Real-time Soft Shadow Mapping by back-projection

Gaël Guennebaud

Loïc Barthe, Mathias Paulin IRIT – UPS – CNRS TOULOUSE – FRANCE http://www.irit.fr/~Gael.Guennebaud/

Hard Shadows

Soft Shadows

Soft Shadows

Soft Shadows: purpose

- A soft shadow algorithm should be:
 - real-time on complex and dynamic scenes

• generic,

- any geometry => rasterizable (point cloud, mesh, image)
- any light source => rectangular
- no occluder/receiver differentiation

• physically based => visually realistic

Real-time soft shadows previous works

- Two categories of approaches
 - geometry based (shadow volume)
 - object space silhouette extraction
 - image based (shadow map)
 - compute one or several shadow maps
- + some hybrids

Real-time soft shadows previous works

- Shadow volume based
 - penumbra wedges [Assarsson et al. 03]
 - exact for flat objects without overlapping
 - wrong occluder fusion
 - not scalable (limited to simple scenes)
 - Iimited to manifold meshes

Real-time soft shadows previous works

- Image based methods (shadow maps)
 - some require (expensive) pre-computation
 - ✓ good realism
 - Imited to static scenes
 - other based on distance ratio (no visibility computation)
 - (very) low quality

- What is the visibility percentage v_p between a point **p** and the light source ?
 - very complex problem
 - => simplifications

Penumbra wedge approach:
occluders -> silhouettes

What is the visibility percentage v_p between a point **p** and the light source ?

• Our approach:

key idea: use the **shadow map** as a simplified and discrete representation of the scene

- Area occluded by a shadow map sample ?
 - back-projection on the light source
 - + clipping (trivial)

- What is the visibility percentage v_p between a point
 p and the light source ?
 - algorithm:

subtract the area occluded by each shadow map sample

Main issue

gaps & overlaps

- simple in 1D
- very complex in 2D

Gaps & Overlaps

reference

naive algorithm

Gaps filling

- gaps & overlaps
 - simple in 1D
 - very complex in 2D

- overlap artifacts are acceptable
- => at this time, we just fill the gaps

Gaps filling

reference

naive algorithm

Gaps filling

reference

with gap filling

Optimizations hierarchical shadow map (HSM)

- shadow map → hierarchical shadow map (HSM)
 - similar to mipmaps
 - each pixel stores the min and max depth values

Optimizations - I

 Occluder search area reduction
 (treat only samples which may occlude the light)

Clip the pyramid **p**-light by:

- the **near plane**
- the **global z**_{min} (last HSM level)
- iteratively by the **local** *z*_{min} (HSM access)

local z

Optimizations - III

 Rendering cost depends on the shadow map resolution

=> adaptive resolution

hard shadow mapping resolution: 256x256

Optimizations - III

- Adaptive precision (use low resolution for large penumbra)
 - if the occluder region is too large
 => use a low level of the HSM
 - + guaranty the real-time
 - slight artifacts at the level transitions

Summary of the algorithm

- Draw the scene in the shadow map
- Compute the HSM (GPGPU, ~3 ms)
- Draw the scene from the view point in a depth buffer
 - ~ deferred shading
- Compute the visibility buffer:
 - **for** each pixel **p** (*draw a quad*)
 - estimate the occluder search area (HSM)
 - if p is lit or in the umbra then **OK**
 - else loop over the occluder samples...
 - ~ 15 instructions / sample

Draw the scene with lighting and soft shadows !

Gaël Guennebaud – Cyprus – June 2006

dynamic • branching

performances (on a GeForce 7800)

	2011 A. C. I.	RE BOLATI C MARKED		1.15
Scene	Fig. 7	Fig. 1	Fig. 8	
Shadow map	1.7	2.6	8.7	
Camera depth map	0.7	1.3	7.6	
HSM construction	3.1	3.1	3.1	
Visibility pass 1	0.9	0.9	0.9	
Visibility pass 2	39	28	15	
Final rendering pass	0.8	1.6	8.2	
Total (ms)	46.2	37.5	43.5	
fps	21.6	26.6	23	

Textured light source

via 4D texture (expensive and coarse) or via a « Summed Area Table » (SAT)

Other limitations

 Only parts visible from the light center are taken into account in the visibility computation

Comparison with [Atty et al. 2006]

- Recent work done in parallel
 - similar visibility computation
- Main differences:
 - all computations are done in the light space
 - Ioops are swapped:
 - for each shadow map samples **S** (CPU)
 - for each point **p** of the scene (quad rasterization)
 - remove from **v**_p the area occluded by **s** (fragment program)

Comparison with [Atty et al. 2006]

General consequences:

- X occluders & receivers must be distinct set
- X higher complexity
- x no « gap filling »
- 2 passes approach reducing the "single light sample artifacts" but...
- Current consequences: (GPU limitations)
 no dynamic branching at the fragment level
 X limited to low shadow map resolutions (200x200)

Soft shadow mapping conclusion

Summary

- provides high quality soft shadows in real-time
 - not physically exact, but close in most cases
- has all the advantages of shadow maps
 - suitable for complex scenes
 - suitable for any rasterizable geometry
 - no pre-computation => dynamic scenes

Soft shadow mapping future works

More accuracy

- overlap error
- single light sample error
- Aliasing
 - increase the effective resolution (e.g. ASM, PSM...)
- Performances
 - adaptive strategy without discontinuity

Soft shadow mapping future works

More accuracy

- overlap error
- single light sample error

Aliasing

 increase the effective resolution (e.g. ASM, PSM...)

Performances

adaptive strategy without discontinuity

almost OK almost OK

