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Outline

The goal of formal verification

Modeling real-time systems with timed automata

Solving the reachability problem

Reachability algorithm

Checking Liveness properties

Subsumption optimization

Conclusion
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System verification

System Specification
?

Standard solution: apply select test cases to the system

I Non-exhaustive: only a few select situations can be tested

I Hard to reproduce: in particular for real-time systems

I Late bug discovery: tests discover bugs in the system
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Formal verification (model-checking)

System Specification
?

Tests

Model Formal 
Specification

Formal
Verification

Automatic 
Test 

Generation 

Automatic 
Code 

Generation

I Formal models are built early in development cycle

I Model-checking: ensures automatically and exhaustively
that all behaviors conform to the specification

I Recommended for critical systems (e.g. ISO26262)
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Timed automata [AD94]

Real-time system: correctness depends on delays

s0

s1

s2

a, (x < 1& y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d , (y < 1), x := 0

Run: finite sequence of transitions

x
y

s0

0

0

s0

0.4

0.4

s2

0.4

0

s2

0.7

0.3

s0

0

0.3

s1

0.7

1

0.4 b 0.3 d 0.7, a

〈q, v〉 δ,a−−→ 〈q′, v ′〉 if ∃ q a,g ,R−−−→ q′ s.t. v + δ |= g and v ′ = [R](v + δ).
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Example #1: the CSMA/CD protocol (1/2)

(source: https://dokteron.blogspot.com/2014/03/csmacd-csmaca.html)

Property to check: detection of collisions (based on delays)
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Example #1: the CSMA/CD protocol (2/2)

Bus Station
(for λ = 808 and σ = 26)

Detection failure:

Reachability of a state with collision and wait1 or wait2?
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Example #2: scheduling jobs (1/2)

Jobs compete to execute tasks on machines

J1 : (m1, 2) (m2, 1) (m3, 3) J2 : (m1, 1) (m3, 3)

Property to check: can the jobs be scheduled within 7s?

J2

J1

t
7

J2

J1

t
7
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Example #2: scheduling jobs (2/2)

J1 : (m1, 2) (m2, 1) (m3, 3) J2 : (m1, 1) (m3, 3) within 7s.

acq(m1)

x := 0

rel(m1)

(x = 2)

acq(m2)

x := 0

rel(m2)

(x = 1)

acq(m3)

x := 0

rel(m3)

(x = 3)

acq(m1)

x := 0

rel(m1)

(x = 1)

acq(m3)

x := 0

rel(m3)

(x = 3)

acq(m): await m free, then set m busy

rel(m): set m free
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Example #2: scheduling jobs (2/2)

J1 : (m1, 2) (m2, 1) (m3, 3) J2 : (m1, 1) (m3, 3) within 7s.

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 2) x := 0 (x = 1)

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 1)

y := 0

(y = 3)
(t ≤ 7)

Schedulability:

Reachability of the green state?
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State reachability in timed automata

Specification: reachability of a state

Reachability problem:

INPUT: a timed automaton A and a state s

QUESTION: is there a run in A that ends in s?

x
y
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0

0

s0
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s2

0.4
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s2
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0.4 b 0.3 d 0.7, a

Theorem ([AD94, CY92])

The reachability problem is PSpace-complete
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The uncountable state-space

(s0, 0, 0)

? s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

Uncountable state-space due to density of time
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The uncountable state-space

(s0, 0, 0)

?

0.0, b
0.31, b

0.99, b

. . . . . . . . .
(s2, 0.31, 0)

0.0, d
0.1, d

0.78, d

. . . . . . . . .
s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

Uncountable state-space due to density of time
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Symbolic semantics: zone graph (1/2)

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

s0
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Symbolic semantics: zone graph (1/2)

s0

s1

s2

a, (x < 1 & y = 1)
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c, (x < 1), y := 0

d, (y < 1), x := 0

s0 s2 s0 s1

. . .
b d
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a c
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Symbolic semantics: zone graph (2/2)

Zone graph [DT98]:

I Zone: set of valuations defined by simple constraints
(x − y ≤ 1 & y < 2)

I Initial node: 〈q0,Z0〉 with Z0 = {v0 + δ | δ ∈ R≥0}

s0 〈s0, 0 ≤ x = y〉

I Edge: 〈q,Z 〉 a−→ 〈q′,Z ′〉 if there is a transition q
a,g ,R−−−→ q′ s.t.

