EUROGRAPHICS 2004 / M.-P. Cani and M. Slater
(Guest Editors)

Volume 23 (2004), Number 3

Deferred Splatting

G. Guennebaud and L. Barthe and M. Paulin®

IRIT - CNRS - Université Paul Sabatier - Toulouse - France

Abstract

In recent years it has been shown that, above a certain complexity, points become the most efficient rendering
primitives. Although the programmability of the lastest graphics hardware allows efficient implementation of high
quality surface splatting algorithms, their performance remains below those obtained with simpler point based
rendering algorithms when they are used for scenes of high complexity. In this paper, our goal is to apply high
quality point based rendering algorithms on complex scenes. For this purpose, we show how to take advantage
of temporal coherency in a very accurate hardware accelerated point selection algorithm allowing the expensive
computations to be peformed only on visible points. Our algorithm is based on a multi-pass hardware accelerated
EWA splatting. It is also suitable for any rendering application since no pre-process is needed and no assumption
is made on the data structure. In addition, we briefly discuss the association of our method with other existing
culling techniques and optimization for particular applications.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Viewing algorithms

1. Introduction

Recently, it has been shown that points are conceptually the
most efficient primitives for the rendering of complex ge-
ometry. This is mainly due to the size of triangles becom-
ing smaller than a single pixel when the scene complexity
increases. The rendering of these tiny triangles is then inef-
ficient because of the necessary overhead for triangle setup.

A fundamental issue for point based rendering is hole fill-
ing. The challenge is the reconstruction of a continuous im-
age of the point cloud when the space between two neigh-
bour points reaches or exceeds the size of a pixel. This task
can be done using an image-based filtering technique, by ad-
justing on the fly the sampling density or using the so-called
surface splatting technique. In this last case, each point, also
called surfel, is associated with a 2D reconstruction kernel
(defined in the surfel tangent plane) which is projected onto
the image space. Two recent papers [BK03, GP03] show that
modern GPUs now support efficient point rendering with
high quality reconstruction. However, these techniques only
achieve a point rate from 7M to 10M high quality filtered

T e-mail: {guenneba | Ibarthe | paulin} @irit.fr

(© The Eurographics Association and Blackwell Publishing 2004. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

Figure 1: Our point based rendering algorithm applied on
a landscape. This frame contains 1500 visible trees (750k
points per tree). 95% of points declared visible by the high
level culling and LOD are culled by our accurate point se-
lection, increasing performance from 1.1 fps to 12 fps.

G. Guennebaud & L. Barthe & M. Paulin / Deferred Splatting

splats per second because it is necessary to use both a multi-
pass approach and a slow fragment programmability. The
same hardware attains 70M-80M small unfiltered squares
per second[DVS03]. Hence, in order to efficiently use one
of these high quality point rendering techniques on com-
plex scenes (figure 1), we should limit the expensive filtering
computations to visible points only. We do this by adding
selection algorithms on top of the rendering step. These in-
clude view frustum, back-face and occlusion culling tech-
niques. We also include level-of-detail (LOD) methods that
remove superfluous primitives in case of minification. These
selections can be performed at different levels:

High level selection algorithms work on bounding volumes
of objects or primitives, commonly unified within a hier-
archy.

Low level selection algorithms work at primitive level and,
in the final scan convertion process at pixel level.

Previous research has only focused on high level methods
that perform fast and coarse selection on top of the accurate
low level selection. Commonly, this last visibility computa-
tion is entirely performed by the GPU itself, which processes
only per primitive view frustum and back-face culling and
per pixel occlusion culling. However, as we show in this pa-
per, in the case of complex shaders it is very useful to per-
form low level selection ourselves before the rendering step.

Since the rendering of simple points is significantly faster
than the rendering of high quality filtered splats, the main
idea of this paper is to perform the expensive rendering pro-
cess only on visible splats (similar to deferred shading tech-
niques). To do so, we present an efficient and accurate point
selection algorithm and show how to take advantage of tem-
poral coherency. The main features of our algorithm are:

e 1o preprocess: suitable for dynamic point clouds

e accuracy: per primitive view frustum and occlusion
culling and LOD

o Jow level: takes as input the result of any high level culling

e temporal coherency

e hardware acceleration

Before describing our algorithm in section 4, we briefly
present the previous work (section 2) and in particular the
GPU-based EWA splatting algorithm of Guennebaud et al.
[GPO03] which is the base of our work (section 3). In addition
to our generic algorithm, we also present a full hardware ac-
celerated implementation suitable for the specific case where
our accurate point selection is enabled on a unique object
(section 6). Finally, we discuss about the association of our
method with other existing high level techniques such as oc-
clusion culling and LOD selection (section 7).

2. Related Work

In this section we focus on methods which take points as
a display primitive for high quality rendering. A recent and

more general survey on point based representation can be
found in [Kri03].

2.1. High Quality Point Based Rendering

Point based rendering systems have been the product of re-
cent research, especially for methods that provide high qual-
ity. In 2001, Zwicker et al. [ZPvBGO1] introduced elliptical
weighted average (EWA) surface splatting that provides high
quality anisotropic texture filtering [Hec89]. A reconstruc-
tion kernel (a 2D Gaussian) is associated to each point and
warped to elliptical splats in image space. Before the raster-
ization, this warped reconstruction kernel is band limited by
an image space low pass filter that removes high frequencies.
Although their software based approach provides the highest
visual quality, it only handles 250k splats per second.

Ren et al. [RPZ02] reformulate the image based EWA fil-
tering in the object space in order to allow a hardware imple-
mentation. They use a multi-pass approach for hidden sur-
face removal and render each splat as a textured rectangle in
the object space. This concept increases by a factor of four
the number of processed points, slowing down the rendering
to about 2M-3M splats per second.

In a hybrid point-polygon rendering system, Coconu and
Hege [CHO2] render surfels back to front using elliptical
Gaussian and alpha blending (fuzzy splats) without depth
test. Although it avoids an expensive additional pass for pre-
computing the depth buffer, this concept leads to a coarse
texture filtering that prohibits large magnification.

More recently, Botsch et al. [BK03] and Guennebaud et
al. [GPO3] present two high quality hardware-accelerated
point rendering algorithms. These two methods are very
similar, both using the hardware point primitive with per
fragment depth correction, elliptical gaussian with additive
blending mode and multi-pass rendering (visibility splatting,
reconstruction, normalization). The main difference is that
the second method is based on the EWA splatting of Zwicker
et al. [ZPvBGO1] and hence provides better anti-aliasing for
minification. Another difference is that Botsch et al. perform
approximation in the perspective computation and this can
lead to artefacts in the case of large magnification.

2.2. Data Structure For High Level Point Selection

In order to accelerate rendering, most point based render-
ing systems use hierarchical data structures to store the set
of points [PZvG00, RL0OO, BWKO2]. These data structures
allow hierarchical culling and local LOD point selection
but they are not designed to be used with the GPU which,
for efficiency, should take large data chunks as input. In
[SDO1, DCSDO1] the point sampling rate is dynamically ad-
justed by rendering list prefix of pre-computed random point
sets. Due to the use of random sampling, the two previ-
ous approaches are only suitable for highly irregular objets
(such as plants). More recently, Dachsbacher et al. [DVS03]

(© The Eurographics Association and Blackwell Publishing 2004.

G. Guennebaud & L. Barthe & M. Paulin / Deferred Splatting

present sequential point trees: an efficient data structure for
points adaptively rendered by sequential processing on the
GPU.

Although most of these data structures allow frustum
culling and back-face culling, none present techniques for
occlusion culling. However, many occlusion culling algo-
rithms work on the bounding box, and so, could be easily
adapted for point based geometry. A recent survey of visi-
bility algorithms for interactive application can be found in
[COCSDO03].

