
Vérification des systèmes à
compteurs par accélération:
présentation de l’outil FAST

Jérôme Leroux

Postdoctorant avec Pierre McKenzie, DIRO

Why verification ? Back

• Critical systems are everywhere: Aircraft autopilot, ABS, GPS, HUB, TCP/IP, and so
on.

• Systems are even more complex.
− They are not designed from scratch,
− They interact with other reactive systems.

Formal methods are needed.

• Test.

• Theorem Prover.

• Model-Checking,...

Model-checking Back
System

satisfies ?
Property

Model of the system Model of the property

Model-Checker

Yes/No

Model of the system Back
Systems with integer variables are everywhere:

• Parametrized systems: Lift elevator.

• Abstraction of systems:
− Embedded systems: TTP [Bouajjani, Merceron]...
− Cache coherence protocols: Dragon, MESI, MOESI, ... [Delzanno]..
− Communication protocols: TCP/IP, FireWire ...
− Multithreaded programs: java programs [Delzanno, Raskin, Van Begin]....

Models:

• Petri Nets, Extended Petri Nets [Ciardo],[Dufourd, Finkel, Schnoebelen]...,

• Broadcast Protocols [Emerson, Namjoshi],[Esparza, Finkel, Mayr], [Finkel, L.]...

• Counter Automata.

Def: A counters system S is a tuple S = (Σ, fΣ) where:

• Σ is a finite set of actions,

• fΣ = {fa; a ∈ Σ} is a set of functions fa : Da → N
m.

A simple example Back

0

1

a : x ≥ 1

x← x− 1

Σ = {a}

Da = {(0, x) ∈ N
2; x ≥ 1}

fa(0, x) = (1, x− 1)

Model of the property Back
Def: The reachability problem for counters systems:

Input:

8

>

<

>

:

S = (Σ, fΣ) a counter system
X0 ⊆ N

m a set of initial states
Xbad ⊆ N

m a set of bad states
Question:Does there exist σ ∈ Σ∗, x0 ∈ X0 and xbad ∈ Xbad such that fσ(x0) = xbad ?

Two ways:

• Compute the reachability set post∗S(X0) =
S

σ∈Σ∗ fσ(X0).
Check post∗S(X0) ∩Xbad = ∅.

• Compute the co-reachability set pre∗S(Xbad) =
S

σ∈Σ∗ f−1
σ (Xbad).

Check pre∗S(Xbad) ∩X0 = ∅.

However, the reachability problem is undecidable even for 2 counters automata.

How to compute post∗S or pre∗S ? Back
Symbolic reachability:

X ← X0.

While there exists a ∈ Σ such that
fa(X) 6⊆ X do

Select(a). // a ∈ Σ

X ← X ∪ fa(X).

/*We have X = post∗S(X0) */.

Pb: This algorithm does not terminate in general.

Solutions:

• Consider restricted subclasses of counters systems,

• Use approximate computation,

• Use acceleration.

What is acceleration ? Back
Acceleration [Boigelot, Wolper]
Let σ ∈ Σ∗ and X ⊆ N

m.

f
∗
σ(X) =

[

k≥0

f
k
σ (X)

Accelerated symbolic reachability:

X ← X0.

While there exists a ∈ Σ such that
fa(X) 6⊆ X do

Select(σ). // σ ∈ Σ∗

X ← f∗
σ(X).

/*We have X = post∗S(X0) */.

To automate this algorithm, we need:

• To effectively compute f∗
σ(X) from a representation of X.

• To find/reduce “the good sequences” σ.

Outline Back

• Saturated Digit Automata.

• Symbolic reachability by acceleration.

• The tool FAST.

Saturated Digit Automata (SDA) Back
(NDD) Number Decision Diagrams [Boigelot, Wolper], [Boudet, Comon]...

