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Abstract
An acyclic coloring of a grapld: is a coloring of its vertices such that : (i) no two adjacent

vertices inG receive the same color and (ii) no bicolored cycles exigFirA list assignment of
G is a functionL that assigns to each vertexe V(G) a list L(v) of available colors. Le be

a graph and. be a list assignment @¥. The graphG is acyclically L-list colorable if there exists
an acyclic coloringp of G such thatp(v) € L(v) forallv € V(G). If G is acyclically L-list
colorable for any list assignmeiit with |L(v)| > k forallv € V(G), thenG is acyclically
k-choosable. In this paper, we prove that every planar graph witlyolésof lengths 4 to 12 is
acyclically 3-choosable.

1 Introduction

A proper coloring of a graph is an assignment of colors to the vertices of thphgsaich that two
adjacent vertices do not use the same colork-€oloring of G is a proper coloring oty using k
colors; a graph admitting/a-coloring is said to bé&-colorable. An acyclic coloring of a graphG is a
proper coloring ofZ such thatz contains no bicolored cycles; in other words, the graphdediby
every two color classes is a forest. A list assignmertt'a$ a functionL that assigns to each vertex
v € V(G) alist L(v) of available colors. Le& be a graph and. be a list assignment a¥. The
graphG is acyclically L-list colorable if there is an acyclic coloring of G such thaip(v) € L(v)
forallv € V(G). If G is acyclically L-list colorable for any list assignmeditwith |L(v)| > k
forallv € V(G), thenG is acyclically k-choosable. Theacyclic choice number of G, \.(G), is
the smallest integek such that is acyclicallyk-choosable. Borodiet al. [4] first investigated the
acyclic choosability of planar graphs proving that:

Theorem 1 [4] Every planar graph is acyclically 7-choosable.
and put forward to the following challenging conjecture:
Conjecture 1l [4] Every planar graph is acyclically 5-choosable.

This conjecture if true strengthens Borodin’s Theorem Fiilee acyclic 5-colorability of planar
graphs and Thomassen’s Theorem [12] on the 5-choosabililanar graphs.

In 1976, Steinberg conjectured that every planar graphouttleycles of lengths 4 and 5 is 3-
colorable (see Problem 2.9 [8]). This problem remains opeh990, Erds suggested the following
relaxation of Steinberg’s Conjecture: what is the smaliletgger: such that every planar graph
without cycles of lengths 4 tdis 3-colorable? The best known resultiis= 7 [5]. This question
is also studied in the choosability case: what is the sntalésgeri such that every planar graph
without cycles of lengths 4 tbis 3-choosable? In [13], Voigt proved that Steinberg’s @otyre can
not be extended to list coloring; hende> 6. Nevertheless, in 1996, Borodin [2] proved that every
planar graph without cycles of lengths 4 to 9 is 3-coloralbldact, 3-choosable. So,< 9.

In this paper, we study the question of Bsdn the acyclic choosability case:



Problem 1 What is the smallest integer 7 such that every planar graph without cycles of lengths 4
to ¢ isacyclically 3-choosable?

Note that it is proved that every planar graph without cycgkengths 4 to 6 is acyclically 4-
choosable [11]. Also, the relationship between the maxirauerage degree 6f (or the girth ofG)
and its acyclic choice number was studied (see for exampled16]).

Our main result is the following:
Theorem 2 Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable.

Hence, in Problem 16 <7 < 12.