3. GPU-Based EWA Splatting

‘We have chosen to base our work on our point based render-
ing algorithm [GPO3] because it offers high reconstruction
quality and takes advantages of recent GPU capabilities. We
point out that due to their similarities, the methods of Botsch
et al. [BKO3] and Ren et al. [RPZ02] can also be used. In this
section we present an overview of the our previous multi-
pass algorithm (figure 2):

visibility
testing

Hierarchical and
multi-resolution

recursive

data structure traversal resolution
fmm e 'ﬁ'_ _____________________ ;
f Surfel Set \ '
{GL_POINTS] cL_pomts | Graphic
L4 L4 Hardware
[Visibility } [EWA]
splatting (1) splatting (2)

L]

v v |

Normalization
(3)

Frame Buffer‘

Figure 2: Overview of the previous multi-pass rendering al-
gorithm.

1. Visibility Splatting
The goal of this pass is to pre-compute a correct depth
buffer without any hole. To do so, all surfels are rendered
into the depth buffer via the hardware point primitive with
per fragment depth and shape correction.

2. EWA Splatting
During this second pass, all surfels are rendered a second
time onto the color buffer via the hardware point prim-
itive with additive blending mode. Due to the previous
pass, only visible splats are blended. The weight of each
fragment is computed from a Gaussian centered at the
current surfel position in the screen space, using a frag-
ment program. This Gaussian is the result of the convo-
lution between the surfel reconstruction filter and the low
pass filter, which is computed on the fly by a GPU vertex
program.

(© The Eurographics Association and Blackwell Publishing 2004.

3. Normalization
In this last pass, the resulting color buffer is rendered as a
full screen textured rectangle with a simple fragment pro-
gram that divide RGB components by the alpha compo-
nent which contains the sum of weights. This pass is in-
dependent of the scene complexity and is negligible com-
pared with the rendering time of the two previous passes.

Note that the two splatting passes are relatively expensive
because they need the use of both complex vertex programs
and simple but slow fragment programs. Compared with the
rendering of simple point primitives, they show a slowdown
by a factor of 3 to 4.

4. Our Rendering Algorithm with Accurate Point
Selection

The motivation of our work is the reduction of the slow-
down produced by the expensive rendering computations of
the previous algorithm. To do so, our approach is to perform
these expensive computations only on visible surfels. The
algorithm presented here is based on accurate point selec-
tion and temporal coherency, and similar to deferred shading
technique, the framebuffer is used to store information about
visible primitives.

4.1. Overview

The main idea of our algorithm is the following: between the
visibility splatting and EWA splatting of the previous algo-
rithm we first add a pass (number 2) where all input surfels
are rendered as a single pixel of the color buffer (section 4.2).
But, instead of the surfel color we use the surfel index. Then,
after this fast and simple pass, the color buffer contains the
list of visible surfels; all hidden points have been discarded
by the depth test. We call this sub-set of surfels B;, where
i is the number of the current frame. Now, we are able to
perform the EWA splatting (pass 4) only on visible surfels,
considerably accelerating this pass.

In order to also accelerate the first pass, i.e. perform the
visibility splatting only on visible surfels, we take advantage
of temporal coherency (section 4.3) and perform the visibil-
ity splatting only on the surfels which are visible in the pre-
vious frame (pass 1). Of course, for a correct reconstruction
with EWA splatting we must also perform visibility splatting
on surfels visible in the current frame and hidden in the pre-
vious one (pass 3). To summarize, the multi-pass rendering
algorithm of the frame i becomes:

1. Visibility Splatting with B;_

2. Render surfel indices into the color buffer
(we obtain B;)

3. Visibility Splatting with B; — B;_

4. EWA Splatting with B;

5. Normalization of the color buffer

In the next sections (4.2 and 4.3) we explain in detail our

G. Guennebaud & L. Barthe & M. Paulin / Deferred Splatting

(b)

Figure 3: Two point based models: a checkerboard and a head. (a) Rendered without the second visibility splatting pass. (b)
The same scene after a large rotation of the head between 2 consecutive frames. This illustrates the artefacts due to temporal
coherency approximations. (c) The next frame. Previous holes are filled and since no object have moved, no new hole appears.

(d) As in (b) but with the second visibility splatting pass enabled.

additional passes 2 and 3. We also discuss the side effects of
our algorithm in section 4.4.

