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Abstract

A strong edge-colouring of a graph G is a proper edge-colouring such that every path of length 3
uses three different colours. In this paper we improve some previous results on the strong edge-
colouring of subcubic graphs by showing that every subcubic graph with maximum average degree
strictly less than 7

3 (resp. 5
2 ,

8
3 ,

20
7 ) can be strongly edge-coloured with six (resp. seven, eight, nine)

colours. These upper bounds are optimal except the one of 8
3 . Also, we prove that every subcubic

planar graph without 4-cycles and 5-cycles can be strongly edge-coloured with nine colours.
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1. Introduction

In this paper the graphs considered are finite, simple and without loops. A proper edge-colouring
of a graph G = (V,E) is an assignment of colours to the edges of the graph such that two adjacent
edges do not use the same colour. A strong edge-colouring (called also distance 2 edge-colouring)
of a graph G is a proper edge-colouring of G, such that the edges of any path of length 3 use
three different colours. We denote by χ′s(G) the strong chromatic index of G which is the smallest
integer k such that G can be strongly edge-coloured with k colours.

Strong edge-colouring was introduced by Fouquet and Jolivet in 1983 [8, 9]. Strong edge-
colouring can be used to model the conflict-free channel assignment in radio networks [2, 13–15].

Let ∆(G) be the maximum degree of a graph G (we will use ∆ if no ambiguity). The following
conjecture was posed by Erdős and Nešetřil [5, 6] and revised by Faudree et al. [7] and Chung et
al. [3]:

Conjecture 1 (Erdős and Nešetřil [5, 6]). For every graph G,

χ′s(G) ≤

{
5
4∆2, if ∆ is even;
1
4 (5∆2 − 2∆ + 1), if ∆ is odd.

If this conjecture is true, then the given upper bounds for the strong chromatic index are tight
as the authors gave constructions of graphs with strong chromatic index reaching these bounds.
The conjecture was verified for graphs having ∆ ≤ 3 [1, 12]. When ∆ > 3, the only case on which
some progress was made is when ∆ = 4 and the best upper bound stated is χ′s(G) ≤ 22 [4].

An upper bound for the strong chromatic index of subcubic graphs in terms of the maximum
average degree mad(G) = max

{
2|E(H)|
|V (H)| , H ⊆ G

}
, was given in [11]. More precisely, it was proved

the following.

Theorem 1 (Hocquard and Valicov [11]). Let G be a subcubic graph (a graph with ∆ ≤ 3).

1. If mad(G) < 15
7 , then χ

′
s(G) ≤ 6.

2. If mad(G) < 27
11 , then χ

′
s(G) ≤ 7.

3. If mad(G) < 13
5 , then χ

′
s(G) ≤ 8.
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4. If mad(G) < 36
13 , then χ

′
s(G) ≤ 9.

Recall that the girth of a graph is the length of a shortest cycle in this graph. As every planar
graph with girth g satisfies mad(G) < 2g

g−2 , the following corollary, can be easily derived from
Theorem 1:

Corollary 1 (Hocquard and Valicov [11]). Let G be a planar subcubic graph with girth g.

1. If g ≥ 30, then χ′s(G) ≤ 6.

2. If g ≥ 11, then χ′s(G) ≤ 7.

3. If g ≥ 9, then χ′s(G) ≤ 8.

4. If g ≥ 8, then χ′s(G) ≤ 9.

In this paper, we strengthen Theorem 1 by proving that:

Theorem 2. Let G be a subcubic graph.

1. If mad(G) < 7
3 , then χ

′
s(G) ≤ 6.

2. If mad(G) < 5
2 , then χ

′
s(G) ≤ 7.

3. If mad(G) < 8
3 , then χ

′
s(G) ≤ 8.

4. If mad(G) < 20
7 , then χ

′
s(G) ≤ 9.

