
Some Properties of Reactive Fiffo Automata

Frédéric Herbreteau

IRCCyN, France. Frederic.Herbreteau@irccyn.ec-nantes.fr

Supervisors: Olivier Roux and Franck Cassez
Keywords: Real-time systems, Reactive Fiffo Automata, Event memorizing,
Boundedness.

Abstract. We are interested in the verification of real-time systems
modelled with Reactive Fiffo1 Automata. This model provides with the
ability of memorizing events when they must not be taken into account
at their occurrence date. We aim at deciding the boundedness of the
queue.

1 Research Area – Main Themes

Real-time systems are often used for the control of critical systems like power
plants, satellites, planes, etc. The critical aspects of all these systems enjoin to
make sure that they meet some specifications, particularly safety requirements.
This verification is usually achieved by model-checking, or at least testing the
system.

We are interested here by real-time systems described with the Electre

formalism [4] : a language for the specification of reactive systems with asyn-
chronous assumptions. Particularly, it provides with the ability of memorizing
events in a queue when they must not be taken into account when they occur.
This feature sets the problem of the boundedness of the queue. In this paper, we
study this problem through Reactive Fiffo1 Automata [4, 6, 2] (see Definition 1),
the model for the execution of Electre programs. Our goal is the detection of
faulty systems having an unbounded queue.

1.1 Reactive Fiffo Automata

Reactive Fiffo Automata are built from a finite transition system (named the
control structure) upgraded with a memorizing queue. They are very adequate
for real-time systems modelling, since the fiffo memorizing policy extends the
usual fifo in the following way : the event taken into account from the queue is
the oldest of all the possible ones (it does not need to be at the beggining of the
queue), see point (4c) in the following definition. Furthermore, the queue has
always the priority among other transitions (expressed in points (4a), (4b) and
(4c)).

1 First In First Fireable Out.

Definition 1 (Reactive Fiffo Automaton). A Reactive Fiffo Automaton
(RFA) is a complete and deterministic transition system R = (Q×Σ∗

M , (q0, ε), Σ∪
{!, ?} × ΣM , δ), where :

1. Q is a finite set of locations,
2. Σ = ΣF ∪ ΣM is the alphabet of the RFA, divided in 2 subsets : the fleeting

events (ΣF), and the memorized events (ΣM), such that ΣF ∩ ΣM = ∅,
3. (q0, ε) is the initial state,

4. (q, w)
α
−→ (q, w′) ∈ δ iff :

(a) either α = e and w = w′ and w ∈ (Σ!
q)

∗,

(b) or α =!e and q = q′ and w′ = we and w ∈ (Σ!
q)

∗,
(c) or α =?e and ∃w1, w2 ∈ Σ∗

M s.t. w = w1ew2 and w′ = w1w2 and
w1 ∈ (Σ!

q)
∗,

5. ∀(q, w) ∈ Q × Σ∗

M , ∀e ∈ ΣM :

(a) either (q, w)
!e
−→ (q, we),

(b) or ∃q′ ∈ Q andw′ ∈ Σ∗

M s.t. (q, w)
e
−→ (q′, w) and (q, w)

?e
−→ (q′, w′) w.r.t.

(4c),
6. ∀(q, w) ∈ Q × Σ∗

M , ∀e ∈ ΣF : ∃q′ ∈ Q s.t. (q, w)
e
−→ (q′, w).

with Σ!
q = {e | q

!e
−→ q}.

One can find in [6] a sight seeing study of interesting properties of RFA (e.g.,
decidability of reachability). This model has also been used for the modelling
and verification of an embedded software dedicated to the control program of an
aircraft engine.

1.2 The Readers/Writers Example

As a running example, we consider the classical readers/writers problem. The
corresponding RFA is depicted in Figure 1.

We consider two readers (R1 and R2) and a writer (W). The readers can
access the book simultaneously, whereas the readers and the writer are concur-
rent. We denote [[R]] the set of all the executions of R; here is an example of
execution :

(q0, ε)
w
−→ (q3, ε)

!r1−→ (q3, r1)
!w
−→ (q3, r1w)

r2−→ (q3, r1wr2)
endW−−−→ (q0, r1wr2) . . .

. . .
?r1−−→ (q1, wr2)

?r2−−→ (q4, w)
endR1−−−−→ (q6, w)

endR2−−−−→ (q0, w)
?w
−→ (q3, ε) . . .