γb : x→ 2x + b

7 = 1 1 1 0∗

2 = 0 1 0∗

SDA (7,2) = 1 0 1 1 1 0∗

γb : (x1, x2)→ (2x2 + b, x1)

The vector represented by a word σ = b1 . . . bk is

ρm(σ) = γb1 ◦ · · · ◦ γbk
(0, . . . , 0)

“Saturated”, what does it mean ? Back

0

0

1
1

0, 1

0

0

1
1

0, 1

ρ1(L) = {0} ρ1(L
c) = N

Def: A SDA that represents a set X ⊆ N
m is a deterministic and complete automaton

that recognizes the language ρ−1
m (X) ⊆ {0, 1}∗.

SDA-definable sets Back
0 0 0, 1

1 1

0, 1 1 0 1

0, 1010

X = {2n; n ≥ 0} X = {(x1, x2) ∈ N
2; x1 ≤ x2}

Theo [Bryère,Hansel, Michaux, Villemaire]: A set X ⊆ N
m is SDA-definable if and only

if X is defined in < N,≤, +, V2 >.

∃y (x = 3y ∧ ¬(z = x))

x = y.z

Operations over an SDA Back
Boolean operations ∧, ∨, ¬ PTIME(n2)
Complexity of ⊆ PTIME(n2)
Quantifications ∃x, ∀x EXPTIME
Canonical representation PTIME(n. ln(n))

Outline Back

• Saturated Digit Automata.

• Symbolic reachability by acceleration.

• The tool FAST.

How to compute f ∗(X) ? Back
Monoïd multiplicatively generated by M :
〈M〉 = {I, M, M2, M3, . . .}

Theo:[Boigelot] Let f(x) = M.x + v be an affine function such that:

• definition domain D is a polyhedra, and

• monoïd 〈M〉 is finite.

For any subset X represented by an SDA,
f∗(X) can be effectivelly represented by a SDA.

Theo: Let f(x) = M.x + v be an affine function such that:

• definition domain D is represented by a SDA, and

• monoïd 〈M〉 is finite.

For any subset X represented by a SDA,
f∗(X) can be effectivelly represented by a SDA.

Proof idea Back
Assume f(x) = x + v defined over D ⊆ N

m.

We have fk(x) = x + k.v.

f
∗(X) =

˘

x
′ ∈ N

m; ∃x ∈ X ∃k
`

x
′ = x + k.v ∧ ∀i < k x + i.v ∈ D

´¯

Reduction technique Back
Reduction technique.
f1(x) = M.x + v defined over Df1

f2(x) = M.x + v defined over Df2

We just consider g(x) = M.x + v defined over Dg = Df1
∪Df2

.

Def: The reduced set [F] of a set of affine functions F is such that
g(x) = M.x + v is in [F] iff

∅ 6= Dg =
[

(f(x)=M.x+v)∈F

Df

How to find out the good accelerations ? Back
Def: A counters system S = (Σ, fΣ) has a finite monoïd if the monoïd multiplicatively
generated by the matrices Ma is finite (Recall that fa(x) = Ma.x + va).

Theo: Let S be a counters system with a finite monoïd and assume that any Da is
represented by an SDA. We have:

• The reduced set Gk = [{fσ; σ ∈ Σ≤k}] is computable in PTIME in k.

• g∗(X) is effectivelly representable by an SDA, for any g ∈ Gk and any X repre-
sented by an SDA.

The reduced algorithm Back
Reduced-accelerated symbolic reachability:

X ← X0.

Let k ≥ 1.

Compute G = Gk.

While there exists a ∈ Σ such that
fa(X) 6⊆ X do

Select(g). //g ∈ G

X ← g∗(X).

/*We have X = post∗S(X0) */.

Outline Back

• Saturated Digit Automata.

• Symbolic reachability by acceleration.

• The tool FAST.

The tool FAST Back
FAST is a tool :

• with a powerful model
− finite monoïd, and
− definition domains Da represented by Presburger formula.

• that automatically computes the set of reachable states in most practical cases,

• with a powerful strategy language specification (Hytech-like) [Bardin].

• easy to use thanks to a GUI interface [Worobel].

