the
sampling. The optimizations presented in the previous sec-
tion allow us to reach a point generation rate around 700k
points per second. The time consumption of each part of
the refinement procedure is (approximately) as follow: 23%
for the Euclidean neighborhood, 40% for the filtering of the
neighborhood, 29% for the selection of new points and 8%
for the interpolation and radii updates.

Comparisons: Figure 8 illustrates the superiority in the re-
constructed surface smoothness of our new

√
3 refinement

algorithm over the butterfly mesh based interpolatory sub-
divion scheme [DLG90, ZSS96] (C1 surface but with large
oscillations) and the Guennebaud et al. diadic refinement
method [GBP04] (high-frequency oscillation artifacts).

8.1. Convergence and Continuity issues
From a practical point of view, our results show that our new
refinement algorithm provides a high quality smooth sur-
face and allows flexibility in the quality of the input point
sampling. However, from the theoretical point of view, all
the analysis mechanism developed during the last decade
for meshes does not hold for point-based geometry. Hence,
questions remain: what are the convergence and the continu-
ity ? The heuristic character of our refinement procedure and
its dependence on the point processing order make it com-
plicated to undertake rigorous analysis of the limit surface.
Nevertheless, we can expect some good properties.

For convergence, we show that the radius of any points
p ∈ Pl , noted rl , has for limit zero when l tends to infinity.
Indeed an upper bound of the radius r′ is given by the dis-
tance between p and its farthest new neighbor pk which is
the center of a PN triangle formed by the neighbors of p (at
a maximal distance r from p):

rl+1 = ‖p− pk‖ = ‖p− 1
6 (b210 + b120 + b021 + b012 + b102 + b201)‖

Since:
‖p− 1

2 (b210 + b120)‖ ≤ 5
6 rl , ‖p− 1

2 (b201 + b102)‖ ≤ 5
6 rl

‖p− 1
2 (b021 + b012)‖ ≤ (cos(β/2) + 2

3 sin(β/2))rl

we have:
rl+1 ≤ cβrl (13)

cβ = 1
3 (5

6 + 5
6 + (cos(β/2) + 2

3 sin(β/2))) (14)

where β is the angle between the farthest neighbor of p and
its successor (or predecessor). Whatever the value of β is,
cβ < 0.96 that is strictly less that 1 and hence, the limit of rl

is zero.

For the continuity issue, considering a given point p ∈ Pl ,
we define αl

p as the angle of a double cone of apex p and
axis n (the normal of p) such that the complement of this
double cone (co-cone) contains all the neighbors of p at the
level l. Moreover, the symmetry property of our first neigh-
borhood computation guarantee that the point p is one of the
extremities of each built PN triangle which has yield to the
insertion of a new points in its new neighborhood. Hence,
assuming that after a finite number of refinement steps, no
Bézier patch presents an inflexion point, we show that the
angle αl

p has for limit 0 when l tends to infinity. As above,
we find a constant c < 1 such that αl+1 < cαl . This means
that, at the limit, all neighbors of p are in its tangent plane
that is a necessary condition for the G1 continuity. Our as-
sumption has always been satisfied in our experimentations,
even in very distorted areas, however there is no theoretical
guaranty since it has not been proved.

9. Conclusions
We have presented a fast and robust interpolatory refinement
method suitable for real-time processing of point based ge-
ometry. The refinement procedure is based on a PN trian-
gle interpolation associated with a

√
3-like refinement. Our

results show the efficiency of this combination which gen-
erates smooth reconstructed surfaces. We have presented
a set of tools allowing the extrapolation of local geomet-
ric information from a point-normal surface representation.
These tools have been particularly useful in the develop-
ment of neighborhood computations handling both under-
sampled and scattered point clouds. Our technique is also
robust enough to smoothly fill large holes in the geometry.
The connectivity free of point cloud has allowed us to de-
velop an efficient adaptive refinement strategy with trivial
reverse refinement steps.