Notice that the transition (q1, wr2)
?r2−−→ (q4, w) clearly shows that the stored

occurrences of events are processed as soon as possible (Fiffo ordering).

2 Directions of the Work

A RFA on its own describes an infinite number of executions : each time it
memorizes an event, it can do it again without any limit. Thus, the boundedness
problem is meaningful only when the environment of the RFA is constrained.

2

q0

q1 q2

q3

q4

q5 q6

w, ?w

r1, ?r1 r2, ?r2

!w, !r1

endR1

r2, ?r2

!w, !r2

endR2

r1, ?r1

!w, !r1, !r2

endW

!w, !r1, !r2

endR2
endR1

!w, !r1, !r2

endR1

!w, !r1, !r2

endR2

Fig. 1. Control structure of the RFA for the reader/writers.

2.1 Environment

In this paper, we consider that an environment is simply a regular language of
infinite words :

Definition 2 (Environment). An environment E is any ω-regular language :
E =

⋃

i

{UiV
ω
i |Ui andVi are regular languages}.

Then, the execution of a RFA R, in an environment E is defined by :

Definition 3 (Execution of a RFA in an environment). [[R, E]] = {ρ ∈
[[R]] |π(ρ) ∈ E} where π is the morphism on words defined by : π(e) = e, π(!e) =
e and π(?e) = ε.

The definition of π clearly shows that the environment cannot control the
processing of memorized events. Furthermore, [[R, E]] always exists since the
RFA is complete, and it is single since a RFA is deterministic with priority to
the queue (full-deterministic).

2.2 Boundedness Problem

The boundedness problem is relevant for any system having a memorizing capa-
bility. It aims at deciding if a given system is bounded or not. For example, it has
already been stated and solved for CFSM [1] and Petri Nets [5]. The following
definition states this problem for RFA :

Definition 4 (Boundedness). A Reactive Fiffo Automaton R = (Q × Σ∗

M ,

(q0, ε), Σ∪{!, ?}×ΣM , δ) is bounded iff ∃k ∈
�

s.t. ∀(q, w) ∈ Reach(R), |w| ≤ k,
where |w| denotes the length of word w, and Reach(R) is the set of reachable
states from (q0, ε), that is : Reach(R) = {(q, w) ∈ Q × Σ∗

M | ∃σ ∈ (Σ ∪ {!, ?} ×

ΣM)∗ s.t. (q0, ε)
σ
→ (q, w) ∈ [[R]]}.

3

For example, the RFA depicted on Figure 1, is bounded in the environment
E1 = {w.endW .r2.endR2

.w.endW (r1.w.endR1
.endW .r2.endR2

.w.endW)ω}, then
k = 1. But it is unbounded in the environment :
E2 = {w.r2.w.endW .r1(endR2

.w.endR1
.r2.w.r1.endW .w.r2.w.endW .r1)

ω}.

3 Results

In this section, we first study the boundedness problem in the context of ω-
regular environments. Then, section 3.2 is dedicated to a particular class of
regular environments : ultimately periodic words, which is relevant in the context
of real-time systems. The following results are detailled in [3].

3.1 ω-Regular Environment

Since it is possible to simulate any fifo automaton [7] by a RFA coupled with an
ω-regular environment, we have the following statement :

Theorem 1. The boundedness problem is undecidable for RFA with ω-regular
environments.

Proof. Available from the author.

The construction of the RFA R and the ω-regular environment E , simulating
the fifo automaton F , is described in Figure 2. This algorithm should be repeated
for each state of the fifo automaton F (namely qa, qb, q′a and q′b).

q

β

α

�

qa

qb

q′a

q′b

!a, !b
τ!

τ?

else

!a, !b

else

τa

τb

else

?a, a

?b, b

Σ

(a) Reactive fiffo automaton R.

q qa

qb

q′a

q′b

!a

!b

?a?b

(b) Fifo automaton F .

0 1

2

3

τ?

τ!

a

b

τa

τb

(c) ω-regular environ-
ment E .

Fig. 2. Fifo automaton and the RFA and ω-regular environment simulating it.

4

Here are some details on our construction :

1. Each else transition in R stands for all the transitions that are not specified.
Thus, an unspecified fleeting event τ (resp. memorized event e) leads to a
transition labelled τ (resp. ?e, e) towards state ∅ which is a deadlock state
for the executions of R that are not executions of F .

