


Persée Meeting Peter Habermehl

Abstraction of parameterised systems: some remarks

with Ahmed BOUAJJANI (Liafa), Agathe MERCERON (de Vinci),

Tomas VOJNAR (TU Brno)

Peter Habermehl (LIAFA)

15 march 2004

1



Persée Meeting Peter Habermehl

Introduction

• Parameterised systems:

– Systems with a parameterised number n of components
– All components are identical
∗ plus perhaps a finite number of additional different components

– Typical examples
∗ Mutual exclusion algorithms
∗ TTP protocol

• Verification: System is correct for all n.

– Properties: for example safety, global liveness, individual liveness
– undecidable in general (even if individual processes are finite-state)
– Several approaches: Induction, Network Invariants, invisible invariants,

abstraction, etc.

2



Persée Meeting Peter Habermehl

Abstraction

• preserves in general safety properties

• Abstraction to a finite-state system

• Abstraction to a more powerful model which can be treated by symbolic
methods

• allows to use results for infinite-state model checking

• Abstraction step by step

• Tool supported

3



Persée Meeting Peter Habermehl

Example: Bakery Algorithm

Original definition by Lamport 1974:

integer array choosing[1..n], ticket[1..n]

BEGIN integer j;

I: choosing[i] := 1;

ticket[j] := 1 + maximum (ticket[1],...,ticket[n]);

choosing[i] := 0;

W: FOR j = 1 step 1 UNTIL n DO BEGIN

L2: IF choosing[j] != 0 THEN GOTO L2;

L3: IF ticket[j] != 0 and (ticket[j],j) < (ticket[i],i)

THEN GOTO L3;

END;

C: critical section;

ticket[i] := 0; noncritical section; goto I;

END

Property: Mutual exclusion (At most one process in critical section)

4



Persée Meeting Peter Habermehl

Bakery Algorithm: Abstraction

Idea: Order processes according to ticket numbers and forget their identity.

• Configuration: String over Σ = {I,W,C}, for example ICWW

• Init: I+ = {I, II, III, IIII, . . .}.

• Transitions: Rewrite rules or transducers

– xIy → xyW with x, y ∈ Σ∗

– xWy → xCy provided that x ∈ I∗

– xCy → Ixy with x, y ∈ Σ∗

– Example: IIII ⇒ IIIW ⇒ IIWW ⇒ IICW ⇒ ICWW ⇒ · · ·

• Then use regular model checking for verifying Post∗(Init)∩Σ∗CΣ∗CΣ∗ = ∅.

Problem: Justify the abstraction

5



Persée Meeting Peter Habermehl

How to formalise the abstraction ?

• We need a formal model to define the concrete and the abstract systems.

• We need a logic to describe

– the transition relation of the concrete system
∗ we need some arithmetic (at least comparison)

– the transition relation of the abstract system
– the abstraction function (relation)

6



Persée Meeting Peter Habermehl

Formal model

• Global variables

• One process is modelled as an extended automata

– state type containing local variables
∗ infinite domain variables (integer, parameterised integer, etc.)
∗ finite domain variables (booleans, control state)
∗ parameterised arrays

• To model the collection of processes, we can use an array process[1..n] of state

considered as a global variable

• Transitions trans(process, process′) are modelled by quantifying over indices

– asynchronous: existential quantification
∃i. transi(process[i], process′[i]) ∧ ∀j 6= i.process[j] = process′[j]

– synchronous: universal quantification

7



Persée Meeting Peter Habermehl

Special case

All processes are finite-state, global variables are 1..n

• An array process[1..n] : finite type can be coded in the decidable logic WS1S
(or as a string over finite type)

– Transitions (with limited arithmetic) are also coded in WS1S
(or as a transducer)

– Dedicated tools can be used
∗ Regular Model checking tools, abstraction (PAX), etc.
∗ even verification of liveness properties possible

8



Persée Meeting Peter Habermehl

Different types of abstraction

• Classical predicate abstraction for each process

– Can not take into account dependencies between different processes

• Abstract n local variables into a finite number of globals

• Counter abstraction:

– works for process[1..n] : finite type

– introduces a counter for each finite value
– counts how many processes have each value
– forgets identity of processes
– Correctness by construction

• for Bakery: replacing ticket[1..n] by another array (forget process identities)

9



Persée Meeting Peter Habermehl

Construction of an abstract system from a concrete one

• concrete transition relation: trans(c, c′)

• abstraction relation: α(c, a)

• the abstract transition relation trans(a, a′) is given as:

∃c, c′. α(c, a) ∧ α(c′, a′) ∧ trans(c, c′)

• To get trans(a, a′) in a usable way one has to eliminate the quantifiers over
arrays

10



Persée Meeting Peter Habermehl

Proving that an abstraction is correct

• concrete transition relation: trans(c, c′)

• abstraction relation: α(c, a)

• abstract transition relation: trans(a, a′)

• Proving that abstraction is correct:

∀c, c′, a, a′ : trans(c, c′) ∧ α(c, a) ∧ α(c′, a′) =⇒ trans(a, a′)

• one can show that the negation is not satisfiable

• A little “easier” to use

• Difficulty depends on formulae for α and trans which can contain quantifiers
themselves

11



Persée Meeting Peter Habermehl

Logics with arrays

• Special case: array a[1..n] of finite type

• Undecidable for arrays a[1..n] of [1..n]

– One can code computations of a 2-counter machine
∃n ∃a[1..n] ∀i. init(a[0]) ∧ step(a[i], a[i + 1]) ∧ a[n].state = halt

• Nevertheless, there are some decidable fragments based on cutoff techniques
(Pnueli)

• Not immediately applicable for the formula showing correctness of the
abstraction for the Bakery algorithm

• Weaken formula: replace ∃a[1..m], k. φ(a[k], k) by ∃ak, k. φ(ak, k)

12



Persée Meeting Peter Habermehl

Conclusion

• Automation of abstraction for parameterised systems is difficult

• Even showing that abstraction is correct is difficult

• Still some hope to isolate decidable fragments of array logic or use other
automatic techniques

• One can use theorem provers

• have some collection of different abstractions

13


