
Efficient screen space approach
for Hardware Accelerated Surfel Rendering

G. Guennebaud, M. Paulin

CNRS - IRIT, Université Paul Sabatier , Toulouse, France
Email : guenneba@irit.fr, paulin@irit.fr

Abstract

At present, the best way to render textured point-
sampled 3D objects is doubtless the use of ellipti-
cal weighted average (EWA) surface splatting. This
technique provides a high quality rendering of com-
plex point models with anisotropic texture filtering.
In this paper we present a new multi-pass approach
to perform EWA surface splatting on modern PC
graphics hardware. The main advantage of our ap-
proach is to be bandwidth limited because we ren-
der only one vertex by sample. To achieve this goal
we efficiently use the standard OpenGL point prim-
itive. During the first pass, visibility splatting is per-
formed by shifting surfel backward along the view-
ing rays and apply a parallax depth correction on
each fragment. During the second rendering pass,
screen space EWA filtering is computed for each
vertex and performed for each fragment. Our al-
gorithm is implemented using programmable vertex
and fragment shaders of newer PC graphics hard-
ware.

1 Introduction

Today, laser range and optical scanners generate a
huge volume of point samples. Rendering or ma-
nipulating this mass of data is a main challenge for
the community. In order to render this point cloud, a
common way is to reconstruct triangle meshes from
the samples using mesh reduction [7]. However,
this approach has some drawbacks. First, for some
application it can be useful to render data during,
or immediately after acquisition. However, in this
case the reconstruction phase leads to time latency
between acquisition and rendering. Secondly, the
reconstruction itself is not fine enough, and it can
become incorrect when scanned object is too com-
plex. Finally, mesh simplification algorithms can

lead more geometric and texturing artefacts.
This explains the motivation of many recent ef-

forts to propose a point sample rendering algorithm.
Here, the object surface is defined by a dense set
of sampled points without connectivity, commonly
called surface elements or surfels. The main chal-
lenge of these algorithms is to directly render a large
point set, i.e. to reconstruct a continuous image of
the point cloud. To complete this task efficiently, a
hierarchical data structure is useful for storing surfel
set and rendering. This allows hierarchical visibility
culling and multi-resolution rendering.

Today, to achieve interactive rendering perfor-
mances, a hardware-accelerated approach is com-
pulsory. Most point-rendering algorithms use
graphics hardware acceleration. Otherwise, to ren-
der point models with complex surface texture, the
EWA surface splatting algorithm [16] is doubtless
the best method. It is the only approach that can
support anti-aliasing with anisotropic texture filter-
ing. EWA surface splatting was first introduced by
Zwicker et al. [16] in a screen space formulation
and software implementation. Recently, Liu Ren et
al. [13] extended EWA surface splatting with an
object space formulation that allows a hardware-
accelerated implementation. However, this tech-
nique, as the most part of techniques using hard-
ware, represents each surfel by a quad. Since to
render one surfel we need to project four vertices,
the bandwidth is wasted. Moreover, in the object
space EWA surface splatting, the same computation
is performed four times by the GPU.

In this paper, our motivation is to limit the band-
width use, and consequently increase rendering
speed, while keeping a high rendering quality. To
perform this, we limit ourselves on the standard
OpenGL point primitive. Anisotropic texture filter-
ing can be performed by the screen space EWA sur-
face splatting algorithm that can be implemented ef-
ficiently with Vertex and Fragment programs avail-

VMV 2003 Munich, Germany, November 19–21, 2003

able on recent graphic hardware (Radeon 9x00 and
GeForceFX).

2 Previous Work

The concept of using points as a rendering primi-
tive has been introduced first by Levoy and Whitted
[9]. In this pioneering report, they discuss on fun-
damental issues such as surface reconstruction and
visibility. Built on these ideas, many point-sample
rendering techniques have been proposed. To per-
form a classification, many criterions are commonly
used, such as screen space versus object space re-
construction, software or hardware, speedup, etc.
Since point-based representation is halfway geo-
metrical description and pure image-based repre-
sentation, there are two ways to apprehend point-
based rendering.