For cases 1, 2 and 4, the given upper bounds on the maximum average degree are sharp: there
exist graphs with mad(G) = 7

3 (resp. 5
2 ,

20
7 ) which are not strong edge-colourable with six (resp.

7, 9) colours. Examples of such graphs are given in Section 2.2.
For planar graphs it follows:

Corollary 2. Let G be a planar subcubic graph with girth g:

1. If g ≥ 14, then χ′s(G) ≤ 6.

2. If g ≥ 10, then χ′s(G) ≤ 7.

3. If g ≥ 8, then χ′s(G) ≤ 8.

4. If g ≥ 7, then χ′s(G) ≤ 9.

In this paper we are also interested in finding a bound for the strong chromatic index of planar
subcubic graphs. The interest for this class of graphs is motivated by the following conjecture:

Conjecture 2 (Faudree et al. [7]). If G is a planar subcubic graph, then χ′s(G) ≤ 9.

If the conjecture is true, then it is the best possible bound since the prism P has χ′s(P ) = 9
(see Figure 1).

Figure 1: The prism P has χ′s(P ) = 9

An interesting fact about Conjecture 2 is that from the algorithmic aspect the problem of
computing the strong chromatic index was proved to be NP-complete for the class of subcubic
planar graphs with an arbitrarily large girth [10].

For general planar graphs, an upper bound in terms of ∆ was proved by Faudree et al. [7]:
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Theorem 3 (Faudree et al. [7]). If G is a planar graph, then χ′s(G) ≤ 4∆ + 4 for ∆ ≥ 3.

In case of planar graphs we improve the fourth part of Corollary 2 and give a partial answer to
Conjecture 2, by showing the following:

Theorem 4. Let G be a planar subcubic graph containing neither induced 4-cycles, nor induced
5-cycles. Then χ′s(G) ≤ 9.

The paper is organized as follows. In Section 2 we prove Theorem 2 and discuss the optimality of
the upper bounds on the maximum average degree. In Section 3 we provide the proof of Thorem 4.

Let us introduce some notations.

Definitions and notations. Two edges are at distance 1 if they share one of their ends and they
are at distance 2 if they are not at distance 1 and there exists an edge adjacent to both of them.
Let dG(v) (or d(v) if it is clear from the context) denote the degree of a vertex v in a graph G.
A vertex of degree k (resp. at most k) is called a k-vertex (resp. k−-vertex ). A 3k-vertex is a
3-vertex adjacent to exactly k 2-vertices. A bad 2-vertex is a 2-vertex adjacent to another 2-vertex
and a good 2-vertex is a 2-vertex adjacent to two 3-vertices. We define N2[uv] as the set of edges
at distance at most 2 from the edge uv and N2(uv) = N2[uv] − uv. We denote by SC(N2(uv))
(SC(N2[uv]) respectively) the set of colours used by edges in N2(uv) (N2[uv] respectively). Denote
by N(v) the neighbourhood of the vertex v, i.e. the set of its adjacent vertices. Finally, we use
JnK to denote the set of integers {1, 2, . . . , n}.

2. Bounds using maximum average degree

2.1. Proof of Theorem 2
The proof is done by induction. Let H be a minimum counterexample. In each of the cases,

first of all we prove the non-existence of some set of subgraphs S in H. In the next step, we use
the discharging technique in order to obtain a contradiction. For this, we define a weight function
ω : V (H) → R with ω(x) = d(x) − m (where m ∈ R is the value of the upper bound on the
maximum average degree given by Theorem 2). An important observation is that by hypothesis
on the maximum average degree, the total sum of weights must be strictly negative. Next, we
define discharging rules to redistribute weights and once the discharging process is finished, a new
weight function ω∗ will be produced. During the discharging process the total sum of weights is
kept fixed. Nevertheless, by the non-existence of S, it will follow that ω∗(x) ≥ 0 for all x ∈ V (H).
This will lead to the following contradiction:

0 ≤
∑

x∈V (H)

ω∗(x) =
∑

x∈V (H)

ω(x) < 0

Therefore, such a counterexample cannot exist.

