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Definition (Fouquet and Jolivet, 1983)

Strong edge-colouring (distance 2 edge-colouring) is an assignment
of colours to edges of graph such that:

@ every two edges sharing a vertex have different colours (proper
edge-colouring)

@ every two edges joined by an edge are assigned distinct
colours (distance 2 edge-colouring).
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Definition (Fouquet and Jolivet, 1983)

Strong edge-colouring (distance 2 edge-colouring) is an assignment
of colours to edges of graph such that:
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edge-colouring)
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Definition (Fouquet and Jolivet, 1983)

Strong edge-colouring (distance 2 edge-colouring) is an assignment
of colours to edges of graph such that:

@ every two edges sharing a vertex have different colours (proper
edge-colouring)

@ every two edges joined by an edge are assigned distinct
colours (distance 2 edge-colouring).

Xs(G) - minimum number of colours needed to obtain a strong
edge-colouring of G
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In other words...

It can be seen as a proper vertex-colouring of the square of the
line graph.
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Xs(G)>2(A—-1)+1
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Starting point
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Xs(G) <2A(A—-1)+1

Hervé Hocquard Strong edge-colouring of graphs 5/40



Starting point

Conjecture [Erdés and Nesetfil, 1985]

2A2 A even
For a graph G, Y.(G) <4’
graph G, xs(G) {%(5A2—2A+1),A odd
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Starting point

Conjecture [Erdés and Nesetfil, 1985]
%A2, A even
1(5A%2 —2A +1), A odd

For a graph G, x%(G) < {

A =2k, ¥, = 5k? A=2k+1,x, =5k +4k+1
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Best bound known

o Greedy algorithm : y.(G) ~ 2A2.
o Erdés and Negettil Conjecture : \,(G) ~ 2 A2,
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Best bound known

o Greedy algorithm : y.(G) ~ 2A2.
o Erdés and Negettil Conjecture : \,(G) ~ 2 A2,

Theorem [Molloy and Reed, 1997]

If A is large enough, then Y.(G) < 1.998A2.
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For small values of A

Theorem [Andersen, Horak et al., 1992]

If G is a subcubic graph, x.(G) < 10.
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For small values of A

Theorem [Andersen, Horak et al., 1992]

If G is a subcubic graph, x.(G) < 10.

X5(G) =10
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For small values of A

Theorem [Cranston, 2006]

If G is a graph with maximum degree 4, then \.(G) < 22.
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For small values of A

Theorem [Cranston, 2006]

If G is a graph with maximum degree 4, then \.(G) < 22.

X:(G) < 20 by Erdés and Neset¥il Conjecture.
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Other graph classes

Conjecture [Faudree et al., 1990]

If G is bipartite, then \.(G) < AZ.
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Other graph classes

Conjecture [Faudree et al., 1990]

If G is bipartite, then \.(G) < AZ.

Reached for any complete bipartite graph Ka a.

Conjecture [Brualdi and Quinn Massey, 1993]
If G is bipartite with parts X and Y, then \.(G) <

Theorem [Bensmail, Lagoutte and Valicov, 2014]

For every (3, A)-bipartite graph G, we have Y.(G) < 4A.
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Other graph classes - planar graphs

Theorem [Faudree et al., 1990]

If G is a planar graph with maximum degree A, then
Xs(G) < 4A + 4.
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A
\Y/

Hervé Hocquard Strong edge-colouring of graphs 11/40



Other graph classes - planar graphs

Theorem [Faudree et al., 1990]

If G is a planar graph with maximum degree A, then
Xs(G) < 4A + 4.

A
\Y/

Xs(G) = 40 — 4
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Other graph classes - planar graphs

g : girth = minimum length of a cycle.
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Other graph classes - planar graphs

g : girth = minimum length of a cycle.

Theorem [Hudék et al., 2013]

If G is planar with g > 6, then \.(G) < 3A + 5.
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Other graph classes - planar graphs

g : girth = minimum length of a cycle.

Theorem [Hudak et al., 2013]

If G is planar with g > 6, then \.(G) < 3A + 5.