4.2. Low Level Point Selection

This section explains in detail the second pass of our render-
ing algorithm. The challenge is to render as quickly as possi-
ble all surfels declared visible by the high level point selec-
tion with a unique identifier instead of its color. We use the
hardware point primitive with a constant screen space size
of one pixel. Since the identifier is stored in the RGBA color
buffer, it is limited to 32 bits. Moreover, we should be able to
efficiently sort each surfel by object because each object has
different transformation matrices, material properties, etc.
Thus, we use a very simple combination for the identifier
where n bits are reserved for the surfel index (i) into the ob-
ject and the remaining (32 — n) bits are used for the object
index (ip). The value of is a compromise between the maxi-
mum number of surfels per object and the maximum number
of visible objects. Typically, we take n = 20 to allow 1M sur-
fels by object and a maximum of 4096 visible objects. This
combination is computed on the fly by the GPU via a very
simple vertex program (1 instruction) for which i, is a uni-
form parameter. For efficiency, the surfel indices are stored
in a single video memory buffer used for all objects. This
buffer stores 2" consecutive integers from 0 to 2" — 1. No-
tice that the identifier corresponding to the clear color value
before this pass should never represent a real surfel index.
Hence, the clear value must be set to the most improbable
identicator value, i.e. OXFFFFFFFF which corresponds to the
last allowed surfel of the last allowed visible object.

However, if 1M points per object seems to be a good max-
imum, the number of visible objects can quickly exceed the
limit of 4096, e.g. in an aerial view of a forest. More so-
phisticated combinations can be used to optimize the use of
bits, but the extraction of the object index and the surfel in-
dex from the identifier must remain as fast as possible. It is
also possible to increase the number of bits, by using the 8
bits of the stencil buffer in order to store a part of the object
index. However, it is not recommended because it increases

the mass of data that must be read from the video memory.
In fact, the number of surfels per object is often reduced by
LOD. Indeed, very few objects are close to the viewpoint and
hence most of the others require less points to be accuratly
rendered. Thus, our solution for very large scenes is to use
different repartitions of bits in function of the object’s size.
So, we should reserve a few bits in order to represent the
repartition scheme. For instance, in large landscapes, as our
forest test scene, we use two schemes (11/20 and 14/17) that
allow 2048 objects with more than 131k points and 16384
small objects. In this case, a single bit is sufficient to store
the repartition scheme.

Finally, the color buffer is read from the video memory
and a vector of indices is built for each object. These index
buffers are used both for the EWA splatting pass of the cur-
rent frame and for the first visibility pass of the next frame
as explained in the next section.

4.3. Temporal Coherency

After the accurate point selection of the previous section we
are able to perform the expensive EWA splatting only on vis-
ible surfels. Thus the cost of this last pass becomes indepen-
dent of the scene complexity. However, the visibility splat-
ting is also an expensive pass since we must perform a per-
fragment depth correction. In this section we show how the
visibility splatting pass can be also accelerated by taking ad-
vantage of temporal coherency between successive frames.

Indeed, a major part of the visible surfels of the frame
number i are still visible in the next frame. Hence, we use
only the visible surfels of the frame i for the visibility splat-
ting pass of the frame i+ 1 (instead of all visible surfels
resulting of the high level selection). However, all hidden
points that become visible are missing, introducing small
holes in the depth buffer. Although this depth buffer is ac-
curate enough for our point selection, these holes generate
artefacts in the final image because some hidden splats are
accumulated into the color buffer (figure 3-b).

These artefacts may be acceptable in some applications

(© The Eurographics Association and Blackwell Publishing 2004.

G. Guennebaud & L. Barthe & M. Paulin / Deferred Splatting

but can be removed without expensive computation by
adding a second visibility splatting pass before the EWA
splatting. This new pass is performed only with surfels that
are potentially visible (holes in the depth buffer make B;
imperfect) in the current frame but hidden in the previ-
ous frame, i.e. we perform a visibility splatting pass on
B; — B;_1. Since the exact computation of B; — B;_1 is ex-
pensive, we only compute a conservative approximation. For
that, we use an array of boolean flags where each flag is as-
sociated with a group of m consecutive surfel indices and
it indicates if one of the surfels in the group belongs to the
set B;_. Thus, we can know immediately if a point of B;
is in B;_;. This difference is computed while sorting the
result of the previous pass (section 4.2). Although this ap-
proach implies to render more surfels in the first visibility
pass, B; — B;_1 becomes smaller and less scattered between
objects. Hence, the cost of this second visiblity splatting pass
is negligible. The choice of the groups size is a compromize
between the accuracy and the memory cost. In our system
we use groups of 64 surfels that need 8Mb for stroring flags
in the worst case.