2.1.1. First part
Let H be a counterexample to Theorem 2.1 minimizing |E(H)| + |V (H)|: H is not strong

edge-colourable with six colours, mad(H) < 7
3 and for any edge e, χ′s(H − e) ≤ 6. One can assume

that H is connected; otherwise, by minimality of H, we can colour each connected component
independently. In this subsection, a 3-vertex adjacent to a 1-vertex is a light 3-vertex. Otherwise
it is a heavy 3-vertex.

In order to proof our result we need the following claim proved in [11]:

Claim 1. (Hocquard and Valicov [11]) The minimal counterexample H to Theorem 2.1 satisfies
the following properties:

1. H does not contain a 1-vertex adjacent to a 2-vertex.

2. H does not contain a 3-vertex adjacent to a 1-vertex and a 2-vertex.

3. H does not contain a 3-vertex adjacent to two 1-vertices.

3



4. H does not contain a path uvw where u, v and w are 2-vertices.

5. H does not contain a path uvw where u, v and w are three light 3-vertices.

Claim 2. The minimal counterexample H to Theorem 2.1 satisfies the following properties:

1. H does not contain a triangle xyz, where x is a light 3-vertex.

2. H does not contain a path stuvw where s, t, v and w are four light 3-vertices, u is a 3-vertex
adjacent to a light 3-vertex x.

Proof
Suppose H contains a triangle xyz, where x is a light 3-vertex and let x1 be the 1-vertex neighbour
of x. By minimality of H, the graph H − xx1 can be strongly edge-coloured with at most six
colours. Since |N2(xx1)| ≤ 5, every colouring of H − xx1 using the minimum number of colours
can be extended to H.

We prove the second item.
Suppose H contains a path stuvw where s, t, v and w are four light 3-vertices, u is a 3-vertex

adjacent to a light 3-vertex x distinct from s, t, v, w. Call s1 (resp. t1, v1, w1, x1) the neighbour
of s (resp. t, v, w, x) of degree 1. Let r (resp. y, z) be the third neighbour of s (resp. x, w). Also,
for i = 1, 2, let ri (resp. yi, zi) be the neighbours of r (resp. y, z), other than s (resp. x, w). By
Claims 1.2 and 1.3, r, y and z are 3-vertices. By Claims 1.5 and 2.1, we can assume that Figure 2
illustrates the given configuration (with r, y, z possibly not distinct).

Let us consider H ′ = H \ {ss1, tt1, vv1, ww1, xx1, st, tu, uv, vw, ux}. By minimality of H, there
exists a strong edge-colouring φ of H ′, using six colours. We show how to extend this colouring to
H.

r

r1

r2
s

s1

t

t1

u v

v1

w

w1

z

z1

z2

x x1

y

y1 y2

Figure 2: The configuration of Claim 2.2

Without loss of generality we can suppose that φ(xy) = 1, φ(yy1) = 2 and φ(yy2) = 3. First,
we colour edge ux and we distinguish two cases:

1. Suppose that rs is not coloured in {1, 2, 3}, say φ(rs) = 4. Colour uv with a colour in
{φ(yy1), φ(yy2)} that does not appear on wz. Finally, we consider the remaining edges in
the following order: vw, ww1, vv1, tu, st, ss1, tt1 and xx1. At each step, there exists an
available colour for the corresponding edge. Similarly, we get the result if wz is not coloured
in {1, 2, 3}.

2. Suppose now that φ(rs), φ(wz) ∈ {1, 2, 3}. Then it is easy to observe that there exists a
colour, say 4, such that ux and ss1, can be coloured with 4. We set φ(ux) = φ(ss1) = 4.