Section 2 is dedicated to the proof of Theorem 2. First westishe notations we will use:

Notations Let G be a planar graph. We u3§G), E(G) andF(G) to denote the set of vertices,
edges and faces ¢f respectively. Letl(v) denote the degree of a vertexn G andr(f) the length
of a facef in G. A vertex of degreé: (resp. at leask, at mostk) is called ak-vertex (resp. > k-
vertex, < k-vertex). We use the same notations for facesk-face (resp. > k-face, < k-face) is a
face of lengthk (resp. at least, at mostk). A k-face having the boundary vertices, zs, ..., i
in the cyclic order is denoted Hy:zo...x;). For avertexs € V(G), letn;(v) denote the number
of i-vertices adjacent to for i > 1, andmg(v) the number of 3-faces incident to A 3-vertex is
called a3*-vertex if it is incident to a 3-face and adjacent to a 2-vertex (foaraple in Figure 1, the
vertext is a3*-vertex). A 3-face[rst] with d(r) = d(s) = d(t) = 3 and with a3*-vertex on its
boundary is called &*-face. Two 3-faces [rst] and [uvw] are called linked if there exists an edge
which connects these two 3-faces such @} = d(v) = 3 (see Figure 2)A vertex v islinked to

a 3-face [rst] if there exists an edge betweerand one vertex of the boundary pfst|, sayt, such
thatd(t) = 3 (for example in Figure 1, the vertexis linked to the 3-facérst]). Letn*(v) be the
number of3*-face linked tov.
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Figure 1: The vertex is a3*-vertex and the Figure 2: The two 3-faces [rst] and [uvw] are
vertexw is linked to the 3-facérst] linked

2 Proof of Theorem 2

To prove Theorem 2 we proceed by contradiction. SupposeHhta counterexample with the
minimum order to Theorem 2 which is embedded in the plane. ILbt a list assignment with
|L(v)| = 3forallv € V(H) such thatd does not admit an acyclit-coloring.

Without loss of generality we can suppose tliatis connected. We will first investigate the
structural properties off (Section 2.1), then using Euler’'s formula and the discmaygechnique
we will derive a contradiction (Section 2.2).



2.1 Structural propertiesof H

Lemmal The minimal counterexample H to Theorem 2 has the following properties:
(C1) H containsno 1-vertices.

(C2) A 3-face hasno 2-vertex on its boundary.

(C3) A 2-vertexisnot adjacent to a 2-vertex.

(C4) A 3-face has at most one 3*-vertex on its boundary.

(C5) A3-face|[rst] withd(r) = d(s) = d(t) = 3 islinked to at most one 3*-face.
(C6) Two 3*-faces cannot be linked.

Figure 3:[rst] is linked to two3*-faces[ijk| and[lmn)]

Figure 4: The twa3*-faces|rst] and[ijk] are linked
Proof

(C1) Supposeff contains a 1-vertex: adjacent to a vertex. By minimality of H, the graph
H' = H \ {u} is acyclically 3-choosable. Consequently, there existaauelic L-coloring ¢
of H'. To extend this coloring té/ we just coloru with ¢(u) € L(u) \ {c¢(v)}. The obtained
coloring is acyclic, a contradiction.



(C2) SupposéT contains a 2-vertex incident to a 3-facguvw|. By minimality of H, the graph
H' = H \ {u} is acyclically 3-choosable. Consequently, there exista@lic L-coloring
c of H'. We show that we can extend this coloringfioby coloringw with ¢(u) € L(u) \

{c(v), c(w)}.

(C3) Supposéi contains a 2-vertex adjacent to a 2-vertex. Lett andw be the other neighbors
of u andv respectively. By minimality ofH, the graphH’ = H \ {u} is acyclically 3-
choosable. Consequently, there exists an acyclomloring ¢ of H’. We show that we can
extend this coloring td7. Assume first that(t) # c(v). Then we just colow with ¢(u) €
L(u) \ {c(t), c(v)}. Now, if ¢(t) = ¢(v), we coloru with ¢(u) € L(u) \ {¢(v), c(w)}. Inthe
two cases, the obtained coloring is acyclic, a contradictio