Theorem [Bensmail Harutyunyan, H. and Valicov, 2013+]

If G is planar with g > 6, then \.(G) < 3A + 1.
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Planar graphs - remarks

Theorem [Faudree et al., 1990]

If G is planar, then x4(G) < 4A + 4.
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Planar graphs - remarks

Theorem [Faudree et al., 1990]

If G is planar, then xL(G) < 4A + 4.

Observation (Grotzsch + Vizing)

If G is planar with g > 7, then x,(G) < 3A + 3.

Theorem [Vizing, 1965]

If G is planar with A > 8, then G is Class 1.

Conjecture [Vizing, 1965]
If G is planar with A > 6, then G is Class 1.

proved for A = 7 (Sanders and Zhao, 2001)
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Planar graphs - remarks

Theorem [Faudree et al., 1990]
If G is planar, then xL(G) < 4A + 4.

Observation (Grotzsch + Vizing
If G is planar with g > 7, then x,(G) < 3A + 3.

—~
~—

Corollary
If G is planar with A > 7, then yL(G) < 4A
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Planar graphs - remarks

Theorem [Faudree et al., 1990]

If G is planar, then xL(G) < 4A + 4.

Observation (Grotzsch + Vizing)

If G is planar with g > 7, then x,(G) < 3A + 3.

Corollary

If G is planar with A > 7, then x.(G) < 4A.

what about remaining values of A? what for specific g7
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Planar graphs - remarks

Theorem [Faudree et al., 1990]

If G is planar, then xL(G) < 4A + 4.

Observation (Grotzsch + Vizing)

If G is planar with g > 7, then x,(G) < 3A + 3.

Corollary

If G is planar with A > 7, then x.(G) < 4A.

what about remaining values of A? what for specific g7

If A =g =4, then can G be Class 1?
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A>T

Aec{56} | A= A=
no girth restriction 4A 4A + 4 4A+4 | 3A+1
g>4 4A 4A 4A+4 | 3A+1
g=>b 4A 4A 4A 3A+1
g>6 3A+1| 3A+1 |[3A+1 3A
g=1 3A 3A 3A 3A
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Other graph classes - planar graphs

Theorem [H.,Ochem and Valicov, 2011]

If G is an outerplanar graph with maximum degree A, then
Xs(G) < 3A —3.
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Other graph classes - planar graphs

Theorem [H.,Ochem and Valicov, 2011]

If G is an outerplanar graph with maximum degree A, then
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Subcubic graphs

Conjecture [Faudree et al., 1990]

If G is a planar subcubic graph, y4(G) < 9.
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Subcubic graphs

Conjecture [Faudree et al., 1990]
If G is a planar subcubic graph, y4(G) < 9.

7
1 4
6 3 8
2 5
9
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Subcubic graphs

Theorem

Let G be a planar subcubic graph with no induced cycles of length
4 nor 5. Then y4(G) < 9.

Proof by minimum counterexample and using planarity.
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Sketch of the proof

Let H be a smallest counterexample. H does not contain:

VAN

(FC1) (FC2) (FC3)
(FC4) (FC5)
(FC6)
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Sketch of the proof
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Sketch of the proof

Let H be a smallest counterexample.

H has no triangle.
> 6.
H does not contain C4 and Cs. } = g(H) > 6
Build a new graph H; from H:
X y z x 2
O @ O O O
In H. N In H.
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Sketch of the proof

Let H be a smallest counterexample.

H has no triangle.
> 6.
H does not contain C4 and Cs. } = g(H) > 6
Build a new graph H; from H:
X y z x 2
O @ O O O
In H. N In H.

Clearly, H; is planar.
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Sketch of the proof

Let H be a smallest counterexample.
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Sketch of the proof
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H has no triangle.
H has no cycle C4.
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Sketch of the proof

Let H be a smallest counterexample.

H has no triangle.

Hy is simple.
H has no cycle C4. } = M is simple

H has no 1-vertices.
H has no two adjacent 2-vertices.
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Sketch of the proof

Let H be a smallest counterexample.