For the first techniques presented here, point set
is considered as a geometrical surface description.
Then, the challenge is to reconstruct a real surface
based on this point cloud. To do this, Kalaiah and
Varshney [8] capture the local differential geometry
at each point sample and use it for resampling and
hardware-accelerated rendering with smooth shad-
ing effects. Alexa et al.[1] present a technique that
upsamples the point set on-the-fly during render-
ing to achieve the desired screen-space density of
points and to avoid holes. These two techniques al-
low big magnification without loss in shading and
outline quality. However, none of these can han-
dle textured models, so their application domains
are very limited. Rusinkiewicz and Levoy [14] de-
veloped the QSplat system designed to display very
large point-samples models resulting from 3D scan-
ner. Stamminger and Drettakis [15] use standard
OpenGL point primitives to render point-sampled
procedural geometry. They do not consider point
samples as a surface description but they assume
that the geometry of the object is completely known
(meshes, height-fields or procedural objects), which
is not always the case. Moreover, texture filtering is
not implemented.

In the second class of rendering technique, irreg-
ularly spaced point set is reconstructed as a contin-
uous texture. This was initially done by Grossman
and Dally [5] who proposed a screen space hole
filling with a pull-push algorithm that is prone to
blocky artefacts. Pfister et al. [11] built on this
work and added hierarchical data structure and tex-

ture filtering. Zwicker et al [16] introduced ellip-
tical weighted average surface splatting that allows
anisotropic texture filtering. Their software system
has been recently improved by Liu Ren et al. [13]
with an object space formulation of the EWA splat-
ting and a hardware-accelerated implementation.

Apart from pure point based rendering, many
system combine polygon and point primitives to
render in real-time complex scenes. This idea has
been first investigated in [2, 3] and recently ex-
tended by Coconu and Hege [4]. This last technique
uses an octree-based spatial representation, contain-
ing both triangles and sampled points. The best
suited for rendering is chosen dynamically in ac-
cordance with screen space projection criteria. Sur-
fels are rendered with fuzzy splats (Gaussian with
alpha blending) that perform coarse view indepen-
dent texture filtering that can’t allow big magnifica-
tion or semi-transparent model. Anyway, with hy-
brid method we introduce connectivity information
that diminishes the advantages of pure point based
models. Moreover, as we explain in introduction,
simple and valid polygonal representation of arbi-
trary models is not always available.

3 EWA framework

3.1 Screen Space EWA Surface Splatting

In this section we briefly review the screen space
EWA splatting framework. For convenience, we use
same notation that in [16] where you can get more
details. Interested readers may find the object space
derivation in [13].

Let Pk be the set of points that defines a 3D sur-
face. Let us note that these points have no con-
nectivity and can be irregularly spread in space.
For each point three coefficients are assigned,
wr

k, wg

k, wb
k which represent a chromatic value. For

convenience, in further explanation we consider
only a scalar component wk. We begin by defin-
ing a continuous texture function fc on the surface
represented by the set of points. To do this, we
associate to each point a radially symmetric basis
function rk from which surfel position and orienta-
tion can be computed. These basis functions are re-
construction filters defined on locally parameterised
domains. Let Q be a point with local coordinates
u anywhere on the surface. Then, the continuous

666

function fc(u) is defined as the weighted sum :

fc(u) =
∑

k∈N

wkrk (u − uk) (1)

where uk is the local coordinate of point Pk.
At rendering time, the texture function fc(u) is

warped to screen space using a local affine map-
ping of the perspective projection at each point. In
order to avoid aliasing artefacts, the output func-
tion must respect the Nyquist criterion of the screen
pixel grid. Then the continuous output signal of the
warping of fc(u) is band-limited by convolving it
with a prefilter h, yielding the output function gc(x)
where x are screen space coordinates. This output
function can be written as a weighted sum of screen
space resampling filters ρk(x) :

gc(x) =
∑

k∈N

wkρk (x) (2)

where

ρk(x) =
(

r′k ⊗ h
)