Next, we distinguish the following cases for φ(rs) and φ(wz):
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• Suppose φ(rs) ∈ {φ(yy1), φ(yy2)} = {2, 3} and φ(wz) 6= φ(rs). Without loss of general-
ity we can suppose that φ(rs) = φ(yy1) = 2. Then we assign φ(uv) = 2. We colour the
remaining edges in the following order: vw, ww1, vv1, tu, st, tt1 and xx1. Note that at
each step, there exists a colour left for the corresponding edge.

• Suppose φ(rs) ∈ {φ(yy1), φ(yy2)} = {2, 3} and φ(wz) = φ(rs). Without loss of general-
ity we can suppose that φ(wz) = φ(rs) = 2 and we assign φ(uv) = 3.
Suppose we can assign φ(ww1) = 4. Next, we colour first st and then tu (note that
at each step there is at least one colour left). If there is a colour left for vw, then the
colouring of H can be finished easily as edges tt1, vv1 and xx1 are pairwise at distance
3 and for each of these edges there would be a colour left. Therefore, there is no colour
left for vw which implies that {φ(tu), φ(zz1), φ(zz2)} = {1, 5, 6} and since tu cannot
be coloured 1, without loss of generality we can assume φ(tu) = 5, φ(zz1) = 1 and
φ(zz2) = 6. Similarly, by uncolouring st, recolouring tu with 6 and assigning to vw
colour 5, we conclude that {φ(rr1), φ(rr2)} = {1, 5}. But then we do the following
reassignment of colours φ(ss1) = 6, φ(st) = 4, φ(tu) = 5, φ(ux) = 6, φ(vw) = 4,
φ(ww1) = 5. Finally there is a colour left for each of the edges tt1, vv1 and xx1, thus
we are done.
Suppose ww1 cannot be coloured with 4. Therefore, without loss of generality φ(zz1) =
4. On the other hand, recall that φ(ss1) = φ(ux) = 4 and by previous paragraphs, it is
not possible to colour ss1, ux and ww1 with the same colour (4, 5 or 6). Hence we must
have {5, 6} ⊆ {φ(zz2), φ(rr1), φ(rr2)}. Obviously one of the colours 5 or 6, say 5, is not
assigned to zz2 and is assigned to either rr1 or rr2 (we can suppose φ(rr1) = 5). Hence
we can assign φ(ww1) = φ(tu) = 5 and we colour the remaining edges in the following
order: vw, vv1, st, tt1, xx1. Observe that at each step there exists at least one colour
left for every edge.

• Suppose {φ(rs), φ(wz)} ∩ {φ(yy1), φ(yy2)} = ∅. Hence, φ(rs) = φ(wz) = 1. We assign
φ(tu) = 2 and then we colour the following edges in the given order: st, vw, uv, vv1,
tt1 and xx1. It remains to colour ww1. If we have a colour left for ww1, then we
are done. Otherwise, {φ(uv), φ(vv1), φ(vw), φ(zz1), φ(zz2)} = {2, 3, 4, 5, 6}. Therefore,
{φ(uv), φ(vv1), φ(vw)} = {3, 5, 6} and {φ(zz1), φ(zz2)} = {2, 4}. But then we permute
the colours of tu and uv and we obtain a free colour for ww1 (which is the same as the
colour of tu), a contradiction.

�
As a corollary from the proof of Claim 2 we derive the following:

Corollary 3. The minimal counterexample H to Theorem 2.1 does not contain a path stuvw where
s, t, v and w are either light 3-vertices or 2-vertices and u is a 3-vertex adjacent to a vertex x
which is either a light 3-vertex x or a 2-vertex.

Let H ′′ be the graph obtained from H by removing all 1-vertices of H, i.e. H ′′ = H \ {v ∈
V (H), dH(v) = 1}. Clearly, H ′′ is connected and mad(H ′′) < 7

3 .
One can derive the following structural properties of H ′′:

Claim 3. Due to Claim 1 and to Corollary 3, H ′′ has the following properties:

1. δ(H ′′) ≥ 2, where δ(H ′′) is the minimum degree of H ′′ (from Claim 1.1 and 1.3).