The model of FAST generalizes:

• Petri Nets,

• Extended Petri Nets [Ciardo],[Dufourd, Finkel, Schnoebelen]...,

• Broadcast Protocols [Emerson, Namjoshi],[Esparza, Finkel, Mayr], [Finkel, L.]...

• Counter Automata.

The kernel of FAST Back
The kernel of FAST:

X ← X0.

Let k ≥ 1.

Compute G = Gk.

While there exists a ∈ Σ such that fa(X) 6⊆ X do
RandomSelect(g). //g ∈ G

X ← g∗(X).
While there exists g ∈ G such that
(

g(X) 6⊆ X

|A(g∗(X))| ≤ |A(X)|
do X ← g∗(X)

/*We have X = post∗S(X0) */.

FAST in practice 1/3 Back
80% of 40 counters systems (mainly taken from [ALV,BABYLON,TREX]) have been
automatically analysed.

Bounded Petri Nets: Producer/Consumer, Lamport ME, Dekker ME, RTP, Peterson
ME, Reader/Writer.

Petri Nets: CSM - N, FMS, Multipoll, Kanban, Mesh2x2, Mesh3x2, Manufacturing
system, Manufacturing system (check deadlock freedom), PNCSA, extended Read-
erWriter, SWIMMING POOL.

Petri Nets with Transfer Arcs: Last-in First-served, Esparza-Finkel-Mayr.

Broadcast Protocols: Inc/Dec, Producer/Consumer with Java threads - 2, Pro-
ducer/Consumer with Java threads - N, 2-Producer/2-Consumer with Java threads,
Central Server system, Consistency Protocol, M.E.S.I. Cache Coherence Protocol,
M.O.E.S.I. Cache Coherence Protocol, Synapse Cache Coherence Protocol, Illinois
Cache Coherence Protocol, Berkeley Cache Coherence Protocol, Firefly Cache Co-
herence Protocol, Dragon Cache Coherence Protocol, Futurebus+ Cache Coherence
Protocol.

Others: lift controller - N, bakery4, barber4, ticket 2i, ticket 3i, TTP-1fault.

FAST in practice 2/3 Back
FAST automatically verifies the TTP protocol with 2-faults [Bouajjani,Merceron].

later

round1

Pred1 :

Pred2 :

Pred3 :

d1+d11−dA11−dF11−dA10−dF10−d0−d10−d00+dA00+dF00>0

d1+d10−dA10−dF10−dA11−dF11−d0−d11−d00+dA00+dF00>0

d0+d00−dA00−dF00−d1−d11−d10+dA11+dA10+dF11+dF10>0

t2

t3

t4 t6
t7

t8

t18

t19

t21t22
t23

t25

t27

t26

 dF++, dF00++,Cp1++,Cp2++,C00−−

 d11++,Cp1++,Cp2++
t3: Cp1<N & d10<C10−d1 & CW −2d0 −2d00 −2d11>0/
 d10++,Cp1++,Cp2++
t4 : Cp1<N & d00<C00−d0 & CW−2d1−2d10−2d11>0/
 d00++,Cp1++,Cp2++

 dF++,Cp1++,Cp2++,C11−−
t7 : Cp1<N & d10<C10 & CW−2d0−2d00−2d11<=0/

 dF++,Cp1++,Cp2++,C10−−
t8 : Cp1<N &d00<C00−d0 & CW−2d1−2d10−2d11<=0/

 dF++,Cp1++,Cp2++,C00−−

t19 : Cp1>=N & Cp2<N & Pred2/

 dF++,dF11++,Cp1++,Cp2++,C11−−
 dF++,dF10++,Cp1++,Cp2++,C10−−

t34

t33

t32

t31
t30

t28

d00=0 & d11=0 & d10=0 &
dA00=0 & dA11=0 & dA10=0 &
dF00=0 & dF11=0 & dF10=0 &
dF=0 & Cp2=1 & Cp1=d0+d1+1 &
N>=0 & CW=N & C11>=1 &
C00>=1 & C10>=1 & d1<=C10 &
d0<=C00 & C11+C00+C10=CW