(x − mk(uk)) (3)

Here, mk denotes the local affine approximation of
the projective mapping x = m(u) for the point uk.
This approximation is given by the Taylor expan-
sion of m at uk :

mk(u) = m(uk) + Jk (̇u − uk) (4)

where Jk is the Jacobian Jk = ∂m
∂u

(uk).
Like Heckbert [6], elliptical Gaussians are cho-

sen both for the basis functions and the low-pass fil-
ter. Gaussians are closed under affine mappings and
convolution. Then, the resampling kernel ρk can be
expressed as a single elliptical Gaussian which al-
lows fast evaluation at rendering time.

Let GV (x) be a 2D elliptical Gaussian with vari-
ance matrix V ∈ R2×2. GV (x) is defined as :

GV (x) =
1

2π|V | 12
e−

xT V−1x
2 (5)

A typical choice for the variance matrix of prefilter
h is the identity matrix I . Let V r

k be the variance
matrix of the basis functions rk. Then the resam-
pling kernel ρk can be written as a single Gaussian
with a variance matrix that combines the warped ba-
sis function and the low-pass filter :

ρk(x) =
1

|J−1
k |

GJkV r
k

JT
k

+I(x − mk(uk)) (6)

which is called the screen space EWA resampling
filter. Finally, substituting this into 2, the continu-
ous output function is the weighted sum :

gc(x) =
∑

k∈N

wk

1

|J−1
k |

GJkV r
k

JT
k

+I(x − mk(uk))

3.2 Determining the resampling kernel

To evaluate the expression 6, we should determine
the two parameters V r

k and Jk. V r
k is only function

of the model’s sampling and can be computed at the
preprocess time. If the maximum distance between
the kth surfel and its neighbours is hk then we take
as V r

k :

V r
k =

(

h2
k 0
0 h2

k

)

(7)

Of course, this approach supposes a uniform
sampling of the model, which is impossible to ob-
tain in practice. To compute the Jacobian Jk we
use the technique described in [13] which is easier
to implement in Vertex Programs. This lead to the
following expression :

Jk = η

[

SxOz − SzOx TxOz − TzOx

SyOz − SzOy TyOz − TzOy

]

η = vh

2tan

(

fov
2

)

1
O2

z

(8)

where vh is the viewport height, fov is the field
of view, O = (Ox, Oy, Oz) is the surfel’s posi-
tion in camera space, S = (Sx, Sy, Sz and T =
(Tx, Ty, Tz) are the basis vectors defining the local
surface parameterisation in camera space.

4 Algorithm overview

The global algorithm of our method is shown fig-
ure 1. First, all visible surfels are extracted from the
data structure (see section 8) and rendered a first
time by the hardware in order to compute the depth
buffer (section 5) before the EWA splatting pass
(section 6). As explain in section 7, after these two
passes, we have to perform normalization on each
pixel to force a partition of unity in screen space.
As shown on the figure, after the extraction of vis-
ible surfels, the rendering is fully performed by the
hardware. The dashed-line denotes the possibility
to store samples into the memory of GPU via ver-
tex buffer object.

666

Hierarchical and
 multi resolution

data structure

Surfel Set

Frame Buffer

Visibility
Splatting

EWA
Splatting

Normalisation

visibility
testing

resolution
checking

recursive

traversing

Graphic

Hardware

GL_POINTS GL_POINTS

Figure 1: Schematic overview of the algorithm.

5 Visibility Splatting

Visibility splatting algorithm has been known for a
long time [12]. Its purpose is to obtain a correct
depth buffer of the current view (i.e. without any
holes). Usually, this is realized by rendering an
opaque quad for each surfel. The resulting depth
image is used as a filter to identify visible surfels
closest to the viewer : only fragments in the fore-
ground are kept and accumulated during the EWA
splatting pass. However, to prevent the discarding
of visible splat contribution, the depth image should
be translated away from the viewpoint by a small
threshold. As proposed in [13], to prevent occlu-
sion artefacts the depth image should be translated
along the viewing rays rather than the camera space
z-axis.