Z ′ = {v ′ | ∃v ∈ Z .∃δ ∈ R≥0. v + δ |= g and v ′ = [R](v + δ)}
and Z ′ 6= ∅.

s0 s2

b
〈s0, 0 ≤ x = y〉 b−→ 〈s2, 0 ≤ x − y < 1 & 0 ≤ y〉

Theorem ([DT98])

The zone graph is sound and complete for reachability.

Efficient representation: Difference Bound Matrices [BM83, Dil89]
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The zone graph may be infinite: abstraction! (1/2)

s0

x, y := 0

(y = 1), y := 0

s0

However, the exact value of x , y is irrelevant once bigger than 1

s0 s0 s0

(x − y = 2 & y ≥ 0) can safely be abstracted as (x > 1 & y ≥ 0)
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The zone graph may be infinite: abstraction! (2/2)

Abstraction operator a defined on the DBM representation of
zones

Abstract zone graph:

I Initial node: 〈q0, a(Z0)〉 where Z0 is the initial zone

I Edge: 〈q,Z 〉 a−→a 〈q′, a(Z′)〉 if Z = a(Z ) and
〈q,Z 〉 a−→ 〈q′,Z ′〉 in the zone graph

Theorem ([DT98, BBLP06])

There exists abstractions a s.t. the abstract zone graph is finite,
sound and complete for finite reachability.

The set of behaviors of a timed automaton can be represented as a
finite graph
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Example of finite abstract zone graph

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

s0, (0<=x & 0<=y & 0<=x-y)

s2, (0<=x & 0<=y)

b

s0, (0<=x & 0<=y & -1<x-y)

s1, (0<x & 0<=y)

a

b

c

d
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Reachability algorithm

Search the finite abstract zone graph for an accepting state

1 INPUT: A timed automaton A
2 RETURN: true iff A has a reachable accepting state
3

4 W := {〈s0, a(Z0)〉} ; P := W
5 whi le (W 6= ∅)
6 pick and remove a node 〈s,Z 〉 from W
7 i f (s is accepting)
8 return true
9 f o r each 〈s,Z 〉 →a 〈s ′,Z ′〉 do

10 i f 〈s ′,Z ′〉 6∈ P
11 add 〈s ′,Z ′〉 to P and W
12 end
13 end
14 return false
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Implementation with TChecker

1 boo l r e a c h ( t c h e c k e r : : zg : : z g t & zg )
2 {
3 s t d : : s t a c k<t c h e c k e r : : zg : : s t a t e s p t r t > w a i t i n g ;
4 s t d : : u n o r d e r e d s e t<t c h e c k e r : : zg : : s t a t e s p t r t , s t a t e s p t r h a s h t ,
5 s t a t e s p t r e q u a l t > p a s s e d ;
6 s t d : : v e c t o r<t c h e c k e r : : zg : : z g t : : s s t t> v ;
7
8 zg . i n i t i a l ( v , t c h e c k e r : : STATE OK ) ;
9 f o r ( auto && [ s t a t u s , s , t ] : v ) {

10 w a i t i n g . push ( s ) ;
11 p a s s e d . i n s e r t ( s ) ;
12 }
13 v . c l e a r ( ) ;
14
15 w h i l e ( ! w a i t i n g . empty ( ) ) {
16 t c h e c k e r : : zg : : c o n s t s t a t e s p t r t s{w a i t i n g . top ( )} ;
17 w a i t i n g . pop ( ) ;
18
19 i f ( zg . s a t i s f i e s ( s , l a b e l s ) ) // a c c e p t i n g ?
20 r e t u r n t r u e ;
21
22 zg . n e x t ( s , v , t c h e c k e r : : STATE OK ) ;
23 f o r ( auto && [ s t a t u s , n e x t s , t ] : v ) {
24 i f ( p a s s e d . f i n d ( n e x t s ) == p a s s e d . end ( ) ) {
25 w a i t i n g . push ( n e x t s ) ;
26 p a s s e d . i n s e r t ( n e x t s ) ;
27 }
28 }
29 v . c l e a r ( ) ;
30 }
31
32 r e t u r n f a l s e ;
33 }
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Some examples

CSMA/CD ”Unreachability of a state with collision and
wait1/wait2?”

