Abstraction of parameterised systems: some remarks

with Ahmed BOUAJJANI (Liafa), Agathe MERCERON (de Vinci), Tomas VOJNAR (TU Brno)

Peter Habermehl (LIAFA)

15 march 2004

Introduction

- Parameterised systems:
 - Systems with a parameterised number n of components
 - All components are identical
 - * plus perhaps a finite number of additional different components
 - Typical examples
 - * Mutual exclusion algorithms
 - * TTP protocol
- Verification: System is correct for all n.
 - Properties: for example safety, global liveness, individual liveness
 - undecidable in general (even if individual processes are finite-state)
 - Several approaches: Induction, Network Invariants, invisible invariants, abstraction, etc.

Abstraction

- preserves in general safety properties
- Abstraction to a finite-state system
- Abstraction to a more powerful model which can be treated by symbolic methods
- allows to use results for infinite-state model checking
- Abstraction step by step
- Tool supported

Example: Bakery Algorithm

Original definition by Lamport 1974:

```
integer array choosing[1..n], ticket[1..n]
BEGIN integer j;
    I: choosing[i] := 1;
       ticket[j] := 1 + maximum (ticket[1],...,ticket[n]);
       choosing[i] := 0;
    W: FOR j = 1 step 1 UNTIL n DO BEGIN
         L2: IF choosing[j] != 0 THEN GOTO L2;
         L3: IF ticket[j] != 0 and (ticket[j],j) < (ticket[i],i)
             THEN GOTO L3;
       END;
    C: critical section;
       ticket[i] := 0; noncritical section; goto I;
END
```

Property: Mutual exclusion (At most one process in critical section)

Bakery Algorithm: Abstraction

Idea: Order processes according to ticket numbers and forget their identity.

- Configuration: String over $\Sigma = \{I, W, C\}$, for example ICWW
- Init: $I^+ = \{I, II, III, IIII, ...\}.$
- Transitions: Rewrite rules or transducers
 - $xIy \rightarrow xyW$ with $x, y \in \Sigma^*$
 - $xWy \rightarrow xCy$ provided that $x \in I^*$
 - $-xCy \rightarrow Ixy$ with $x, y \in \Sigma^*$
 - Example: $IIII \Rightarrow IIIW \Rightarrow IIWW \Rightarrow IICW \Rightarrow ICWW \Rightarrow \cdots$
- Then use regular model checking for verifying $Post^*(Init) \cap \Sigma^*C\Sigma^*C\Sigma^* = \emptyset$.

Problem: Justify the abstraction

How to formalise the abstraction?

• We need a formal model to define the concrete and the abstract systems.

- We need a logic to describe
 - the transition relation of the concrete system
 - * we need some arithmetic (at least comparison)
 - the transition relation of the abstract system
 - the abstraction function (relation)

Formal model

- Global variables
- One process is modelled as an extended automata
 - state type containing local variables
 - * infinite domain variables (integer, parameterised integer, etc.)
 - * finite domain variables (booleans, control state)
 - * parameterised arrays
- ullet To model the collection of processes, we can use an array process[1..n] of state considered as a global variable
- Transitions trans(process, process') are modelled by quantifying over indices
 - asynchronous: existential quantification $\exists i. \ trans_i(process[i], process'[i]) \land \forall j \neq i. process[j] = process'[j]$
 - synchronous: universal quantification

Special case

All processes are finite-state, global variables are 1..n

- An array $process[1..n]: finite\ type$ can be coded in the decidable logic WS1S (or as a string over $finite\ type$)
 - Transitions (with limited arithmetic) are also coded in WS1S (or as a transducer)
 - Dedicated tools can be used
 - * Regular Model checking tools, abstraction (PAX), etc.
 - * even verification of liveness properties possible

Different types of abstraction

- Classical predicate abstraction for each process
 - Can not take into account dependencies between different processes
- Abstract n local variables into a finite number of globals
- Counter abstraction:
 - works for $process[1..n]:finite\ type$
 - introduces a counter for each finite value
 - counts how many processes have each value
 - forgets identity of processes
 - Correctness by construction
- for Bakery: replacing ticket[1..n] by another array (forget process identities)

Construction of an abstract system from a concrete one

- concrete transition relation: trans(c, c')
- abstraction relation: $\alpha(c,a)$
- the abstract transition relation trans(a, a') is given as:

$$\exists c, c'. \ \alpha(c, a) \land \alpha(c', a') \land trans(c, c')$$

ullet To get trans(a,a') in a usable way one has to eliminate the quantifiers over arrays

Proving that an abstraction is correct

- concrete transition relation: trans(c, c')
- abstraction relation: $\alpha(c,a)$
- abstract transition relation: trans(a, a')
- Proving that abstraction is correct:

$$\forall c, c', a, a' : trans(c, c') \land \alpha(c, a) \land \alpha(c', a') \implies trans(a, a')$$

- one can show that the negation is not satisfiable
- A little "easier" to use
- ullet Difficulty depends on formulae for lpha and trans which can contain quantifiers themselves

Logics with arrays

- Special case: array a[1..n] of finite type
- Undecidable for arrays a[1..n] of [1..n]
 - One can code computations of a 2-counter machine $\exists n \ \exists a[1..n] \ \forall i. \ init(a[0]) \land step(a[i], a[i+1]) \land a[n].state = halt$
- Nevertheless, there are some decidable fragments based on cutoff techniques (Pnueli)
- Not immediately applicable for the formula showing correctness of the abstraction for the Bakery algorithm
- Weaken formula: replace $\exists a[1..m], k. \phi(a[k], k)$ by $\exists ak, k. \phi(ak, k)$

Conclusion

• Automation of abstraction for parameterised systems is difficult

- Even showing that abstraction is correct is difficult
- Still some hope to isolate decidable fragments of array logic or use other automatic techniques
- One can use theorem provers
- have some collection of different abstractions