Even though the surface looks very smooth, there is
no fundamental theoretical machineries allowing a rigor-
ous analysis of the limit surface (as for subdivision surfaces

c© The Eurographics Association and Blackwell Publishing 2005.

G. Guennebaud & L. Barthe & M. Paulin / Interpolatory Refinement of Point-Based Geometry

on meshes). Nevertheless, we have proved some important
properties of our refinement: refinement steps after refine-
ment steps the inserted points converge on the central old
point and at the limit, the inserted points lie in the tangent
plane of the old central point. Hence, as future works, we
intend to follow the analysis of the limit surface. We will
also investigate the capabilities of our refinement procedure
in interactive applications such as multi-resolution modeling
(where the user will simply interact with oriented disks) and
for the efficient compression of point sets.

Acknowledgements
We would like to thank Neil Dodgson from the University of
Cambridge for proof-reading the paper.

References
[AA03] ADAMSON A., ALEXA M.: Approximating and intersect-

ing surfaces from points. In Proceedings of the Eurograph-
ics Symposium on Geometry Processing (2003), pp. 245–
254. 2

[ABCO∗03] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S.,
LEVIN D., SILVA C. T.: Computing and rendering point
set surface. IEEE Transaction on Visualization and Com-
puter Graphics 9, 1 (2003), 3–15. 2

[ABK98] AMENTA N., BERN M., KAMVYSSELIS M.: A new
voronoï-based surface reconstruction algorithm. In Pro-
ceedings of ACM SIGGRAPH 98 (1998). 4

[AK04] AMENTA N., KIL Y. J.: Defining point set surfaces. In
Proceedings of ACM SIGGRAPH 2004, Computer Graph-
ics Proceedings (2004). 2

[BK03] BOTSCH M., KOBBELT L.: High-Quality Point-Based
Rendering on Modern GPUs. In 11th Pacific Conference
on Computer Graphics and Applications (2003), pp. 335–
343. 1

[BK04] BOTSCH M., KOBBELT L.: Phong splatting. In Proceed-
ings of Point-Based Graphics 2004 (2004). 1

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B.,
MITCHELL T. J., FRIGHT W. R., MCCALLUM B. C.,
EVANS T. R.: Reconstruction and representation of 3D
objects with radial basis functions. In Proceedings of ACM
SIGGRAPH 2001 (2001), pp. 67–76. 2

[DLG90] DYN N., LEVIN D., GREGORY J.: A butterfly subdivi-
sion scheme for surface interpolation with tension control.
ACM Transaction on Graphics, 9 (2) (1990), 160–169. 8

[DVS03] DACHSBACHER C., VOGELGSANG C., STAMMINGER
M.: Sequential point trees. In Proceedings of ACM SIG-
GRAPH 2003 (2003), pp. 657–662. 7

[EF04] ENRICO G., FABIO M.: Layered point clouds: a simple
and efficient multiresolution structure for distributing and
rendering gigantic point-sampled models. Computers &
Graphics 28 (2004), 815–826. 7

[GBP04] GUENNEBAUD G., BARTHE L., PAULIN M.: Dynamic
surfel set refinement for high-quality rendering. Comput-
ers & Graphics 28 (2004), 827–838. 2, 4, 6, 7, 8

[GP03] GUENNEBAUD G., PAULIN M.: Efficient screen space
approach for Hardware Accelerated Surfel Rendering. In
Proceedings of Vision, Modeling and Visualization (2003),
IEEE Signal Processing Society, pp. 41–49. 1

[KB04] KOBBELT L., BOTSCH M.: A survey of point-based tech-
niques in computer graphics. Computers & Graphics 28
(2004), 801–814. 1

[Kob00] KOBBELT L.:
√

3 subdivision. In Proceedings of ACM
SIGGRAPH 2000 (2000). 2, 5, 6

[Lev03] LEVIN D.: Mesh-independent surface interpolation. In
Geometric Modeling for Data Visualization (2003). 2

[LP02] LINSEN L., PRAUTZSCH H.: Fan clouds - an alternative to
meshes. In Dagstuhl Seminar 02151 on Theoretical Foun-
dations of Computer Vision - Geometry, Morphology and
Computational Imaging (2002). 4