However, as we have already said, the use of
quads for representing surfels uselessly consumes
AGP bus bandwidth and vertex computation. Our
approach is to use only one vertex by surfel. So,
we can evaluate for each surfel, its projection size
in screen space and use this value as the point size
of the GL POINTS primitive. However, the result
of the projection of a vertex with standard OpenGL
point primitive and a point size of n is, in view-
port space, a square centred to the projection of the
surfel with a size of n pixels. So, whatever the ori-
entation is, the result will be the same. Moreover,
the depth of each resulting fragment is the same.

We will consider the projection of a standard
OpenGL point as a screen-space bounding-square
of the real splat shape centred to the surfel projec-
tion. During rasterisation, each generated fragment
is incorrect in two ways : it could not handle the real
projected surfel’s shape, and else its depth is incor-
rect and must be recomputed. These corrections can
be easily implemented with ray-casting. However,
they can be performed more efficiently by clipping
the surfel’s tangent plane (section 5.1) and recom-
puting the correct depth as explained in section 5.2

5.1 Surfel’s plane clipping

Ideally, a surfel is represented in object space by
a tangent disk (with a radius of h) or a tangent
quad. For better efficiency, we chose to approx-
imate these classical representations by a tangent
plane bounded by a frustum of a pyramid as shown
in figure 2.

Figure 2: The frustum of pyramid which bounded
the surfel’s tangent plane.

The standard OpenGL point primitive easily does
the clipping of the surfel’s tangent plane by the first
four frustum’s planes. We just compute the pro-
jected size in viewport space :

OpenGLpointsize =
2h

z

height

2tan
(

fov

2

) (9)

To perform the clipping by the last two frustum’s
plane, we just compute the minimum and maximum
depth value and kill all fragments that are not in this
range. To do this, we need to compute the real depth
of each fragment as explained in the next section.

666

5.2 Per Fragment Depth Correction

Let the current surfel with position P c and normal
Nc. The superscript c denotes these vectors are ex-
pressed in camera space. Given a point Qc onto the
surfel’s tangent plane, let Qp be its projection onto
the near plane and Qv its coordinates in the view-
port (figure 3). Then, our aim is to compute as fast
as possible Qc

z from Qv . As notation, we use capital
letter for vector and small letter for scalar quantities.
Subscript denotes components of a vector.

Figure 3: Shown in two dimension, one surfel (with
position P c and normal N c) and one point Qc on
the tangent plane of the surfel (Qp is its projection
on the virtual screen and Qv its coordinate in the
viewport space)

Since Qc is onto the tangent plane and the view-
ing ray, we have :

Qc
z =

P c · Nc

Qp · Nc
Qp

z (10)

Our view frustum is defined by the four values
r, t, n, f as shown in figure 4.

Figure 4: The view frustum defined by four param-
eters : r, t, n and f (resp. right, top, near and far).

We can write Qp from Qv as :

Qp =





Qv
x

2r
vw

− r

Qv
y

2t
vh

− t

−n



 (11)

where vw (resp. vh) is the viewport width (resp.
viewport height). Then :

Qp · Nc = Qv ·
[

2r
vw

Nc
x

2t
vh

Nc
y

]

−
[

r
t
n

]

· Nc (12)

and :

1

Qc
z

=

Nc ·
[r

n
t
n

1

]

− Qv ·
[

Nc
x

2r
nvw

Nc
y

2t
nvh

]

P c · Nc
(13)

With standard OpenGL frustum, the depth value is
computed as follow :

depth = f+n

f−n
+ 2fn

f−n
1
z

= g1 + g2

z

(14)

Then, using equations 13 and 14 and rewriting we
can express the depth :

depth = g1 + g2

Qc
z

= a − Qv · B
(15)

with :

a = g1 + g2

P c·Nc Nc ·
[

r/n
t/n
1

]

B = g2

P c·Nc

[

Nc
x

2r
vw

Nc
y

2t
vh

]

(16)

The resulting depth buffers of standard OpenGL
point with and without our correction are com-
pared on figure 5. As shown, standard OpenGL
point primitive increases the size of the sphere with
aliased edge. This is corrected by the frustum
clipping, and the depth correction provides a more
smoothed depth buffer.

