

Persée Meeting Peter Habermehl

Abstraction of parameterised systems: some remarks

with Ahmed BOUAJJANI (Liafa), Agathe MERCERON (de Vinci),
Tomas VOJNAR (TU Brno)

Peter Habermehl (LIAFA)

15 march 2004

Persée Meeting Peter Habermehl

Introduction

e Parameterised systems:

— Systems with a parameterised number n of components
— All components are identical

x plus perhaps a finite number of additional different components
— Typical examples

x Mutual exclusion algorithms

x T TP protocol

e Verification: System is correct for all n.

— Properties: for example safety, global liveness, individual liveness

— undecidable in general (even if individual processes are finite-state)

— Several approaches: Induction, Network Invariants, invisible invariants,
abstraction, etc.

Persée Meeting Peter Habermehl

Abstraction

e preserves in general safety properties
e Abstraction to a finite-state system

e Abstraction to a more powerful model which can be treated by symbolic
methods

e allows to use results for infinite-state model checking
e Abstraction step by step

e Tool supported

Persée Meeting Peter Habermehl
Example: Bakery Algorithm

Original definition by Lamport 1974:

integer array choosing[l..n], ticket[1..n]
BEGIN integer j;
I: choosingli] := 1;
ticket[j] := 1 + maximum (ticket[1],...,ticket[n]);
choosing[i] 0;
W: FOR j = 1 step 1 UNTIL n DO BEGIN
L2: IF choosing[j] != O THEN GOTO L2;
L3: IF ticket[j] !'= 0 and (ticket[jl,j) < (ticketl[i],i)
THEN GOTO L3;

END;
C: critical section;
ticket[i] := 0; noncritical section; goto I;

END

Property: Mutual exclusion (At most one process in critical section)

Persée Meeting Peter Habermehl

Bakery Algorithm: Abstraction
ldea: Order processes according to ticket numbers and forget their identity.

e Configuration: String over ¥ = {I, W, C}, for example ICWW
o Init: IT = {I,I1,IT1,IIII,...}.

e [ransitions: Rewrite rules or transducers

— xly — xyW with z,y € X*

— Wy — xCy provided that z € I*

— xCy — Izy with z,y € X*

— Example: I111 = I1IW = [IWW = I[ICW = ICWW = --.

e Then use regular model checking for verifying Post*(Init) NX*CY*CY* = ().

Problem: Justify the abstraction

Persée Meeting Peter Habermehl

How to formalise the abstraction ?

e We need a formal model to define the concrete and the abstract systems.

e \We need a logic to describe

— the transition relation of the concrete system

* we need some arithmetic (at least comparison)
— the transition relation of the abstract system
— the abstraction function (relation)

Persée Meeting Peter Habermehl

Formal model

e Global variables

e One process is modelled as an extended automata

— state type containing local variables
 infinite domain variables (integer, parameterised integer, etc.)
 finite domain variables (booleans, control state)
x parameterised arrays

e To model the collection of processes, we can use an array process|l..n] of state
considered as a global variable

e Transitions trans(process, process’) are modelled by quantifying over indices

— asynchronous: existential quantification
di. trans;(process|i], process’[i]) AN Vj # i.process|j] = process’|j]
— synchronous: universal quantification

Persée Meeting Peter Habermehl

Special case
All processes are finite-state, global variables are 1..n

e An array process|l..n| : finite type can be coded in the decidable logic WS1S
(or as a string over finite type)

— Transitions (with limited arithmetic) are also coded in WS1S
(or as a transducer)

— Dedicated tools can be used
+ Regular Model checking tools, abstraction (PAX), etc.
x even verification of liveness properties possible

Persée Meeting Peter Habermehl

Different types of abstraction

e (Classical predicate abstraction for each process

— Can not take into account dependencies between different processes
e Abstract n local variables into a finite number of globals

e Counter abstraction:

— works for process|l..n| : finite type

— introduces a counter for each finite value

— counts how many processes have each value
— forgets identity of processes

— Correctness by construction

e for Bakery: replacing ticket|1..n] by another array (forget process identities)

Persée Meeting Peter Habermehl

Construction of an abstract system from a concrete one

e concrete transition relation: trans(c,c’)
e abstraction relation: a(c,a)

e the abstract transition relation trans(a,a’) is given as:

de, . ale,a) N al(d,a’) Atrans(c,)

e To get trans(a,a’) in a usable way one has to eliminate the quantifiers over
arrays

10

Persée Meeting Peter Habermehl

Proving that an abstraction is correct

e concrete transition relation: trans(c,c’)
e abstraction relation: a(c,a)

e abstract transition relation: trans(a,a’)
e Proving that abstraction is correct:

Ve,d a,a s trans(c,d) AN ale,a) Na(d,a') = trans(a,a’)

e one can show that the negation is not satisfiable
o A little “easier” to use

e Difficulty depends on formulae for a and trans which can contain quantifiers
themselves

11

Persée Meeting Peter Habermehl

Logics with arrays

e Special case: array all..n| of finite type

e Undecidable for arrays a|l..n] of [1..n]

— One can code computations of a 2-counter machine
dn Jall..n] Vi. init(a|0]) A step(ali], ali + 1]) A a[n].state = halt

e Nevertheless, there are some decidable fragments based on cutoff techniques
(Pnueli)

e Not immediately applicable for the formula showing correctness of the
abstraction for the Bakery algorithm

e Weaken formula: replace Jdall..m|, k. ¢(alk], k) by Jak, k. ¢p(ak, k)

12

Persée Meeting

Conclusion

Automation of abstraction for parameterised systems is difficult

Even showing that abstraction is correct is difficult

Peter Habermehl

Still some hope to isolate decidable fragments of array logic or use other

automatic techniques
One can use theorem provers

have some collection of different abstractions

13