H has no triangle.

H has no cycle C4. } = Hy is simple.

H has no 1-vertices.

. . = Hj is 3-regular.
H has no two adjacent 2-vertices. } 1 &
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Let H be a smallest counterexample.

H has no triangle.

H has no cycle C4. } = Hy is simple.

H has no 1-vertices.

. . = Hj is 3-regular.
H has no two adjacent 2-vertices. } 1 &

Hi is planar.
Hi is simple.
Hy is 3-regular.
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Sketch of the proof

Let H be a smallest counterexample.

H has no triangle.

Hy is simple.
H has no cycle C4. } = M is simple

H has no 1-vertices.

. . = Hj is 3-regular.
H has no two adjacent 2-vertices. } ! &

Hi is planar.
Hy is simple. = H; must contain a face C’ of length at most 5.
Hy is 3-regular.
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Sketch of the proof

Recall that H does not contain:

NS

(FC3) (FC4)

N

(FC5)
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Sketch of the proof
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NS

(FC3) (FC4)

(FC5)

and that g(H) > 6.
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Sketch of the proof

Recall that H does not contain:

NS

(FC3) (FC4)

N

(FC5)

and that g(H) > 6.

= (' cannot be obtained from a cycle of H of length / > 7.
= g(H) =6.
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Sketch of the proof

Let H be a smallest counterexample.
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Sketch of the proof

Let H be a smallest counterexample.

In H there exists a cycle C of length 6
having a vertex of degree 2 on its boundary.
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Sketch of the proof

Let H be a smallest counterexample.

In H there exists a cycle C of length 6
having a vertex of degree 2 on its boundary.
Impossible by (FC6).
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Sketch of the proof

Let H be a smallest counterexample.

In H there exists a cycle C of length 6
having a vertex of degree 2 on its boundary. 3 = H cannot exist.
Impossible by (FC6).
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MAD parameter

The maximal average degree of a graph G, denoted mad(G), is the
maximal of the average degrees of all the subgraphs of G:

2|E(H)|
mad(G) = max{ V(H) ,HC G}
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MAD parameter

The maximal average degree of a graph G, denoted mad(G), is the
maximal of the average degrees of all the subgraphs of G:

2|E(H)|
mad(G) = max{ V(H) ,HC G}

The mad parameter is computable in polynomial time.
Let G be a subcubic graph:
Q If mad(G) < 7 , then x.(G
Q@ If mad(G) < 11, then x.(
@ If mad(G) < 5 , then \L(G
(G) < (G

INCIN NN
© © ~N O

Q If mad(G

()
\_/\_/V\_/

=, then x%
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MAD parameter

Lemma (Derived from Euler’s Formula)

Every planar graph of girth g satisfies:

2g

mad(G) < z_2
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MAD parameter

Lemma (Derived from Euler’s Formula)

Every planar graph of girth g satisfies:

2g
mad(G) < gT2

Corollary
Let G be a planar subcubic graph with girth g:

@ If g > 30, then \.(G) < 6 (can be improved to g > 16).

Q If g > 11, then .(G) < 7.

Q If g>9, then \.(G) <
> 7, then x4(G) <
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Discharging methods

Introduced by Wernicke in 1904.
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Just a counting argument...
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Proof outline (Theorem 1.1)

Suppose there exists a smallest (edges+vertices) counterexample
H with mad(H) < £ which is not strong edge 6-colorable.
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Proof outline (Theorem 1.1)

Suppose there exists a smallest (edges+vertices) counterexample
H with mad(H) < £ which is not strong edge 6-colorable.
1. Structural properties of H.
2. Discharging procedure.
2.1 A weight function w with w(x) = d(x) — £,x € V(H), such that

Z w(x) <0.

xeV(H)

Hervé Hocquard Strong edge-colouring of graphs 26/40



Proof outline (Theorem 1.1)

Suppose there exists a smallest (edges+vertices) counterexample
H with mad(H) < £ which is not strong edge 6-colorable.
1. Structural properties of H.
2. Discharging procedure.
2.1 A weight function w with w(x) = d(x) — £,x € V(H), such that

Z w(x) < 0.
xeV(H)
2.2 Discharging rules.