(C4) Supposdd contains a 3-fac@rst] with two 3*-verticess and¢. Suppose that (resp. s) is
adjacent to a 2-vertex (resp.z) with v #£ r, s by (C2) (respx # r,t). Letu (resp.y) be the
other neighbor of) (resp. z) with u # r, s (resp.y # r,t). By the minimality of H, H' =
H \ {v} is acyclically 3-choosable. Consequently, there existaayelic L-coloringc of H'.
We show now that we can extendio H. If ¢(u) # c(t), we color therv with a color different
from ¢(u) andc(t) and the coloring obtained is acyclic. Otherwisg;) = ¢(¢). If we cannot
color v, this implies without loss of generality(v) = {1,2,3}, c(u) = ¢(t) = c(z) = 1,
c(r) = 2 andc(s) = ¢(y) = 3. Observe that necessarily(t) = {1,2,3} (otherwise we
can recolort with o € L(¢) \ {1, 2,3} and colorv properlyi.e v receives a color distinct of
those of these neighbors). For a same redsen = {1,2,3} andL(x) = {1, 2, 3}. Now, we
recolort with the color 3,s with the color 1 and: with the color 2, then we can colerwith
the color 2. Itis easy to see that the coloring obtained islacy

(C5) Supposéd contains a 3-face-st] incident to three 3-vertices such that two of them are linked
to two 3*-faces[ij k| and[lmn]. Supposéijk] and[lmn] are linked to[rst] respectively by
the edges;j andtl. Call y the third neighbor of, x the third neighbor of, andp the third
neighbor ofm. Suppose that the 2-vertexresp.v) is adjacent té& andz (resp.n andw). See
Figure 3. By the minimality o7, H' = H \ {v} is acyclically 3-choosable. Consequently,
there exists an acyclie-coloringc of H'. We show now that we can extendo H. If ¢(w) #
¢(n), we color therw with a color different frome(w) andc¢(n) and the coloring obtained is
acyclic. Otherwiseg(w) = ¢(n). If we cannot colow, this implies without loss of generality
L(v) = {1,2,3} = L(I) = L(m), c(w) = ¢(n) = ¢(t) = ¢(p) = 1, and by permuting the
colors ofl andm, we are sure thak(r) = {1,2,3} = L(s) ande(x) = ¢(j) = 1, then by
permuting the colors of ands, we are sure thak (i) = {1,2,3} = L(k), c(y) = c(u) =1,
andc(z) € {2,3}. Leta = {2,3} \ {c(2)}. We recolork, s, [, v with o« andm, r, i with ¢(z).
The coloring obtained is acyclic.

(C6) SupposeH contains two3*-faces|rst] and [ijk] which are linked by the edgej. Call y
the third neighbor of, x the third neighbor of-. Suppose that the 2-vertex(resp. v) is
adjacent tok andz (resp.t andw). See Figure 4. By the minimality df, H' = H \ {v}
is acyclically 3-choosable. Consequently, there exista@mtlic L-coloring ¢ of H'. We
show now that we can extendo H. If c(w) # ¢(t), we color therw with a color different
from ¢(w) andc(t) and the coloring obtained is acyclic. Otherwiséw) = c(t). If we
cannot colorv, this implies without loss of generaliti,(v) = {1,2,3} = L(r) = L(s),
c(w) = ¢(t) = ¢(xz) = ¢(j) = 1, and by permuting the colors efands, we are sure that
L(i) = {1,2,3} = L(k), c(y) = c¢(u) = 1, andc(z) € {2,3}. Leta = {2,3} \ {c(2)}. We
recolork, s, v with o andr, i with ¢(z). The coloring obtained is acyclic.

0O

Lemma 2 Let H be a connected plane graph with n vertices, m edges and r faces. Then, we have
the following:

> (1ld(v) —26) + > (2r(f) —26) = —52 1)

veV (H) FEF(H)



Proof
Euler's formulan — m + f = 2 can be rewritten ag22m — 26n) + (4m — 26f)) = —52. The

relation d(v) = Z r(f) = 2m completes the proof. a
veV (H) FEF(H)