√

Scheduling ”Unreachability of the green state?” ×

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 2) x := 0 (x = 1)

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 1)

y := 0

(y = 3)
(t ≤ 7)
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Liveness properties

s0

s1

s2

a, (x < 1& y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d , (y < 1), x := 0

Infinite run: infinite sequence of transitions

x
y

s0

0

0

s2

0.4

0

s0

0

0.3

s1

0.7

1

s2

0.7

0

. . .
0.4, b 0.3, d 0.7, a 0, c 0.4, d

Liveness: visit an accepting state infinitely often

Theorem ([DT98, Li09])

The (abstract) zone graph is sound and complete for liveness.
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Example #1: CSMA/CD (1/2)

Bus Station

Few collisions don’t prevent communication: is there a run
with finitely many collisions and infinitely many
communications?
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Example #1: CSMA/CD (2/2)

Few collisions don’t prevent communication: is there a run
with finitely many collisions and infinitely many
communications?

s0 s1 s2

begini
busyi
endi
cd

cd

begini
busyi
endi

cd

begini
busyi
endi
cd

I Product of the CSMA/CD model and the property
automaton

I The property above holds if the state s1 is visited infinitely
often on a run in the product
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Liveness checking algorithm

Liveness problem:

INPUT: a timed automaton A and a state s

QUESTION: is there a run in A that visits s infinitely often?

Theorem ([AD94, CY92])

The liveness problem is PSpace-complete

Algorithm: find an accepting cycle in the abstract zone graph

s0 s1

s2

sn

. . . . . .

I nested depth-first
search

I decomposition into
strongly connected
components
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Example #1: fixing the CSMA/CD model

Bus Station

Few collisions don’t prevent communication: run with finitely
many collisions and infinitely many communications? ×
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Bus Station

Few collisions don’t prevent communication: run with finitely
many collisions and infinitely many communications?

√
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Summary on verification

I Formal verification has sound mathematical foundations

I Specification = Safety (unreachability) + Liveness

I Abstract zone graph is finite, sound and complete for
verification (both safety and liveness)

I Standard graph algorithms can be used to verify timed
automata

But many optimisations (coarse abstractions, etc) are required to
apply model-checking to actual examples
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Outline

The goal of formal verification

Modeling real-time systems with timed automata

Solving the reachability problem

Reachability algorithm

Checking Liveness properties

Subsumption optimization

Conclusion
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Subsumption optimization for reachability checking

(s0, Z0)

(s1, Z1)

(s1, Z
′
1 )

Z ′
1 ⊆ Z1

Don’t explore (s1,Z
′
1): all its

runs are possible from (s1,Z1)

Recall: zones are sets of
valuations
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Subsumption graphs and reachability

Zone graph ZG

(1, x>=0)

(2, x>=1) (2, x>1)

(1, x>=1) (1, x>1)

Subsumption
graph 1

(1, x>=0)

(2, x>=1) (2, x>1)

(1, x>=1) (1, x>1)

Subsumption
graph 2

(1, x>=0)

(2, x>=1) (2, x>1)

(1, x>=1) (1, x>1)

I trace inclusion when 〈q,Z 〉 ⊆ 〈q,Z ′〉, i.e. Z ⊆ Z ′

I Standard reachability algorithm: state-space traversal with:
I Skip 〈q,Z 〉 if covered by some visited node 〈q,Z ′〉
I Only keep maximal nodes

I The three graphs above certify unreachability of
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Reachability algorithm with subsumption