Hervé Hocquard Strong edge-colouring of graphs 26/40



Proof outline (Theorem 1.1)

Suppose there exists a smallest (edges+vertices) counterexample
H with mad(H) < £ which is not strong edge 6-colorable.
1. Structural properties of H.
2. Discharging procedure.

2.1 A weight function w with w(x) = d(x) — £,x € V(H), such that

Z w(x) < 0.
xeV(H)
2.2 Discharging rules.

2.3 A new weight function w* such that Z w(x) = Z w*(x).
xeV(H) xeV(H)
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Proof outline (Theorem 1.1)

Suppose there exists a smallest (edges+vertices) counterexample
H with mad(H) < £ which is not strong edge 6-colorable.
1. Structural properties of H.
2. Discharging procedure.
2.1 A weight function w with w(x) = d(x) — £,x € V(H), such that
Z w(x) < 0.
xeV(H)
2.2 Discharging rules.
2.3 A new weight function w* such that Z w(x) = Z w*(x).
xeV(H) xeV(H)
3. By using the hypothesis on mad parameter and the structural
properties of H, we obtain a contradiction:

0< Z w(x) = Z w(x) <0

x€V/(H) x€V/(H)
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Proof outline (Theorem 1.1)

Suppose there exists a smallest (edges+vertices) counterexample
H with mad(H) < £ which is not strong edge 6-colorable.
1. Structural properties of H.
2. Discharging procedure.
2.1 A weight function w with w(x) = d(x) — £,x € V(H), such that
Z w(x) < 0.
xeV(H)
2.2 Discharging rules.
2.3 A new weight function w* such that Z w(x) = Z w*(x).
xeV(H) xeV(H)
3. By using the hypothesis on mad parameter and the structural
properties of H, we obtain a contradiction:

0< Z w(x) = Z w(x) <0

x€V/(H) x€V/(H)

Therefore, the counterexample cannot exist.
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Reducible configurations (Theorem 1.1)

Let H be a smallest counterexample. H does not contain:

C1l C2 3
oO—o —0 —0—0 @—I—I—I—@
C4 C5
c6
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Proof of configuration (C5)
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First case : c(xu) = c(wy)
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First case : c(xu) = c(wy)

3 choices 5 choices 3 choices

u %1 w1
X1 [ ] ® L] 1
: : :
1 1 1
1 1 1
€ ------ & ------
% u v w y

3 choices 3 choices
X2
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First case : c(xu) = c(wy)

2 choices 1 choice

uy Vi w1

X1 [ ] ® At
: :
1 1
1 1
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First case : c(xu) = c(wy)

X1

X2

Hervé Hocquard

1 Vi w1
°
®
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Second case : c(xu) # c(wy)
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Second case : c(xu) # c(wy)

3 choices 4 choices 3 choices

u %1 w1
X1 L] ® L] Y1
: : :
1 1 1
5 1 1 1
€ ------ & ------
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2 choices 2 choices
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Second case : c(xu) # c(wy)
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Second case : c(xu) # c(wy)

2 choices 2 choices
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Second case : c(xu) # c(wy)
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3 choices
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Second case : c(xu) # c(wy)

X1

X2

up Vi wy
°
6
5
°
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Discharging procedure

15
Recall that mad(H) < !

We define a weight function w : V(H) — R by
w(x) = d(x) — L.

7
(0= o= w00 =
d(u) =1 d(v) =2 d(w) =3
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Discharging procedure

15
Recall that mad(H) < !

We define a weight function w : V(H) — R by
w(x) =d(x) — 175
wu) = -7 w(v) =—7 ww)=3

d(u) =1 d(v) =2 d(w) =3

© Every 3-vertex not adjacent to a l-vertex gives % to each of
its adjacent 3-vertices having a l-vertex in its neighbourhood
and % to each of its adjacent 2-vertices.

@ By (C3) every 3-vertex has at most one 1-vertex in its
neighbourhood and it gives to this vertex %.
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At the end of the discharging procedure, we have:

© The total sum of weights did not change.
@ For every x € V(H), w*(x) > 0.

Hence, 0 < Z w*(x) = Z w(x) < 0

x € V(H) x € V(H)

Contradiction!
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A graph G with mad(G) = £ and x,(G) > 6.
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A graph G with mad(G) = £ and x,(G) > 6.

If mad(G) < L2 then y.(G) < 6.
7 S
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A graph G with mad(G) = £ and x,(G) > 6.

If mad(G) < ¥ then x4(G) < 6.
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Hervé Hocquard Strong edge-colouring of graphs 31/40



Tightness?

A graph G with mad(G) = 3 and x4(G) > 7.
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A graph G with mad(G) = 3 and x4(G) > 7.
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Tightness?

A graph G with mad(G) = 2 and x4(G) > 9.
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Tightness?

A graph G with mad(G) = 2 and x4(G) > 9.

If mad(G) < 32 then x4(G) < 9.
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Tightness?

A graph G with mad(G) = 2 and x4(G) > 9.

If mad(G) < 2 then x4(G) < 9.
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To summarize

Let f(n) = inf{mad(G) | x4(G) > n}.

f(6) =%
f(7)=3
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Perspectives
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@ The conjecture of Faudree et al....
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@ The conjecture of Faudree et al....

o Does there exist a subcubic graph G with mad(G) < 2 and
having x%(G) =97
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@ The conjecture of Faudree et al....

o Does there exist a subcubic graph G with mad(G) < 2 and
having x%(G) =97

@ Could we reach the bound proposed by the conjecture of
Erdés and Nesetril for graphs with maximum degree 47
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@ The conjecture of Faudree et al....

o Does there exist a subcubic graph G with mad(G) < 2 and
having x%(G) =97

@ Could we reach the bound proposed by the conjecture of
Erdés and Nesetril for graphs with maximum degree 47

@ Bigger challenge: the conjecture of Erdés and Nesetril.
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Thank you for your attention

Dziekuje za uwage




One of the motivations...

...besides studying mathematical properties of graph theory is the
channel assignment in wireless radio networks.
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One of the motivations...

...besides studying mathematical properties of graph theory is the
channel assignment in wireless radio networks.

Conflict at node v Conflict at node w
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Decision Problem

STRONG EDGE k-COLOURING (k-SEC)

INSTANCE: A graph G.
QUESTION: Does G have a strong edge-colouring with k colours?
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Decision Problem

STRONG EDGE k-COLOURING (k-SEC)

INSTANCE: A graph G.
QUESTION: Does G have a strong edge-colouring with k colours?

@ Polynomial for chordal graphs (Cameron, 1989)

@ Polynomial for graphs with bounded treewidth (Salavatipour,
2004)

@ NP-complete for bipartite graphs with girth g (for every fixed
g) and Yk > 4 (Mahdian, 2002)

@ NP-complete for bipartite 2-degenerate graphs of degree 3
and girth 6 when k =5 (Erickson et al., 2002)

@ And what about planar graphs?
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4-SEC

4-SEC is NP-complete even when restricted to planar subcubic
bipartite graphs with arbitrarily large girth.
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4-SEC is NP-complete even when restricted to planar subcubic
bipartite graphs with arbitrarily large girth.

3-COLOURING

INSTANCE: A graph G.

QUESTION: Does G admit a proper vertex-colouring with 3
colours?

3-COLOURING is NP-complete even when restricted to planar
graphs with degree 4.

3-COLOURING <p 4-SEC.
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What else?

By reducing 3-COLOURING of planar graphs of maximum degree
4 we also proved:

@ 5-SEC is NP-complete for planar bipartite graphs of maximum
degree 3 and girth g = 8.

@ 6-SEC is NP-complete for planar graphs of maximum degree
3, with girth g = 4.
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