Note that during the visibility splatting of pass 1, we use
each object’s transformation matrix at the current frame i
and not the one at the previous frame. This allows our algo-
rithm to also work on dynamic scenes. Since B; stores only
the surfels indices, our algorithm also deals with dynamic
point clouds. The robustness is essentially guaranteed by the
visibility splatting pass with B; — B;_|.

4.4. Filtering

Since our algorithm allows the projection of only one sur-
fel per pixel, aliasing and flickering artefacts should appear.
Indeed, in the case of oversampling, many visible but su-
perfluous points are discarded by our point selection. This

(b)

Figure 4: Illustration of the lost of texture information.
(a) Aliasing artefacts introduced by high frequency texture.
(b) Smoothing using on the fly mipmap levels interpolation.

(© The Eurographics Association and Blackwell Publishing 2004.

Figure 5: A dynamic scene (200 obj.) of the Hugo model
(450k points) rendered at 33 fps.Laurence Boissieux @ IN-
RIA 2003

means, we lose texture information and introduce aliasing
artefacts for high frequency textured models (figure 4-a).
Like Pfister et al. in [PZvGO00], our solution is to use sev-
eral prefiltered texture samples per surfel instead of only one
texture color by surfel. Such a surfel is also called surfel
mipmap. In this case, the vertex program of the EWA splat-
ting also performs a linear interpolation between the two
closest mipmap levels (figure 4-b). The interpolation coef-
ficient can be computed from the Jacobien matrix which has
been already computed during the resampling filter determi-
nation (see [PZvG00, ZPvBGO01, GPO03] for all details).

5. Implementation and Results

We have implemented our point selection algorithm with
OpenGL under Linux. Performances have been mea-
sured on a 2GHz AMD Athlon system with a NVidia
GeforceFX 5900 graphic card. All vertex and fragment
programs are implemented using ARB_vertex_program
and ARB_fragment_program vendor independent ex-
tensions. In order to get the best performance, all
the geometries are stored in the video memory via
the ARB_vertex_buffer_object extension. We also
build one vertex buffer object that contains a list of succes-
sive indices for pass 2. This buffer is shared by all point
based geometries.

In the high level point selection, we have implemented
per-object view frustum culling and LOD selection. We have
also implemented simple per-object occlusion culling as de-
scribed in section 7.1. All measures are done with a screen
resolution of 512x512 pixels. Our algorithm has been tested

G. Guennebaud & L. Barthe & M. Paulin / Deferred Splatting

on different types of scenes, from the simpler (a head, figure
3-d) to the more complex (a forest of 6800 trees, figure 7)
and on a dynamic scene (figure 5). The rendering times, with
and without our point selection, are given in table 1. This ta-
ble shows that we obtain a maximum speedup by a factor of
10 on very complex scenes and even for a relatively simple
model as the head, the overhead due to our additional passes
is fully compensated by the gain given by our point selection
procedure.

Scene FPS Percentage of FPS with
without culled points

Head (285k pts) 34 70% 39

Tree (750k pts) 8.6 88% 32

Dynamic scene 11.5 90% 33.5

Forest (6800 trees) 0.8-1.5 90-98% 10-16

Table 1: Rendering performance with (column 4) and with-
out (column 2) our point selection algorithm. The column 3
shows also the percentage of points culled by our algorithm.

Average raw performances for each pass are summed up
in table 2, but, for pass 2 we cannot give any average ren-
dering time because it depends highly on the scene com-
plexity and the high level culling, shown by the graph 6. It
is also this pass that becomes the most expensive for large
scenes. In order to accelerate this pass, we could add more
efficient/accurate high level culling algorithms. This obser-
vation means that our algorithm and other high level culling
methods are not in competition but are complementary and
must work together. Since high level culling is not the focus
of this paper, performance of this step does not appear in our
tables. However, we point out that the view frustum culling
and LOD selection are performed in parallel with the first
visibility splatting pass, and we have also measured that the
occlusion culling step takes from 3 to 6ms for the forest.