2. H ′′ does not contain a path uvw where u, v, w are 2-vertices (from Claims 1.2, 1.4 and 1.5).

3. H ′′ does not contain a 33-vertex adjacent to two bad 2-vertices (from Corollary 3).

For each vertex x of H ′′, we assign a charge w(x) equal to d(x)− 7
3 . We apply now a discharging

procedure on H ′′ with the following rules:

(R1) Every 3-vertex gives 1
3 to each adjacent bad 2-vertex.

(R2) Every 3-vertex gives 1
6 to each adjacent good 2-vertex.
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Let v ∈ V (H ′′) be a k-vertex. By Claim 3.1, k ≥ 2. Consider the following cases:

Case k = 2. Observe that ω(v) = − 1
3 . Suppose v is a bad 2-vertex. By Claim 3.2, v is

adjacent to a 3-vertex. Hence, by (R1), ω∗(v) = − 1
3 + 1

3 = 0. If v is a good 2-vertex, then
ω∗(v) = − 1

3 + 2× 1
6 = 0 by (R2).

Case k = 3. Observe that ω(v) = 2
3 . Suppose v is adjacent to a bad 2-vertex. By Claim 3.3, v

is not adjacent to another bad 2-vertex. Hence, by (R1) and (R2), ω∗(v) ≥ 2
3−1× 1

3−2× 1
6 = 0.

If v is not adjacent to a bad 2-vertex, then ω∗(v) ≥ 2
3 − 3× 1

6 > 0 by (R2).

Therefore, H ′′ cannot exist and consequently H does not exist neither. This completes the
proof.

2.1.2. Second part
Let H be a counterexample to Theorem 2.2 minimizing |E(H)| + |V (H)|: H is not strong

edge-colourable with seven colours, mad(H) < 5
2 , and for any edge e, χ′s(H − e) ≤ 7. Recall that

ω(x) = d(x) − 5
2 . One can assume that H is connected; otherwise, by minimality of H, we can

colour each connected component independently. In this subsection a 3-vertex adjacent to a bad
2-vertex is a light 3-vertex. Otherwise it is a heavy 3-vertex.

Claim 4. The minimal counterexample H to Theorem 2.2 satisfies the following properties:

1. H does not contain 1−-vertices.

2. H does not contain a path uvw where u, v and w are 2-vertices.

3. H does not contain a 3-vertex adjacent to two 2-vertices one of them being bad.

4. H does not contain two 33-vertices having a 2-vertex as a common neighbour.

5. H does not contain a 33-vertex u with one of the neighbours, say v, adjacent to a 32-vertex
w having as neighbours a 2-vertex w1 and a 3-vertex w2, such that:

(a) either w1 is adjacent to a 33-vertex.

(b) or w2 is a 32-vertex.

(c) or w2 is a light 3-vertex.

Proof
Claims 4.1 to 4.4 are proved in [11]. We now prove Claim 4.5.

Suppose H contains a path uvw where u is a 33-vertex, v is a 2-vertex, w is a 32-vertex and w is
adjacent to a 2-vertex w1 (distinct from v) and to a 3-vertex w2. Let H ′ = H \ {u1u, u2u, uv, vw}.
By minimality of H, χ′s(H ′) ≤ 7 and there exists a strong edge-colouring φ of H ′, which uses seven
colours. We will extend this colouring to H. We colour the edges vw, uv and u2u in this order.
Note that at each step there exists at least one colour left for the corresponding edge. In order to
complete the strong edge-colouring ofH, we must assign a colour to u1u. If |J7K\SC(N2(u1u))| ≥ 1,
then we are done. Hence |J7K \ SC(N2(u1u))| = 0 and since |N2(u1u)| = 7, the edges of N2(u1u)
must be assigned distinct colours. Next, observe that it is possible to colour u1u with the colour of
u2u, uncolour u2u and then apply the same argument as previously to show that all the edges of
N2(u2u) must be assigned distinct colours. And then similarly, it is possible to colour u1u with the
colour of uv, to uncolour uv and if there is no colour left for uv, then all the colours of N2(uv) must
be distinct. We conclude that w1 6= u1, u2 and w2 6= x, y, x1, x2, y1, y2. Hence the configuration
and its fixed precolouring of edges is as depicted in Figure 3.