5.3 Implementation details

In our implementation, a and B are computed in a
vertex program and sent to the fragment program
in a four components vector as : [Bx, By, 0, a].
Then the correct depth value of a fragment can be
computed with only two instructions (1 DP3 and
1 ADD). Hence, we verify the membership of this
value in the correct range (1 MAD) and if necessary,
the fragment is killed (instruction KIL).

666

Figure 5: Left, the depth buffer of a sphere with
standard OpenGL point primitive. Right, the depth
buffer of the same sampled sphere with frustum
clipping and depth recomputation. The infinity
depth is intentionally set at white to show edge.

6 EWA Splatting

This section corresponds to the second pass of our
algorithm. Each surfel of position Pk is rendered
by the graphic pipeline which computes its pro-
jected position in viewport space P v

k , centers the
resampling kernel at P v

k and evaluates it for each
pixel. However, the Gaussian resampling kernel is
computed only for a limited range of the exponent
β(x) = 1

2
xT x. Hence, we choose a cutoff radius

c, such β(x) < c (typically c = 1). Once again we
consider the result of a standard OpenGL point as a
viewport space bounding square. Then, we take as
the OpenGL point size :

OpenGLpointsize =
2
√

2chk

z

vh

2tan
(

fov

2

) (17)

To efficiently compute the equation 6 for each
generated fragment, the variance matrix (cf. equa-
tion 8) and the center of the kernel P v

k are computed
for each surfel in the vertex program.

Let us note that is useless to compute the real
depth of each fragment for this pass if we choose
reasonable value for the depth epsilon of the visi-
bility pass and the cutoff radius. Else, with large
cutoff radius, some visible fragments may be dis-
carded. A bad solution will be to increase the depth
epsilon since large value for the depth epsilon may
lead to the blending of several surfaces. A better
solution will be to test only the depth of the surfel’s
projection center rather than all fragments, but it is
not currently possible.

Implementation details

For each sample, the vertex program performs fol-
lowing operations :

• warps position and normal to camera space
• computes the resampling kernel (section 3.2)

– computes the base of the local parameter-
isation (s, t)

– computes the Jacobian J
– computes the inverse of variance matrix

• warps position to viewport space
• evaluates the OpenGL point size
• interpolates between mip-map levels
• performs lighting and multiplies the result by

outputScaleFactor

2π|J−1||V ar|
1

2

.

Since each component in the frame
buffer is clamped to one, we use a global
outputScaleFactor constant to make sure that
the sum of each contribution is less than 1. A
typical choice for outputScaleFactor is 0.7. Let
X ∈ R2 be the position of the current fragment
in viewport space. Then, the fragment program
performs the following operations :

• computes the exponent : β(X − P v
k)

• kills the fragment if β(X − P v
k) > c

• multiplies the fragment color by e−β(X−pv
k
)

7 Normalization

As done by Zwicker et al.[16], after all surfels were
splatted the result must be normalized. Reasons are
the irregular sampling of point models and the trun-
cation of the Gaussian kernel. Each pixel is nor-
malised by the sum of the accumulated contribu-
tions :

g(x) =
∑

k∈N

wk

ρk(x)
∑

j∈N
ρj(x)

(18)

This is easily done with Fragment Program as a
third pass. The resulting frame buffer is copied di-
rectly into a texture of the GPU and rendered as a
simple quad. During the previous pass the alpha
component is used to store and compute the sum of
the accumulated contribution.

8 Hierarchical rendering

To improve performance, it is useful to associate
our rendering technique with a hierarchical data

666

structure that allows hierarchical culling and pro-
gressive rendering. We chose a simple octree
traversing from the lowest to highest resolution.