2.2 Discharging procedure
Let H be a counterexample to Theorem 2 with the minimum order. THegatisfies Lemma 1.

We define the weight function : V(H)U F(H) — Rbyw(z) = 11d(x)—26if z € V(H)
andw(z) = 2r(x) — 26 if x € F(H). It follows from Equation (1) that the total sum of weights is
equal to -52. In what follows, we will define discharging mi{&®1) and (R2) and redistribute weights
accordingly. Once the discharging is finished, a new weighttionw* is produced. However, the
total sum of weights is kept fixed when the discharging isexdd. Nevertheless, we will show that
w*(x) > 0forallz € V(H) U F(H). This leads to the following obvious contradiction:

0 < Z w'(x) = Z w(z) = =52 < 0
ze€V(H)UF(H) z €V (H)UF(H)
and hence demonstrates that no such counterexample can exis

The discharging rules are defined as follows:

(R1.1) Every> 3-vertexv gives 2 to each adjacent 2-vertex.
(R1.2) Every> 4-vertexv gives 9 to each incident 3-face and 1 to each linkedace.
(R2.1) Every3*-vertexwv gives 5 to its incident 3-face.

(R2.2) Every 3-vertex, which is not a3*-vertex and is not linked to 2¢-face, gives 7 to its incident
3-face (if any).

(R2.3) Every 3-vertex, which is a3*-vertex and is linked to &*-face, gives 1 to each linket-face
and gives 6 to its incident 3-face (if any).

In order to complete the proof, it suffices to prove that the meightw* () is non-negative for
allx € V(H) U F(H).

Letv € V(H) be ak-vertex. Thenk > 2 by (C1).

e If kL =2, thenw(v) = —4 andv is adjacent to twe> 3-vertices by (C3). By (R1.1)y*(v) =
—44+2-2=0.

e If k£ = 3, thenw(v) = 7. SinceH contains no 4-cycles; is incident to at most one 3-face.
Assume first thab is not incident to a 3-face. Then by (R1.1) and (R2:3yives at most 3
times 2. Hencew*(v) > 7 —3-2 > 1. Assume now that is incident to a 3-face. It is a
3*-vertex, thenv*(v) = 7 — 5 — 2 = 0 by (R1.1) and (R2.1). If is linked to a3*-face then
w*(v) > 7—6—1=0hy (R2.3). Ifv is not adjacent to a 2-vertex and not linked t&*aface
thenw*(v) =7 — 7= 0by (R2.2).

e If k > 4, thenw(v) = 11k — 26. Observe by (C1), (C2) and definitionsf(v) and of linked
vertices that:

ms(v) < V;J and k — 2ms(v) > na(v) +n*(v)

k > 2m3(v) + na(v) + n*(v) 2



It follows by (R1.1), (R1.2) and Equation (2) that:

w'(v) = 11k —26 —9mg(v) —n"(v) — 2n2(v)
9 9

> 11k —26 — 9ms(v) — 571*(1}) - 5712(1))
> 11k —26 — gk‘

13
> —k-—26
-2
> 0

Suppose thaf is ak-face. Thenk = 3 or & > 13 by the hypothesis.
o If k> 13, thenw*(f) = w(f) =2k — 26 > 0.

e If k£ = 3, thenw(f) = —20. Supposef = [rst]. By (C2), f is not incident to a 2-vertex;
henced(r) > 3,d(s) > 3,d(t) > 3. By (C4) f is incident to at most ong&*-vertex. Now,
observe that if one of the verticess, ¢t is a> 4-vertex, then by (R1.2) (R2.1) (R2.2) (R2.3)
wi(f) > —204+94+5+6 = 0. So assumé(r) = d(s) = d(t) = 3 and letry, so, o be
the other neighbors of, s, t, respectively. Suppose thatis a3*-face and let be its unique
3*-vertex. By (C6) none of andt are linked to &8*-face. Moreoves, andt, give 1 to f by
(R1.2) and (R2.3). Henee*(f) = —20+5+2-7+2-1 = 1. Finally assume that is not a3*-
face. By (C5) at most one ef s, t is linked to a3*-face. Hencev*(f) > —20+6+2-7 =0,
by (R1.2), (R2.2) and (R2.3).

We proved that, foralt € V(H) U F(H), w*(z) > 0. This completes the proof of Theorem 2.
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