Pass primitves/second time (ms)

1 - Visibility Splatting 11.5-13.5M/s 7-11

2 - Render indices 90-110M/s -
Reading the color buffer - 6.6
Sort indices - 1.7-2.2

3 - Visibility Splatting 11.5-13.5M/s 0.8-1.2

4 - EWA Splatting 11-13M/s 9-11.5

5 - Normalization - 0.7

Table 2: Performances of each pass for a screen resolution
of 512x512. The last column indicates the average rendering
time of several scenes (The second value is the upper bound).

head mOdeLIl:l [C] EWA Splatting
(without)_:l:l [] Reading buffer + sort
Bl Render Indexes
ree model 7I|:| [Visibility Splatting
(without) | ‘ ‘
N
environement |
(without) \ \
fores: [I ||
(without) 202] 317
0 20 40 60 80 100 120

Figure 6: Rendering time of each passes for different scenes.
The seconds rows are obtained without our point selection.
Negligible passes (second visibility splatting and normaliza-
tion) does not appears.

6. Full Hardware Accelerated Version

In the specific case where only one object is rendered with
our accurate point selection, we can optimize our algo-
rithm since we do not need to re-sort surfels by object af-
ter pass 2. Indeed, all indices in the color buffer now cor-
respond to the same object. Hence, it is possible to di-
rectly copy this buffer into a GPU index buffer. In fact,
this will soon be possible with the OpenGL extensions
called SuperBuffers or PixelBufferObject. At the moment
data must transfers through the CPU memory, making this
process very slow and not CPU free. Also, all pixels with
invalid indices have to be removed. This is done using
the NVidia GIL_NV_primitive_restart which allows
the user to define an index value which is interpreted as
a pair of glEnd(),;glBegin(<current primitive>);. With the
GL_POINTS primitive the only effect of this extension is
the skipping of this index. The index value used for the
GL_NV_primitive_restart is the clear color value
of the color buffer before pass 2 (see section 4.2 for its
choice). Since the GL_ARB_super_buffers extension
is not available yet, we cannot give accurate results, and to-
day, we obtain very similar performances to the generic ver-
sion.

Typical applications where this full hardware version will
be useful are applications which manipulate dynamic point
clouds for editing [ZPKGO02], modelling [PKKGO03], im-
plicit surface visualisation (via particles system), etc. In-
deed, such applications need a lot of CPU resources, and it
becomes very important to free the CPU of all the rendering
tasks. Moreover, the user interacts often with only a single
object at once. Through modifications, it becomes very te-
dious to maintain a high level data structure while our low
level structure remains well suited.

7. Discussion

During the first visibility splatting pass we precompute a
depth buffer with points that are visible in the previous

(© The Eurographics Association and Blackwell Publishing 2004.

G. Guennebaud & L. Barthe & M. Paulin / Deferred Splatting

Figure 7: A landscape with 6800 trees. At the higher resolution, the tree model contains 750k points. This frame contains
approximately 2300 visible trees and is rendered at the rate of 11fps. The ground is a polygonal mesh and it illustrates the use

of our algorithm mixed with traditional triangle based rendering.

frame. In a way, the same result can be obtained using image
warping. However, a first drawback of an image warping ap-
proach is that it is impossible to take into account a dynamic
scene: only the camera can move. Moreover, although a for-
ward warping could be done by the GPU, the hole filling
process becomes very difficult since we do not know the ori-
entation of each pixel. An inverse warping approach like in
[MMB97] solves this last problem but it remains slow.

Since we know the exact visibility percentage of each ob-
ject (after reading the color buffer in pass 2), a first and
simple optimisation of the high level culling step would be
to perform visibility compution only on objects that have,
in the previous frame, a visibility percentage higher than a
given threshold. With our efficient multi-pass approach, it
is also possible to add high level occlusion culling (section
7.1). Moreover, we show in section 7.2 that the sequential
point tree data structure also takes advantage of our algo-
rithm, and vice versa.