t2 : Cp1<N & d11<C11 & CW−2d0−2d00−2d10>0/

t6 : Cp1<N & d11<C11−d1 & CW−2d0−2d00−2d10<=0/

t18 : Cp1>=N & Cp2<N & Pred1/ d11++,Cp1++,Cp2++,dA11++
 d10++,Cp1++,Cp2++,dA10++
 d00++,Cp1++,Cp2++,dA00++t21 : Cp1>=N & Cp2<N & Pred3/

t22 : Cp1>=N & Cp2<N & !Pred1/
t23 : Cp1>=N & Cp2<N & !Pred2/
t25 : Cp1>=N & Cp2<N & !Pred3/

t26 : Cp2=N / dF=0,d11=0,d10=0,d00=0,Cp2=0

t27 : Cp2<N & d11<C11 & C11−C10−C00>0 / d11++,Cp2++
 d10++,Cp2++
 d00++, Cp2++

t28 : Cp2<N & d10<C10 & C10−C11−C00>0 /
t30 : Cp2<N & d00<C00 & C00−C10−C11>0 /
t31 : Cp2<N & d11<C11 & C11−C10−C00<=0 /

 C11−−,Cp2++,dF++,CF++
t32 : Cp2<N & d10<C10 & C10−C11−C00<=0 /
 C10−−,Cp2++,CF++,dF++

 C00−−,Cp2++,CF++,dF++
t34 : Cp2<N & dF<CF / Cp2++,dF++

t33 : Cp2<N & d00<C00 & C00−C10−C11<=0 /

FAST in practice 3/3 Back
|Σ| = 34 actions
m = 19 counters

(Cp1 ≥ N) ∧ (Cp2 < N) ∧ (d11 < C11)

∧(−d1− d11 + dA11 + dF11 + dA10 + dF10 + d0 + d10 + d00− dA00− dF00 ≥ 0)

dF ′ = dF + 1
Cp1′ = Cp1 + 1

Cp2′ = Cp2 + 1

dF11′ = dF11 + 1
C11′ = C11− 1

Tools with acceleration and counters Back

guards actions ac
ce

le
ra

tio
n

au
to

.c
yc

le
se

ar
ch

FAST [Bardin, Darlot, Finkel, L.,
Petrucci, Van-Begin, Worobel]

〈N, +,≤〉 x′ = M.x + v yes yes

LASH [Boigelot, Bontemps,
Cécé, François, Jodogne,
Latour, Rassart, Wolper]

convex sets x′
= M.x + v yes no

TREX [Asarin, Bouajjani,
Collomb-Annichini, Lakhnech,
Sighireanu]

V

8

>

>

>

<

>

>

>

:

xi ≤ xj + c

xi ≤ c

xi ≥ c

V

8

<

:

xi = xj + c

xi = c

yes yes

Conclusion Back

We have presented:

• The Saturated Digit Automata.

• The acceleration technics for integer systems.

• The tool FAST.

Future Works Back
• Efficient computation of f∗(X) for particular f [Bardin, Finkel, L.:TACAS’04].

• Structure of the SDA:
− structure/size of pre≤k

S (X) [Finkel, L.: SPIN’04] [Finkel, L.: CAV’04].
− Structure of an SDA of < N,≤, + > [L.: Submitted to CIAA’04] Work in progress

with McKenzie.

• Implement an efficient SDA library Work in progress [Fast Team].

	Why verification ?
	Model-checking
	Model of the system
	A simple example
	Model of the property
	How to compute $post _S^*$ or $pre _S^*$?
	What is acceleration ?
	Outline
	Saturated Digit Automata (SDA)
	``Saturated'', what does it mean ?
	SDA-definable sets
	Operations over an SDA
	Outline
	How to compute $f^*(X)$
?
	Proof idea
	Reduction technique
	How to find out the good accelerations ?
	The reduced algorithm
	Outline
	The tool �ast
	The kernel of �ast
	�ast in practice 1/3
	�ast in practice 2/3
	�ast in practice 3/3
	Tools with acceleration and counters
	Conclusion
	Future Works