To test the visibility of a block we have imple-
mented view-frustum culling and back-face culling
via visibility-cones [5]. We could also use other hi-
erarchical data structures such as a bounding sphere
hierarchy [14] or a LDC tree [11]. In fact, all sur-
fels are stored into multiple large buffer (typically
one by resolution level) and each node stores only
the start and the end position in the correct buffer
similar to [13]. This minimizes the switching of
vertex buffers during rendering and enhances per-
formance. Then, when adding a node into the list of
visible block we reconstruct a large buffer simply
by comparing block’s buffer and index.

9 Results

We implemented our algorithm with stan-
dard OpenGL ARB Vertex Program and
ARB Fragment Program extensions [10] sup-
ported by Radeon 9x00 from ATI and GeForceFX
family from NVidia. However, we have only tested
our implementation on a GeForceFX 5800 with an
AMD Athlon 2800+. In comparison with object
space approach, we considerably have decreased
the vertex computation cost (only one vertex by
sample against four) and globally vertex programs
have fewer instructions (table 1). Although our
fragment programs are very simple (less than five
instructions), the cost of rasterisation and per frag-
ment computation is more expensive, especially for
viewing direction tangential surfels where many
fragments are rasterised needlessly while OpenGL
point primitive handles an axis aligned square.

Visibility
Splatting

EWA
Splatting

Normali-
zation

Our approach 29/5 45/5 - / 3

Object Space
approach[13] 13/- 74/- -

Table 1: Comparison of the number of instructions
needed for each pass. The first number corresponds
to vertex programs and the second to fragment pro-
grams

The table 2 shows rendering performance of our
algorithm on two models (Figure 7) for two frame
buffer resolution and when object level culling is

disabled. Although our fragment programs are very
simple, we observe a slowdown of 2.5 in compari-
son with the case where fragment programs are dis-
abled. However, we can expect better result with
nvidia’s driver revision since triangle primitive is
not so much penalized by simple fragment pro-
grams. To evaluate the cost of vertex programs,
we have measured that the GeForceFX 5800 is
able to render 60 millions of small GL POINTS
primitives per second. To achieve this, we use
ARB vertex buffer object and point size lesser than
five. The second row of the table 2 shows that 30
millions of primitives are sent per second when only
vertex programs are enabled.

head turtle
surfels 205865 418287

Our approach 32.5/24.9 fps 17.1/12.9 fps

Our approach with
fragment programs
disabled

69.7/67.8 fps 36.8/36.2 fps

Our object space
EWA surface splat-
ting implementation

16.7/15.6 fps 8.9/7.9 fps

Table 2: Rendering performance of our system on a
NVidia GeForceFX 5800. The first (resp. second)
number corresponds to a frame buffer resolution of
512x512 (resp. 1024x1024).

In order to test anti-aliasing, we render a simple
plane consisting of 64k surfels with a checkerboard
texture(6).

a) Without EWA filtering.

b) With EWA filtering.

Figure 6: Checkerboard rendering using two differ-
ent screen space surface splatting algorithms.

Figure 7 shows a head and a turtle rendered with
our system. Figure 8 shows a detail of our head
model with different parts of our algorithm dis-
abled. On figure 8a all fragment programs are dis-

666

abled. On figure 8b, only depth recomputation and
surfel’s plane clipping are disabled. Finally, the fig-
ure 8c shows the same model with our complete
multipass algorithm.

10 Conclusion and Future Work

We have described an efficient rendering method
based on the EWA surface splatting algorithm. We
have shown how to handle oriented plane and ellip-
tical Gaussian with a simple OpenGL point primi-
tive. Besides increased performances, our approach
provides more flexibility. We will further extend
our method to handle more complex surfel’s repre-
sentation than tangent plane. For example, we plan
to add curvature information to sample (as done by
Kalaiah and Varshney [8]) that allows simplification
scheme for low textured model and high magnifica-
tion with nice shading effect. We also intent to op-
timise our implementation and extend it to support
deformable objects. Here, the main challenge is to
develop a data structure that allows efficient visi-
bility culling and progressive rendering on dynamic
point clouds.