2. The priority to the queue in R is bypassed by the introduction of two fleeting
events, τ? and τ!, thus allowing to choose between memorizing or taking into
account from state q in R. In the same way, E can emit either τ? or τ! from
its initial state.

3. Since RFA cannot change its state while memorizing, τ! is also used to bring
R in its “memorizing state” (namely β), while E evolves to state 1. Then,
it emits either a or b which are memorized in β by R (thus allowing the
same choice than F in q). Finally, the fleeting events τa or τb differentiate
the memorizing of a or b respectively.

4. We must respect the fifo policy : in state α, a or b must be taken into account
iff it begins the queue (despite the fiffo policy). This is achieved by the else

transition (see point (1) above).

5. Finally, we picture states α, β and ∅ with dashed circles in order to highlight
the fact that they have no corresponding states in F . Notice also that state
β can be merged in state q, but this would make the construction harder to
understand.

3.2 Ultimately Periodic Environment

The boundedness problem remains open for this particular class of ω-regular
environments which consists of a single infinite word of the form : w0(wp)ω

where w0 and wp are finite words.

Since the environment is ultimately periodic (u.p.), one can answer if it is
also the case for the execution of the RFA. We have proved that if the RFA is
bounded, or if Card(ΣM) ≤ 1, then its execution is always u.p. However, it is
not always the case; indeed, the RFA R¬ depicted in Figure 3, together with the
environment E¬ = (e2τe3τ)ω has an aperiodic execution (� denotes the usual
concatenation on words) :

[[R¬, E¬]] = (!e2τ !e3τ) ·
∞

⊙

n=1

(

(?e2!e2τ !e3τ)n · (?e3(?e3)
n!e2τ !e3τ)

)

The decision of the ultimate periodicity of the execution of a RFA in an
u.p. environment is still open. We are also working on necessary and sufficient
conditions for the infinite iteration of a cycle occuring in the execution of a RFA.
Since computing the evolution of the size of the queue on a given finite sequence
of transitions is purely syntactic, solving these two problems would give us either
an algorithm (decidability of the first problem) or a test (undecidability of the
first problem) for the boundedness problem.

5

1 2 3

4

5

6

7!e2, !e3

τ

!e2, !e3

τ

τ
?e2, e2

?e3, e3

!e2, !e3

τ

!e2, !e3

τ

?e3, e3

!e2

τ

!e2, !e3

τ

Fig. 3. Aperiodic reactive fiffo automaton.

4 Conclusion and Perspectives

The main encoutered difficulties rely on the fact that usual models (e.g., CFSM [1],
Fifo automata [7]) are definable by morphisms, whereas RFA cannot because of
the fiffo policy.

Future work will lead to the definition of the environment by temporal spec-
ifications (e.g., frequency of events occurrences), thus the study of timed/hybrid
RFA. For example, the environment E2 (see Section 2.2) can be obtained with
the following specifications : r1 occurs 2 time units after r2, r2 occurs 2 t.u. after
r1, w occurs 1 t.u. after r1 and r2, and finally, activities R1, R2 and W last,
respectively, 2, 1 and 3 t.u.

Aknowledgements We want to thank Grégoire Sutre and Alain Finkel (LSV -
ENS Cachan, France) for their participation to this work, particularly for the
idea of the proof of Theorem 1.

References

1. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 30(2):323–342, April 1983.

2. F. Cassez, F. Herbreteau, and O. Roux. Reactive systems with unbounded event
memorization. CARI’2000 Conference, Antananarivo, Madagascar, October 2000.

3. F. Cassez, F. Herbreteau, O. Roux, and G. Sutre. About boundedness of reactive
fiffo automata. Submitted.

4. F. Cassez and O. Roux. Compilation of the ELECTRE reactive language into finite
transition systems. Theoretical Computer Science, 146(1–2):109–143, July 1995.

5. J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall Int.,
1981.

6. G. Sutre, A. Finkel, O. Roux, and F. Cassez. Effective recognizability and model
checking of reactive fiffo automata. In Proc. 7th Int. Conf. Algebraic Methodology
and Software Technology (AMAST’98), Amazonia, Brazil, Jan. 1999, volume 1548
of Lecture Notes in Computer Science, pages 106–123. Springer, 1999.

7. B. Vauquelin and P. Franchi-Zannettacci. Automates à file. Theoretical Computer
Science, 11(2):221–225, June 1980. Note.

6