1 INPUT: A timed automaton A
2 RETURN: true iff A has a reachable accepting state
3

4 W := {〈s0, a(Z0)〉} ; P := W
5 whi le (W 6= ∅)
6 pick and remove a node 〈s,Z 〉 from W
7 i f (s is accepting)
8 return true
9 f o r each 〈s,Z 〉 →a 〈s ′,Z ′〉 do

10 i f ∀ 〈s ′,Z ′′〉 ∈ P we have Z ′ 6⊆ Z ′′

11 remove all nodes 〈s ′,Z ′′〉 with Z ′′ ⊆ Z ′ from P and W
12 add 〈s ′,Z ′〉 to P and W
13 end
14 end
15 end
16 return false

In practice: crucial optimisation to scale formal verification to
models of significant size
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Subsumption graphs and liveness

Zone graph ZG
√

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

Subsumption
graph 1

√

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

a
c

Subsumption
graph 2 ×

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

a
c

e

I A subsumption graph with no accepting cycle is a liveness
certificate

I Not all subsumptions graphs are liveness certificates
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Subsumption creates unsound accepting cycles

(s0, Z0)

(s1, Z1)

(s1, Z
′
1 )

Z ′
1 ⊆ Z1

Without subsumption: no accepting cycle

With subsumption: spurious accepting cycle, as we claim
that 〈s1,Z

′
1〉 can do the orange path
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Liveness compatible subsumption graphs

Zone graph ZG
√

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

Subsumption
graph 1

√

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

a
c

Subsumption
graph 2 ×

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

a
c

e

I A subsumption graph is liveness compatible if it has no cycle
with both and 99K

I Two main algorithms for computing liveness compatible
subsumption graphs: nested-DFS [LOD+13] and
SCC-decomposition based refinement
algorithm [HSTW16, HSTW20].
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Iterative refinement algorithm [HSTW16, HSTW20]

safe nodes

Subsumption graphLevel 1

Level 2

Small nodes

Restricted subsumption
safe nodes

Level K

...

safe nodes
Continue till

no bad cycles remain
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Liveness with subsumption is hard

Inputs Reachability Liveness
A PSpace-complete PSpace-complete

A,ZG (A) O(|ZG (A)|) O(|ZG (A)|)
A,SubZG (A) O(|SubZG (A)|) PSpace-complete

The iterative refinement algorithm visits each node of ZG (A) at
most 3 times

Experiments on standard benchmarks: SubZG (A) is often
enough to check liveness
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Modeling real-time systems with timed automata
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Beyond this talk (non exhaustive)

I Timed automata model-checkers: UPPAAL
(https://uppaal.org/), PAT (https://pat.comp.nus.edu.sg/), . . .

I Effective: case studies, e.g. Web service transaction
protocol [RSV10], Aerial video tracking system [PRH+16]

I Timed games & control: see Ocan’s talk (UPPAAL TiGa)

I Quantitative analysis: weighted timed automata (UPPAAL
CORA), probabilistic timed automata (PRISM
http://www.prismmodelchecker.org/), . . .

I Robustness & parametric analysis: SYMROB
(https://github.com/osankur/symrob), Imitator
(https://www.imitator.fr/)

I More expressive models: stopwatches, hybrid systems
PHAVer lite
(https://www.cs.unipr.it/~zaffanella/PPLite/PHAVerLite), time Petri
nets: Romeo (http://romeo.rts-software.org/), Tina
(http://projects.laas.fr/tina/)
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Timed automata verification in Bordeaux

I Complexity of timed automata verification and efficient
verification algorithms

I Current challenge: verification of concurrent real-time
systems

I Open-source implementation: the TChecker tool
(https://github.com/ticktac-project/tchecker)

I Looking for collaborations!
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Regions

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0
x

y

0 1

1

The region abstraction above is a bisimulation relation for all
timed automata with constants at most 1.

44/44


	The goal of formal verification
	Modeling real-time systems with timed automata
	Solving the reachability problem
	Reachability algorithm
	Checking Liveness properties
	Subsumption optimization
	Conclusion
	Appendix