[MMS∗04] MOENNING C., MÉMOLI F., SAPIRO G., DYN. N.,
DODGSON N. A.: Meshless geometric subdivision. Tech.
rep., IMA Preprint Series number #1977, 2004. 2

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G., SEI-
DEL H.-P.: Multi-level partition of unity implicits. ACM
Transactions on Graphics 22, 3 (July 2003), 463–470. 2

[Pau03] PAULY M.: Point Primitives for Interactive Modeling and
Processing of 3D geometry. Master’s thesis, ETH Zürich,
2003. 4

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Efficient simpli-
fication of point-sampled surfaces. In Proceedings of the
13th IEEE Visualization Conference (2002), pp. 163–170.
2

[PKKG03] PAULY M., KEISER R., KOBBELT L. P., GROSS M.:
Shape modeling with point-sampled geometry. In Pro-
ceedings of ACM SIGRAPH 2003 (2003), pp. 641–650. 2,
6

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: A multiresolu-
tion point rendering system for large meshes. In Proceed-
ings of SIGGRAPH 2000, Computer Graphics Proceed-
ings (2000), pp. 343–352. 7

[Sam89] SAMET H.: The Design and Analysis of Spatial Data
Structures. Reading, Mass.: Addison Wesley, 1989. 7

[TRS04] TOBOR I., REUTER P., SCHLICK C.: Multiresolution re-
construction of implicit surfaces with attributes from large
unorganized point sets. In Proceedings of Shape Modeling
International 2004 (2004). 2

[Tur92] TURK G.: Re-tiling polygonal surface. In Proceedings of
ACM SIGGRAPH 92 (1992). 2

[UMA04] ULRICH C., MARTIN R., ALEXANDRU T.: Surface pro-
cessing methods for point sets using finite elements. Com-
puters & Graphics 28 (2004), 851–868. 4

[VPBM01] VLACHOS A., PETERS J., BOYD C., MITCHELL J. L.:
Curved pn triangles. In Proceedings of the 2001 sympo-
sium on Interactive 3D graphics (2001). 2, 3

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS M.:
Surface splatting. In Proceedings of ACM SIGGRAPH
2001 (2001), pp. 371–378. 1

[ZRB∗04] ZWICKER M., RÄSÄNEN J., BOTSCH M., DACHS-
BACHER C., PAULY M.: Perspective accurate splatting.
In Graphics Interface 2004 (2004). 1, 6

[ZSS96] ZORIN D., SCHRÖDER P., SWELDENS W.: Interpolating
subdivision for meshes with arbitrary topology. In Pro-
ceedings of ACM SIGGRAPH 1996 (1996), pp. 189–192.
8

c© The Eurographics Association and Blackwell Publishing 2005.

G. Guennebaud & L. Barthe & M. Paulin / Interpolatory Refinement of Point-Based Geometry

Figure 8: The Igea model uniformly sampled by 600 points is refined to 150k points with various techniques. From left to right:
the butterfly (after a meshing step), the Guennebaud et al. diadic refinement and our new

√
3-like refinement.

Figure 9: Illustration of the hole filling capability of our algorithm.
A large hole in the David’s hair is filled by adjusting the radius of
boundary points such that they are greater than the hole and apply-
ing our refinement algorithm. The final image is obtained after eight
refinement steps while the two others show intermediate steps.

Figure 10: Illustration of the refinement of creases.

Figure 11: Illustration of the usefulness of our “geodesic
projection” and our “curved angle”. (a) If they are disabled
high curvature areas are not reconstructed (holes appear).
The three other images are close views of the refinement pro-
cess when our “geodesic projection” and “curved angle”
are enabled. (b) The initial sampling. (c-d) Intermediate step
and final refinement: the previous holes are smoothly recon-
structed.

Figure 12: Refinement of a textured model. The right image
is obtained after 4 refinement steps.

c© The Eurographics Association and Blackwell Publishing 2005.