7.1. High Level Occlusion Culling

Today, graphics hardware support features for occlusion
culling. The standard OpenGL ARB_occlusion_gquery
extension determines, by scan conversion, whether the spec-
ified primitives are visible or not. Commonly, these queries
are performed on bounding boxes of a set of primitives af-
ter initialization of the depth buffer, by rendering a set of
selected occluders. This selection is a difficult problem. In
[HSLMO2], the occluders selection is replaced by a grid de-
composition of the scene and a front-to-back traversal that

(© The Eurographics Association and Blackwell Publishing 2004.

needs preprocess, making this solution unsuitable for dy-
namic scenes. All these problems are solved with our algo-
rithm because we already have a depth buffer which is ini-
tialized by the efficient first visibility pass. Thus, in the high
level point selection, any algorithm and data structure can
be used for performing hardware occlusion queries on this
depth buffer. Their choice depends on the application.

7.2. Sequential Point Trees

As we have mentioned above, the sequential point tree (SPT)
[DVSO03] is a poweful hierarchical data structure for fine
LOD point selection that takes texture and local curvature
into account. It is also designed for a best GPU usage be-
cause the traditional CPU-based hierarchical traversal is re-
placed by sequential processing on the graphics processor.
The CPU only does a first efficient pre-culling, providing
a large chunk of points. The fine granularity culling is per-
formed by the GPU in a simple vertex program (they report a
percentage of culled points going from 10% to 40%). Thus,
using the SPT in a pure high quality point based rendering
system is not efficient because much unnecessary data is pro-
cessed by complex vertex programs (needed for high qual-
ity). However, used with our new high quality point based
rendering algorithm, SPT becomes very efficient because it
is only used during pass 2 with a very simple vertex program
(simpler than the one used in the original SPT because there
are no shading computations). In their system, they also per-
form back face culling by splitting the initial SPT list into
an array of point lists with equal quantized normals (they
use 128 quantized normals). But, for large complex scenes

G. Guennebaud & L. Barthe & M. Paulin / Deferred Splatting

we advocate replacing the normal clustering by a position
clustering in order to perform more accurate high level view
frustum and occlusion culling, by working on a small bound-
ing box hierarchy instead of a single but large bounding box
per object.

8. Conclusion and Future Work

In this paper we have presented a new accurate point selec-
tion algorithm that gives us the capability to perform expen-
sive rendering computations only on visible points. Thus, it
is particularly efficient for high quality point based rendering
on the GPU. Our algorithm is easy to implement, indepen-
dent of high level data structure, suitable for dynamic scenes
and dynamic point clouds. We have also shown that it is very
simple to add efficient high level occlusion culling and effi-
ciently use the sequential point tree in a pure high quality
point based rendering system.

Our results show that we can add more efficient/accurate
high level culling algorithms to our system. For non-
deformable objects, this task is relatively simple and many
octree-based systems have already been presented. However,
for deformable objects, it becomes much harder. With our
accurate point selection it is also possible to add a more
complex lighting model (e.g. for foliage or skin) without an
expensive overhead since these additional computations are
totally independent of the scene complexity. We also attempt
to see if our methods can be used for efficient shadow gen-
eration on point based models.

Acknowledgements

We would like to thank Mohamed Hassan from the Univer-
sity of Cambridge for proof-reading the paper.

References

[BKO3] BoTrscH M., KOBBELT L.: High-Quality Point-
Based Rendering on Modern GPUs. In [1th Pacific
Conference on Computer Graphics and Applications

(2003), IEEE, pp. 335-343. 1,2,3

[BWKO02] BOTSCH M., WIRATANAYA A., KOBBELT L.: Effi-
cient high quality rendering of point sampled geom-
etry. In Proceedings of the 13th Eurographics work-
shop on Rendering (2002), pp. 53-64. 2

[CHO2] CocoNU L., HEGE H.-C.: Hardware-accelerated

point-based rendering of complex scenes. In Proceed-
ings of the 13th Eurographics workshop on Rendering
(2002), pp. 43-52. 2

