
Toward Symbolic
Verification of

Programs Handling
Pointers

Sébastien Bardin
Alain Finkel

David Nowak

LSV, CNRS & ENS Cachan, France
�
bardin,finkel,nowak�@lsv.ens-cachan.fr



Programs Handling Pointers

�Pointers are useful but dangerous.

�They cannot always be avoided in critical systems.

�Verification is difficult because of aliasing.

�We aim at verifying that segmentation fault or memory
leak will not happen under the following hypotheses:

– we do not consider data;

– we do not consider pointer arithmetic;

– at first, we only consider linked lists.



Verification of programs handling pointers

Shape analysis
Sagiv, Reps and Wilhelm, POPL’99

Pointer assertion logic
Jensen, Joergensen, Klarlund and Schwartzbach, PLDI
’97

Separation logic
Reynolds, Millennial Perspectives in Computer Science,
2000
O’Hearn, Reynolds and Yang, CSL’01

pointer alias analysis, points-to analysis
Many many papers

Model checking
No paper



Model checking

�Model checking attemps to reply automatically to ques-
tions of the form:

Does my model
�

satisfy my property�?

� In case�is a safety property, this amounts to a reach-
ability question in the model

�
:

Reachable states �Bad states ��



Infinite state systems

�A method to help termination of the model checking
algorithm is needed.

– widening (overapproximation, terminates)

– acceleration (exact, semi-algorithm)

It consists in computing in one step the effect
of an arbitrary number of executions of a tran-
sition.

�Acceleration techniques strongly depend on symbolic
representation

– computable canonical form

– closure under union, union computable

– inclusion decidable

– efficiency



An example of C program handling pointers

/* list.h */

typedef struct node

{

struct node* n;

int data;

}* List;

/* reverse.c */

#include ‘‘list.h’’

List reverse(List x) {

List y,t;

y = NULL;

while (x!=NULL) {

t=y;

y=x;

x=x->n;

y->n=t;

t=NULL;

}

return y;

}



Pointer automaton

True ���:=Null

True �����:=�

True ���:=���

IsNull�����nop	IsNull������:=�

1

2

3

4

5

6

7

True ���:=�

True ���:=Null

The semantics of a pointer automaton is given in terms of a
transition system whose states are memory graphs.



A memory graph is either SegF or a graph such as

� �

�

���

�����

���

�Black points represent memory cells. Edges represent
pointers.

�Each memory cell is labelled by the set of pointer vari-
ables which point to this cell.

�The output degree of each node is exactly 1: we only
consider linked lists.

�Transition systems with memory graphs as states will
be in general infinite.



� �

�

�����

�
���

���

�
Null� ��
��� ������� ��

������� ��
��������� ��

�Here �is a well-formed linked list of length �.

�
�

,
�

and
�

are special nodes which do not denote
real memory cells:

–
�

(Null) denotes null pointer expressions such as
Null or ���.

–
�

(Pit) denotes deallocated pointer expressions such
as�����.

–
�

(Error) denotes meaningless pointer expressions
such as Null ��, �����, �������or�������.



Dead nodes

� �

�

�����

�
���

���

A dead node is a node which cannot be reached from a
node labelled by a non-empty set of variables.

Presence of dead nodes means there is a memory leak.



An SMS is a finite set of atomic SMSs such as

� �

��
��

��

��
��

��������	�����
�����
�

���

�����

���

�Edges are labelled by counter variables which repre-
sent the number of pointers between the two nodes.

�Counters are constrained by a Presburger formula. Un-
constrained counters are omitted.

�Counters labelling edges �����, �����and �����
are implicitly equal to 1 (in all SMSs).

�An SMS�represents an infinite set
���of memory
graphs.



Assignment

�

�����


�� ��
��

��

���

���

�An assignment satisfying a formula
�

is a valuation
function �for counters such that

����:=������is true.

�The assignment of an SMS �����w.r.t. �is the mem-
ory graph

��
built from

�
where each edge labelled

by a counter variable
�

is replaced by a chain of ����

edges.



Concretization

Atomic SMSs

�
�����, where
�

is not SegF, is the set of all possible
assignments of �����.

�
�SegF�
���

�
SegF

�
if
�

is satisfiable
�otherwise

SMSs

�
��������������
�

���

����

where��, . . . ,��are atomic SMSs.

Union
�

of SMSs such that


�����	��
�����
����

is defined the evident way.



Execution of pointer automata

Example: an execution of the instruction �����:=�

� �
�

�

���

���

���

���

� �
��

�

�����

SegF
��	

���	��������



Each SMS�has a computable canonical form

An SMS
����

�

������ �
���

and its canonical form
��������

�

��

True

�������

���� �������

�

An atomic SMS in canonical form is such that

�each counter is different from
�

;

�only core nodes appear, i.e.

– nodes
�

, �and
�

,

– nodes labelled by a non empty set of variables,

– nodes of input degree greater than or equal to
	

.

An SMS in canonical form is a finite set of atomic SMSs
in canonical form such that it does not contain isomorphic
graphs.



Inclusion

We define a decidable relation�on SMSs such that

������
�����
����

It is defined on SMSs by:

��������������iff
�

and
��

are isomorphic and
��

��
is valid.

��SegF�
����SegF�

���
iff
�

is not satisfiable or
��

is
satisfiable.

��������iff����and����.

��������iff����and����.



Undecidability results

NoSegF A state of the form ����SegF�
���

where � is a
control state and

�
is satisfiable is not reachable.

NoMemLeak A state �����where �is a control state and
�is a memory leak is not reachable.

Theorem. NoSegF and NoMemLeak are undecidable
for pointer automata with at least 3 pointer variables.



Future work

�We can check invariants (represented as SMSs) on
pointer automata by computing one iteration. But it is
difficult on realistic examples.

�We can try to isolate decidable subclasses. But we did
not find realistic enough subclasses.

�We focus on acceleration techniques:

– They can compute the set of reachable states.

– They can compute invariants.

– They have proved to be efficient on other models
such as counter, clock or lossy channel systems.

�We will extend our symbolic representation to other struc-
tures than linked lists.



Acceleration

��������

True

�

� �

��������

�

� �

��������

�

� �

True

True

	


�

� �

���

	


�

� �

��� �����

�����

	
����

(1)

(2)

(3)

��������

True �

� �

	
���


	

��� �����

	
����

�

� �
	


��� �����

	
����(�)

� �

�


