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Abstract

A strong edge colouring of a graph G is a proper edge colouring such that every path of length
3 uses three colours. In this paper, we prove that every subcubic graph with maximum average
degree strictly less than 15

7 (resp. 27
11 ,

13
5 ,

36
13 ) can be strong edge coloured with six (resp. seven,

eight, nine) colours.
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1. Introduction

A proper edge colouring of a graph G = (V,E) is an assignment of colours to the edges of the
graph such that two adjacent edges do not use the same colour. A strong edge colouring of a graph
G is a proper edge colouring of G, such that any edge of a path of length (number of edges) 3 uses
three di�erent colours. We denote by χ′s(G) the strong chromatic index of G which is the smallest
integer k such that G can be strong edge coloured with k colours.

Strong edge colouring can be used to represent the con�ict-free channel assignment in radio
networks. The goal is to assign frequencies to every pair of transceivers communicating between
each other. In a model represented by a graph, one can represent the transceivers by the vertex set
and the channels by the edge set. Frequencies must be assigned to edges according to interference
constraints. The �rst type of interference to avoid occurs when two transceivers (vertices) transmit
information to the same transceiver using the same channel. In other words the two incident edges
have the same assigned frequencies. The second type of interference occurs when in a path of
length three uvwx, u transmits to v and w transmits to x. In this case, since w is adjacent also
to v, there is an interference in v: it will receive the message from w and u on the same channel.
In case of strong edge colouring, frequencies are colours assigned to edges. For a brief survey, we
refer the reader to [3, 4]. The other formulation of the problem can be done in terms of induced
matchings: a strong edge colouring of a graph is equivalent to a partition of the set of edges into
a collection of induced matchings.

Let ∆ denote the maximum degree of a graph. It was conjectured by Faudree et al. [1], that
every bipartite graph has a strong edge colouring with ∆2 colours. In 1985, Erd®s and Ne²et°il
during a seminar in Prague, gave a construction of graphs having strong chromatic index equal
to 5

4∆2 when ∆ is even and 1
4 (5∆2 − 2∆ + 1) when ∆ is odd. They conjectured that the strong

chromatic index is bounded by this values and it was veri�ed for ∆ ≤ 3 (see Figure 1).

Figure 1: A graph G proposed by Erd®s and Ne²et°il with χ′
s(G) = 10.
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In [2] it was conjectured that for planar graphs with ∆ ≤ 3, χ′s(G) ≤ 9, which if true, is the
best possible bound (see Figure 2).

Figure 2: The prism P with χ′
s(P ) = 9

Letmad(G) be the maximum average degree of the graphG i.e. mad(G) = max
{

2|E(H)|
|V (H)| , H ⊆ G

}
,

where V (H) and E(H) is the set of vertices and edges of H, respectively. In this note, we prove
the following results:

Theorem 1. Let G be a subcubic graph:

(i) If mad(G) < 15
7 , then χ′s(G) ≤ 6.

(ii) If mad(G) < 27
11 , then χ

′
s(G) ≤ 7.

(iii) If mad(G) < 13
5 , then χ′s(G) ≤ 8.

(iv) If mad(G) < 36
13 , then χ

′
s(G) ≤ 9.

The following lemma that belongs to folklore gives the relationship between the maximum
average degree and the girth of a planar graph. Recall that the girth of a graph G is the length of
a shortest cycle in G.

Lemma 2. Let G be a planar graph with girth at least g. Then, mad(G) < 2g
g−2 .

Proof
Let G be a connected planar graph with girth g. Assume g is �nite, otherwise, G is a tree and the
result holds. Let H be a subgraph of G. Note that H is planar and has girth at least g. Hence,
g|F (H)| ≤ 2|E(H)|, where F (H) is the set of faces of H. According to Euler's Formula, we obtain:

2g − g|V (H)|+ g|E(H)| = g|F (H)| ≤ 2|E(H)|

Hence,
2g + (g − 2)|E(H)| ≤ g|V (H)|

2|E(H)|(2g + (g − 2)|E(H)|) ≤ 2|E(H)|g|V (H)|

2|E(H)|
|V (H)|

≤ 2g|E(H)|
2g + (g − 2)|E(H)|

<
2g
g − 2

for every subgraph H of G. �
According to Lemma 2 and Theorem 1, one can derive the following result:

Corollary 3. Let G be a planar subcubic graph with girth g:

1. If g ≥ 30, then χ′s(G) ≤ 6.

2. If g ≥ 11, then χ′s(G) ≤ 7.

3. If g ≥ 9, then χ′s(G) ≤ 8.

4. If g ≥ 8, then χ′s(G) ≤ 9.

Part 1 of this result will be improved later (see Lemma 4).
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Notations. Let G be a graph. Let d(v) denote the degree of a vertex v in G. A vertex of degree
k (resp. at most k) is called a k-vertex (resp. k−-vertex). A good 2-vertex is a vertex of degree 2
being adjacent to two 3-vertices, otherwise it is a bad 2-vertex. A 3k-vertex is a 3-vertex adjacent
to exactly k 2-vertices. Two edges are at distance 1 if they share one of their ends and they are
at distance 2 if they are not at distance 1 and there exists an edge adjacent to both of them.
We de�ne N2(uv) as the set of edges at distance at most 2 from the edge uv and we denote by
SC(N2(uv)) the set of colours used by edges in N2(uv). N(v) is the neighbourhood of the vertex
v i.e. the set of its adjacent vertices. Finally, we use J1;nK to denote the set of integers {1, 2, . . . , n}.

It is easy to see that trees having two adjacent 3-vertices need at least �ve colours to be strong
edge colourable. On the other hand, trees are exactly the class of graphs having the maximum
average degree strictly smaller than 2. The graph G of Figure 3 is exactly six strong edge colourable
and mad(G) = 2.

Figure 3: A graph G with mad(G) = 2 and χ′
s(G) = 6

In Sections 2-5, we give the proof of Theorem 1 by using the method of reducible con�gurations
and the discharging technique. The proof is done by minimum counterexample. In each of the
cases, for the minimum counterexample H, we prove the non-existence of some con�gurations i.e.
a set S of subgraphs which cannot appear in H. We de�ne the weight function ω : V (H) → R
with ω(x) = d(x) −m (m ∈ R, such that mad(H) < m). It follows from the hypothesis on the
maximum average degree that the total sum of weights is strictly negative. In the next step, we
de�ne discharging rules to redistribute weights and once the discharging is �nished, a new weight
function ω∗ will be produced. During the discharging process the total sum of weights is kept �xed.
Nevertheless, by the non-existence of S, we can show that ω∗(x) ≥ 0 for all x ∈ V (H). This leads
to the following contradiction:

0 ≤
∑

x∈V (H)

ω∗(x) =
∑

x∈V (H)

ω(x) < 0

and hence, this counterexample cannot exist.

2. Proof of (i) of Theorem 1

Let H be a counterexample to part (i) of Theorem 1 minimizing |E(H)| + |V (H)|: H is not
strong edge colourable with six colours, mad(H) < 15

7 and for any edge e, χ′s(H − e) ≤ 6. Recall
that ω(x) = d(x) − 15

7 . One can assume that H is connected; otherwise, by minimality of H, we
can color independently each connected component. A 3-vertex adjacent to a 1-vertex is a light
3-vertex. Otherwise it is a heavy 3-vertex.

Claim 1. The minimal counterexample H to part (i) Theorem 1 satis�es the following properties:

1. H does not contain a 1-vertex adjacent to a 2-vertex.

2. H does not contain a 3-vertex adjacent to a 1-vertex and a 2-vertex.
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3. H does not contain a 3-vertex adjacent to two 1-vertices.

4. H does not contain a path uvw where u, v and w are 2-vertices.

5. H does not contain a path uvw where u, v and w are three light 3-vertices.

Proof
We denote by L the set of colours L = J1; 6K.

1. Suppose H contains a 1-vertex u adjacent to a 2-vertex v. Let us consider H ′ = H \ {uv},
which by minimality of H is strong edge colourable with six colours. By counting the number
of available colours to extend a colouring of H ′ to H, it is easy to see that we have at least
three colours left for uv.

2-3. Trivial by a counting argument.

4. Suppose H contains a path uvw where u, v and w are 2-vertices. Let us consider H ′ =
H \ {uv, vw}, which by minimality of H is strong edge colourable with six colours. By
counting the number of available colours to extend a colouring of H ′ to H, it is easy to see
that we have at least two colours left for uv and at least one colour left for vw (after the
colouring of uv).

5. Suppose H contains a path xuvwy where u, v and w are three light 3-vertices. Call u1 (resp.
v1, w1) the neighbour of u (resp. v, w) of degree 1. Assume N(x) = {u, x1, x2}, N(u) =
{x, u1, v}, N(v) = {u, v1, w}, N(w) = {v, w1, y}, N(y) = {w, y1, y2} (see Figure 4). Let
us consider H ′ = H \ {uu1, uv, vv1, vw,ww1}. By minimality of H, there exists a strong
edge colouring c of H ′, using six colours. We will extend this colouring to H. Suppose �rst,
c(ux) = c(wy). We colour uv, vw, uu1, ww1 and vv1 in this order, which is possible by
counting for each edge the number of available colours to extend the colouring. Suppose
now, c(ux) 6= c(wy). W.l.o.g. we can assume that c(ux) = 5 and c(wy) = 6. First, we try to
colour the edge uu1 with the colour 6. If it is possible, then we assign the colour 6 to uu1

and we colour uv, vw, ww1 and vv1 in this order, which is possible by counting the number
of available colours to extend the colouring. If we cannot colour uu1 with the colour 6, we
are sure that the colour 6 appears in the neighbourhood of x. W.l.o.g. we can assume that
c(xx1) = 6. By applying the same reasoning on ww1, we can assume w.l.o.g. that c(yy1) = 5.
We assign now the same colour α to uu1 and ww1, with α ∈ L\{c(xx2), 5, 6, c(yy2)}. Finally,
we colour uv, vw and vv1 in this order, which is possible by counting the number of available
colours to extend the colouring. In each case the extension of c to H is possible which is a
contradiction.

x1

x2

x u v w

u1 v1 w1

y

y1

y2

Figure 4: The con�guration of Claim 1.5

�
We carry out the discharging procedure in two steps:
Step 1. Every heavy 3-vertex gives 2

7 to each adjacent light 3-vertex and 1
7 to each adjacent

2-vertex.
When Step 1 is �nished, a new weight function ω′ is produced. We proceed then with Step 2:
Step 2. Every light 3-vertex gives 8

7 to its unique adjacent 1-vertex.

Let v ∈ V (H) be a k-vertex. Note that k ≥ 1.

4



Case k = 1. Observe that ω(v) = − 8
7 . By Claims 1.1 and 1.2, v is adjacent to a 3-vertex u

which is a light 3-vertex by de�nition. Hence, v receives 8
7 from u during Step 2. It follows

that ω∗(v) = − 8
7 + 8

7 = 0.

Case k = 2. Observe that ω(v) = − 1
7 . By Claims 1.1, 1.2 and 1.4, v is adjacent to at least

one heavy 3-vertex. Hence, by Step 1, ω∗(v) ≥ − 1
7 + 1

7 = 0.

Case k = 3. Observe that ω(v) = 6
7 . Suppose v is a heavy 3-vertex. We denote by nb(v)

the number of light 3-vertices in the neighbourhood of v. Note that 0 ≤ nb(v) ≤ 3. Hence,
by Step 1, ω∗(v) ≥ 6

7 − nb(v)× 2
7 − (3− nb(v))× 1

7 ≥ 0, for all 0 ≤ nb(v) ≤ 3. Suppose now
that v is a light 3-vertex. By Claim 1.3, v is adjacent to a unique 1-vertex and by Claim 1.2,
v is not adjacent to a 2-vertex. Finally, by Claim 1.5, v is adjacent to at least one heavy
3-vertex. Hence, by Steps 1 and 2, ω∗(v) ≥ 6

7 + 2
7 −

8
7 = 0.

This completes the proof. An example of graph G with mad(G) = 7
3 which is not strong edge

colourable with six colours, is given in Figure 5.

Figure 5: A graph G with mad(G) = 7
3
and χ′

s(G) > 6

By part 1 of Corollary 3, it follows that every planar subcubic graph with girth at least 30 is
strong edge colourable with at most six colours. The following lemma strengthens this result:

Lemma 4. If G is a planar subcubic graph with girth at least 16, then χ′s(G) ≤ 6.

Proof
It is a folklore fact that every planar graph with girth at least 5d+ 1 and minimum degree at least
2, contains a path with d consecutive 2-vertices.

Suppose H is a planar subcubic graph with girth 16 which is not strong edge colourable with six
colours and having the minimum number of edges. Consider H ′ the graph obtained by removing
every 1-vertex from H. By claims 1.1 and 1.3, H ′ has minimum degree 2. Since H ′ is planar with
girth 16, it contains a path with at least three consecutives 2-vertices. Let uvw be such a path.
By Claims 1.2 and 1.5, neither of u, v, w is a light 3-vertex in H. By Claim 1.4, in H, u, v, w are
not all 2-vertices. In both cases we obtain a contradiction.

�

3. Proof of (ii) of Theorem 1

Let H be a counterexample to part (ii) of Theorem 1 minimizing |E(H)| + |V (H)|: H is not
strong edge colourable with seven colours, mad(H) < 27

11 and for any edge e, χ′s(H−e) ≤ 7. Recall
that ω(x) = d(x)− 27

11 .

Claim 2. The minimal counterexample H to part (ii) of Theorem 1 satis�es the following proper-
ties:

1. H does not contain 1−-vertices.

2. H does not contain a path uvw where u, v and w are 2-vertices.

3. H does not contain a 3-vertex adjacent to two 2-vertices one of them being bad.
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4. H does not contain two 33-vertices having a 2-vertex as a common neighbour.

Proof
We denote by L the set of colours L = J1; 7K.

1-2. Trivial.

3. Suppose H contains a 32-vertex u having a bad 2-vertex v as a neighbour. Call w, the bad
2-vertex adjacent to v. Let us consider H ′ = H \ {uv, vw}, which by minimality of H is
strong edge colourable with seven colours. By counting the number of available colours to
extend a colouring of H ′ to H, it is easy to see that we have at least one colour left for uv
and at least one colour left for vw (after the colouring of uv).

4. Suppose H contains two 33-vertices u and w having a 2-vertex v as a common neighbour.
N(u) = {u1, u2, v}, N(w) = {w1, w2, v}, N(u1) = {u, x}, N(u2) = {u, y}, N(x) =
{u1, x1, x2}, N(y) = {u2, y1, y2}, N(w1) = {w, t}, N(w2) = {w, z}, N(t) = {w1, t1, t2}, N(z) =
{w2, z1, z2} (see Figure 6). Let us consider H ′ = H \ {uv, vw}. Since H is a minimal
counterexample, χ′s(H ′) ≤ 7 and there exists a strong edge colouring of H ′, c using seven
colours. We will extend this colouring to H. First, we want to colour vw. Observe that
|L \ SC(N2(vw))| ≥ 1, so we pick the colour left and we colour vw. Next, if we can not
colour uv, then |L \ SC(N2(uv))| = 0 and without loss of generality, we can assume that
c(vw) = 1, c(ww1) = 2, c(ww2) = 3, c(uu1) = 4, c(uu2) = 5, c(u1x) = 6, c(u2y) = 7.
In this case we try to recolour vw. If we cannot, then without loss of generality c(w1t) =
6, c(w2z) = 7, so we try to recolour ww1. If we cannot, then using the same argument
c(tt1) = 5, c(tt2) = 4, and we try to recolour ww2. We continue to try to recolour in the
same manner the remaining edges in the following order: ww2, uu1, uu2. If in one of the
steps, the recolouring is possible, then we will have a colour free to use for uv. If it is not
possible, then by the end of the procedure, we obtain without loss of generality, the following
colours: c(zz1) = 4, c(zz2) = 5, c(xx1) = 2, c(xx2) = 3, c(yy1) = 3, c(yy2) = 2. Next,
having this knowledge about the colours of the edges, we can recolour some of the edges:
c(uu2) = c(ww1) = 1, c(vw) = 5, c(ww2) = 2; and still have no "con�icts" between the
colours. Hence, we have one colour left for uv, which is the colour 3. The extension of c to
H is possible which is a contradiction.

xx1

x2

y

y1

y2

u1

u2

u v w

w1

w2

t t1

t2

z

z1

z2

Figure 6: The con�guration of Claim 2.4.

�
The discharging rules are de�ned as follows :

(R1) Every 33-vertex gives 2
11 to each adjacent good 2-vertex.

(R2) Every 31-vertex and every 32-vertex gives 3
11 to each adjacent good 2-vertex.

(R3) Every 3-vertex gives 5
11 to its adjacent bad 2-vertex.

Let v ∈ V (H) be a k-vertex. By Claim 2.1, k ≥ 2.

Case k = 2. Observe that ω(v) = − 5
11 . Suppose v is a good 2-vertex. By Claim 2.4, v is

adjacent to at most one 33-vertex. Hence, by (R1) and (R2), ω∗(v) ≥ − 5
11 +1× 2

11 +1× 3
11 = 0.

Suppose v is bad. By Claim 2.2, v is adjacent to one 3-vertex u. Hence, by (R3), ω∗(v) =
− 5

11 + 1× 5
11 = 0.
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Case k = 3. Observe that ω(v) = 6
11 . By Claims 2.3 and 2.4, we have the following cases

for v:

• v is adjacent to three good 2-vertices and by (R1), ω∗(v) = 6
11 − 3× 2

11 = 0.

• v is adjacent to at most two good 2-vertices. Hence, by (R2), ω∗(v) ≥ 6
11 − 2× 3

11 = 0.

• v is adjacent to at most a bad 2-vertex and by (R3), ω∗(v) ≥ 6
11 − 1× 5

11 ≥ 0.

This completes the proof. An example of graph G with mad(G) = 5
2 which is not strong edge

colourable with seven colours, is given in Figure 7.

Figure 7: A graph G with mad(G) = 5
2
and χ′

s(G) > 7

4. Proof of (iii) of Theorem 1

Let H be a counterexample to part (iii) of Theorem 1 minimizing |E(H)| + |V (H)|: H is not
strong edge colourable with eight colours, mad(H) < 13

5 and for any edge e, χ′s(H − e) ≤ 8. Recall
that ω(x) = d(x)− 13

5 .

Claim 3. The minimal counterexample H to part (iii) of Theorem 1 satis�es the following prop-
erties:

1. H does not contain 1−-vertices.

2. H does not contain two adjacent 2-vertices.

3. H does not contain a 3-vertex adjacent to three 2-vertices.

4. H does not contain a 2-vertex adjacent to two 32-vertices.

Proof
We denote by L the set of colours L = J1; 8K.

1. Trivial.

2. SupposeH contains a 2-vertex u adjacent to a 2-vertex v. Let t and w be the other neighbours
of u and v respectively. By minimality of H, the graph H ′ = H \ {tu, uv, vw} is strong edge
colourable with eight colours. Consequently, there exists a strong edge colouring c of H ′

with eight colours. We show that we can extend this colouring to H. One can observe that
|L \ SC(N2(tu))| ≥ 2, |L \ SC(N2(uv))| ≥ 4 and |L \ SC(N2(vw))| ≥ 2. Obviously, we can
extend the colouring c to H, which is a contradiction.

3. Suppose H contains a 3-vertex v adjacent to three 2-vertices u, w and t. By minimality of
H, there exists a strong edge colouring c of H ′ = H \ {vt, vu, vw} with eight colours. We
show that we can extend this colouring to H. One can observe that |L \ SC(N2(vt))| ≥ 3,
|L \ SC(N2(vu))| ≥ 3 and |L \ SC(N2(vw))| ≥ 3. Obviously, we can extend the colouring c
to H, which is a contradiction.
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4. Suppose H contains two 32-vertices having a 2-vertex as a common neighbour. Hence, there
exists a path of �ve vertices in H, uvwxy such that u, w and y are 2-vertices and v, x are 32-
vertices. Let us consider H ′ = H \ {uv, vw,wx, xy}. Since H is a minimum counterexample,
χ′s(H ′) ≤ 8 and there exists a strong edge colouring c of H ′, using eight colours. We extend
this colouring to H. Let us �rst colour the edges uv and xy. Each of these edges has two
colours left to use: c1uv, c

2
uv for uv and c1xy, c

2
xy for xy. Suppose, there exists at least one

colour in common: c1uv = c1xy. We choose these colours to colour uv and xy. After the
colouring of these edges, vw and wx have each at least two colours left and we can colour
them easily. Suppose now that c1uv, c

2
uv, c

1
xy and c2xy are all di�erent. Let us colour uv with

c1uv and xy with c1xy. Since vw has three colours left to use at the beginning of the process,
in the worst case there exists one colour non used, cvw. So, we colour vw with this colour.
At the last step we need to colour wx. If it is not possible, then all three colours left to use
for this edge at the beginning of the process of extension of c to H, were used by uv, vw and
xy. In this case if c2uv 6= cvw, then we change the colour of uv to c2uv. Otherwise we change
the colour of xy to c2xy (which is possible since c1uv, c

2
uv, c

1
xy and c2xy are all di�erent). Hence,

we have a colour left for wx, to complete the colouring of H.

�
The discharging rules are de�ned as follows :

(R1) Every 31-vertex gives 2
5 to its unique adjacent 2-vertex.

(R2) Every 32-vertex gives 1
5 to each adjacent 2-vertex.

Let v ∈ V (H) be a k-vertex. By Claim 3.1, k ≥ 2.

Case k = 2. Observe that ω(v) = − 3
5 . By Claims 3.2 and 3.4, v is adjacent to at least one

31-vertex. By Claims 3.2 and 3.3, the second neighbour of v is a 32-vertex or a 31-vertex.
Hence, by (R1) and (R2), ω∗(v) ≥ − 3

5 + 1× 2
5 + 1× 1

5 = 0.

Case k = 3. Observe that ω(v) = 2
5 . By Claim 3.3, v is adjacent to at most two 2-vertices.

If it is a 31-vertex, then by (R1), ω∗(v) ≥ 2
5 − 1 × 2

5 = 0. If it is a 32-vertex, then by (R2),
ω∗(v) ≥ 2

5 − 2× 1
5 = 0.

This completes the proof.

5. Proof of (iv) of Theorem 1

Let H be a counterexample to part (iv) of Theorem 1 minimizing |E(H)| + |V (H)|: H is not
strong edge colourable with nine colours, mad(H) < 36

13 and for any edge e, χ′s(H − e) ≤ 9. Recall
that ω(x) = d(x)− 36

13 .

Claim 4. The minimal counterexample H to part (iv) of Theorem 1 satis�es the following prop-
erties:

1. H does not contain 1−-vertices.

2. H does not contain two adjacent 2-vertices.

3. H does not contain a 3-vertex adjacent to two 2-vertices.

4. H does not contain two adjacent 31-vertices.

Proof
We denote by L the set of colours L = J1; 9K.

1. Trivial.

2. Claim 4.2 can be easily checked by using the proof of Claim 3.2.
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3. SupposeH contains a 3-vertex v adjacent to two 2-vertices u and w. Call t the third neighbour
of v. By minimality of H, there exists a strong edge colouring c of H ′ = H \ {vt, vu, vw}
with nine colours. We show that we can extend this colouring to H. One can observe that
|L \ SC(N2(vt))| ≥ 3, |L \ SC(N2(vu))| ≥ 3 and |L \ SC(N2(vw))| ≥ 3. Obviously, we can
extend the colouring c to H, which is a contradiction.

4. Suppose H contains two adjacent 31-vertices. Let u and v be these 31-vertices and x and y
respectively, their adjacent 2-vertices.

If x = y then, let z be the third adjacent vertex of u. By minimality of H, there exists a
strong edge colouring c of H ′ = H \ {zu, ux, xv, vu}. By counting the number of available
colours for each of the edges zu, ux, xv, vu, one cand easily extend c to H.

If x 6= y, let t be the 3-vertex adjacent to x. Consider the path txuvy. By minimality of H,
there exists a strong edge colouring c of H ′ = H \ {tx, xu, uv, vy}. We will extend c to H.
The edges tx and vy have each two colours left to use: c1tx, c

2
tx and c1vy, c

2
vy, respectively. We

distinguish two cases:

4.1 There exists at least one colour in common: c1tx = c1vy. We colour tx and vy with c1tx
(since these edges are at distance 4, they can have the same colour). Then, we have at
least one colour left for uv and we colour this edge with this colour. The edge xu initially
had three colours to choose, hence, it has at least one colour left to use and we choose it.

4.2 All the four colours are di�erent. Let us colour tx and vy with c1tx and c1vy, respectively.
Next we colour the edge uv, having two possible choices for colours to use. If its colouring
is not possible then the two colours left for uv were c1tx and c1vy and in this case we change
the colour of vy to c2vy and we colour uv with c1vy. At the last step we colour the edge xu,
having initially three possible choices for colours to use. If its colouring is not possible,
then these three colours are: c1tx, c

1
vy and c2vy. In this case we change the colour of tx to

c2tx and we colour xu with c1tx. It is possible since all the colours c
1
tx, c

2
tx, c

1
vy and c2vy are

di�erent.

�
We carry out the discharging procedure in two steps:
Step 1. Every 30-vertex at distance two from a 2-vertex gives 1

13 to each adjacent 31-vertex.
When Step 1 is �nished, a new weight function ω′ is produced on 31-vertices, hence, we proceed

with Step 2:
Step 2. Every 3-vertex gives 5

13 to its unique adjacent 2-vertex.

Let v ∈ V (H) be a k-vertex. By Claim 4.1, k ≥ 2.

Case k = 2. Observe that ω(v) = − 10
13 . By Claim 4.2, v is adjacent to two 31-vertices.

Hence, by Step 2, ω∗(v) = − 10
13 + 2× 5

13 = 0.

Case k = 3. Observe that ω(v) = 3
13 . By Claim 4.3 v can be a 31-vertex or a 30-vertex.

Suppose, v is a 31-vertex. By Claim 4.4 and after Step 1, ω′(v) = 3
13 + 2× 1

13 , then, by Step
2, ω∗(v) ≥ 0. Suppose now that v is a 30-vertex. By Step 1, ω∗(v) ≥ 3

13 − 3× 1
13 = 0.

This completes the proof. An example of graph G with mad(G) = 20
7 which is not strong edge

colourable with nine colours, is given in Figure 1.

6. Conclusion

In this paper we studied the bounds of the strong chromatic index of subcubic graphs considering
their maximum average degree. In order to show the tightness of our result, let us consider the
function f(n) = inf{mad(G) | χ′s(G) > n}. Obviously, f(5) = 2, and we proved that for n = 6
(7, 8, 9 resp.):
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45
21 = 15

7 < f(6) ≤ 7
3 = 49

21

54
22 = 27

11 < f(7) ≤ 5
2 = 55

22

252
91 = 36

13 < f(9) ≤ 20
7 = 260

91

We did not �nd a better bound than the one used for f(9) to estimate f(8). This question
seems to be more intriguing, since as we remarked so far, the graph having the maximum average
degree strictly smaller than 20

7 and needing nine colours to be strong edge coloured, apparently
has more than 12 vertices and sixteen edges - an order which is much bigger than the order of the
graphs we found for other values of f .

Speaking about planar graphs, as a corollary, we managed to prove that for a girth g ≥ 8, the
conjecture stated in [2], holds.

References

[1] R.J. Faudree, A. Gyárfas, R.H. Schelp, Zs. Tuza, Induced matchings in bipartite graphs,
Discrete Mathematics 78:83-87, 1989.

[2] R.J. Faudree, A. Gyárfas, R.H. Schelp, Zs. Tuza, The strong chromatic index of graphs, Ars
Combinatoria, 29B:205-211, 1990.

[3] D.B. West, Strong edge-coloring, Open Problems - Graph Theory and Combinatorics, http:
//www.math.uiuc.edu/~west/openp/strongedge.html

[4] M. Mahdian, The strong chromatic index of graphs, M.Sc. Thesis, Department of Computer
Science, University of Toronto, 2000.

10