[COCSDO03] COHEN-OR D., CHRYSANTHOU Y., SiLvA C. T.,
DURAND F.: A survey of visibility for walkthrough
applications. IEEE TVCG (2003), 412-431. 3

[DCSDO1] DEUSSEN O., CoLbITZ C., STAMMINGER M.,
DRETTAKIS G.: Interactive visualization of complex
plant ecosystems. In Proceedings of IEEE Visualiza-

tion (2001), pp. 37-44. 2

[DVSO03]

[GP03]

[Hec89]

[HSLMO02]

[Kri03]

[MMB97]

[PKKGO03]

[PZvG00]

[RLOO0]

[RPZ02]

[SDO1]

[ZPKG02]

[ZPvBGO1]

DACHSBACHER C., VOGELGSANG C., STAM-
MINGER M.: Sequential point trees. In Proceedings
of ACM SIGGRAPH 2003, Computer Graphics Pro-
ceedings (2003), pp. 657-662. 2,7

GUENNEBAUD G., PAULIN M.: Efficient screen
space approach for Hardware Accelerated Surfel Ren-
dering. In Vision, Modeling and Visualization (2003),
IEEE Signal Processing Society. 1,2,3,5

HECKBERT P. S.: Fundamentals of Texture Mapping
and Image Warping. Master’s thesis, University of
California at Berkley, 1989. 2

HILLESLAND K., SALOMON B., LASTRA A.,
MANOCHA D.: Fast and simple occlusion culling us-
ing hardware-based depth queries. Tech. rep., De-
partment of Computer Science, University of North
Carolina, 2002. 7

KRIVANEK J.: Representing and Rendering Surfaces
with Points. Tech. Rep. DC-PSR-2003-03, Depart-
ment of Computer Science and Engineering, Czech
Technical University in Prague, 2003. 2

MARK W. R., MCMILLAN L., BisHoP G.: Post-
rendering 3d warping. In Symposium on Interactive
3D Graphics (1997), pp. 7-16, 180. 7

PAULY M., KEISER R., KOBBELT L. P., GROSS
M.: Shape modeling with point-sampled geometry.
In Proceedings of ACM SIGRAPH 2003, Computer
Graphics Proceedings (2003), pp. 641-650. 6

PFISTER H., ZWICKER M., VAN BAAR J., GROSS
M.: Surfels: surface elements as rendering primitives.
In Proceedings of ACM SIGGRAPH 2000, Computer
Graphics Proceedings (2000), pp. 335-342. 2,5

RUSINKIEWICZ S., LEVOY M.: QSplat: A multires-
olution point rendering system for large meshes. In
Proceedings of SIGGRAPH 2000, Computer Graph-
ics Proceedings (2000), pp. 343-352. 2

REN L., PFISTER H., ZWICKER M.: Object space
ewa surface splatting: A hardware accelerated ap-
proach to high quality point rendering. In Proceedings
of Eurographics 2002 (2002). 2,3

STAMMINGER M., DRETTAKIS G.: Interactive sam-
pling and rendering for complex and procedural ge-
ometry. In Proceedings of the 12th Eurographics
workshop on Rendering (2001), pp. 151-162. 2

ZWICKER M., PAULY M., KNoLL O., GROSS
M.: Pointshop 3d: an interactive system for point-
based surface editing. In Proceedings of ACM
SIGGRAPH 2002, Computer Graphics Proceedings
(2002), pp. 322-329. 6

ZWICKER M., PFISTER H., VAN BAAR J., GROSS
M.: Surface splatting. In Proceedings of ACM
SIGGRAPH 2001, Computer Graphics Proceedings
(2001), pp. 371-378. 2,5

(© The Eurographics Association and Blackwell Publishing 2004.

	Introduction
	Related Work
	High Quality Point Based Rendering
	Data Structure For High Level Point Selection

	GPU-Based EWA Splatting
	Our Rendering Algorithm with Accurate Point Selection
	Overview
	Low Level Point Selection
	Temporal Coherency
	Filtering

	Implementation and Results
	Full Hardware Accelerated Version
	Discussion
	High Level Occlusion Culling
	Sequential Point Trees

	Conclusion and Future Work
	References