References

[1] M. Alexa, L. Behr, D. Cohen-Or, S. Fleish-
man, D. Levin, and C. Silva. Point Set Sur-
faces. In Proceedings of IEEE Visualisation,
pages 21-28. San Diego, CA, October 2001.

[2] B. Chen and M. X. Nguyen. POP : A Hy-
brid Point and Polygon Rendering System for
Large Data. In Proceedings of IEEE Visuali-
sation, pages 45-52. San Diego, CA, October
2001.

[3] J. Cohen, D. Aliaga, and W. Zhang. Hybrid
Simplication : Combining Multi-Resolution
Polygon and Point Rendering. In Proceed-
ings of IEEE Visualisation, pages 37-44. San
Diego, CA, October 2001.

[4] L. Coconu and Hans-Christian Hege.
Hardware-Accelerated Point-Based Render-
ing of Complex Scenes. In Proceedings of
13th Eurographics Workshop on Rendering,
pages 43-52. Pisa, IT, June 2002.

[5] J.P. Grossman and W.Dally. Point Sample
Rendering. In Rendering Techniques ’98,
pages 181-192. Springer Wien, Vienna, Aus-
tria, July 1998.

[6] P. Heckbert. Fundamentals of Texture Map-
ping and Image Warping. Master’s thesis,
University of California at Berkeley, Depart-
ment Of Electrical Enguneering and Com-
puter Science, June 1987.

[7] H. Hoppe, T. DeRose, T. Duchampt, J. Mc-
Donald, and W. Stuetzle. Surface Reconstruc-
tion from Unorganised Points. In Computer
Graphics, SIGGRAPH 92 Proceedings, pages
71-78. Chicago, IL, July 1992.

[8] A. Kalaiah and A. Varshney. Differential Point
Rendering. In Proceedings of the 12th Euro-
graphics Workshop on Rendering, pages 138-
150. London, UK, June 2001.

[9] M. Levoy and T. Whitted. The use of Points
as Display Primitives. Technical Report TR
85-022, The University of North Carolina at
Chapel Hill, Department of Computer Sci-
ence, 1985.

[10] SGI OpenGL Extension Registry
http://oss.sgi.com/projects/ogl-
sample/registry/

[11] H. Pfister, M. Zwicker, J. Van Baar and M.
Gross. Surfels : Surface Elements as Render-
ing Primitives.. In Computer Graphics, SIG-
GRAPH 2000 Proceedings, pages 335-342.
Los Angeles, CA, July 2000.

[12] V. Popescu and A. Lastra. High Quality
3D Image Warping by Separating Visibility
from Reconstruction. Technical Report TR99-
002, University of North Carolina, January 15
1999.

[13] L. Ren, H. Pfister and M. Zwicker. Object
Space EWA Surface Splatting In Proceedings
of Eurographics 2002 Sept 2002.

[14] S. Rusinkiewicz and M. Levoy. QSplat : A
Multiresolution Point Rendering for Complex
and Procedural Geometry. In Proceedings of
the 12th Eurographics Workshop on Render-
ing, pages 151-162. London, UK, June 2001.

[15] M. Stamminger and G. Drettakis. Interac-
tive Sampling and Rendering for Complex and
Procedural Geometry. In Proceedings of the
12th Eurographics Workshop on Rendering,
pages 151-162. London, UK, June 2001.

[16] M. Zwicker, H. Pfister, J. Van Baar and M.
Gross. Surface Splatting. In Computer Graph-
ics, SIGGRAPH 2001 Proceedings, pages
371-378. Los Angeles, CA, July 2001.

666

Figure 7: A head and a turtle rendered with our sys-
tem.

a) All fragment programs are disabled.

b) Only depth recomputation and surfel’s plane
clipping are disabled.

c) Rendered with our complete system.

Figure 8: Details of our head model rendered with
different part of our system disabled.

666