5.a Suppose w1 is adjacent to a 33-vertex t as in Figure 4.

Let us consider the edge ww1. Observe that SC(N2(ww1)) contains the colours 1, 4 and 5.
Otherwise, we can recolour ww1 with 1 (or 4, or 5), vw with 6 and u1u with 3. This extends
the colouring to whole H, a contradiction.
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xx1

x2

y

y1

y2

u1

u2

u v w

w1 t
t1

t2

w2

z1

z2

· · ·

· · ·
1

2 3

4

5
6

7

6

7

6

7

Figure 3: A fixed precolouring of the configuration of Claim 4.5
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z1
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t2 t′2
1
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5
6

7

6

7
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Figure 4: The configuration of Claim 4.5.a

Observe that 3 ∈ {φ(tt1), φ(tt2)}. Otherwise, we can permute the colours of vw and ww1, and
assign colour 3 to u1u. Similarly, observe that 2 ∈ {φ(w1t), φ(tt1), φ(tt2), φ(w2z1), φ(w2z2)}.
Otherwise, we can permute the colours of ww1 and uv, and colour u1u with 2.

From the above, we conclude that {φ(w1t), φ(tt1), φ(tt2), φ(w2z1), φ(w2z2)} = {1, 2, 3, 4, 5}
and 3 ∈ {φ(tt1), φ(tt2)} (w1t, tt1, tt2, w2z1, w2z2 are assigned pairwise distinct colours).

Suppose that {φ(t1t
′
1), φ(t2t

′
2)} 6= {φ(w2z1), φ(w2z2)}. Let α ∈ {φ(w2z1), φ(w2z2)} \

{φ(t1t
′
1), φ(t2t

′
2)}, α ∈ {1, 2, 4, 5} (because 3 ∈ {φ(tt1), φ(tt2)}).

We do the following assignment of colours (in the given order): φ(u1u) = 2, φ(uv) = 3,
φ(vw) = 6, φ(ww1) = φ(w1t), φ(w1t) = α.

It follows that {φ(t1t
′
1), φ(t2t

′
2)} = {φ(w2z1), φ(w2z2)} and 6 6∈ {φ(t1t

′
1), φ(t2t

′
2)}. But then

we permute the colours of w1t and ww1, recolour uv with colour 6 and assign to u1u colour
2. We obtain a strong edge-colouring of H, a contradiction.

5.b Suppose w2 is a 32-vertex as depicted in Figure 5.

xx1

x2

y

y1

y2

u1

u2

u v w

w1 t t1

t2

w2

z1

z2

s s1

s2

r

r1

r2

1
2 3

4

5
6

7

6

7

6

7

Figure 5: The configuration of Claim 4.5.b

Consider in this case the edge ww2.

Observe that 3 ∈ {φ(z1s), φ(z2r)}. Otherwise we can permute the colours of vw and ww2, and
assign 3 to u1u. Observe that 1, 2, 4, 5 ∈ {φ(w1t), φ(w2z1)φ(w2z2), φ(z1s), φ(z2r)}. Otherwise
we can recolour ww2 with 1 or 2 or 4 or 5, uv with 7, and assign colour 2 to u1u. Hence
{φ(w1t), φ(w2z1)φ(w2z2), φ(z1s), φ(z2r)} = {1, 2, 3, 4, 5}. Observe that 3 ∈ {φ(tt1), φ(tt2)}.
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Otherwise we can permute the colours of vw and ww1, and assign colour 3 to u1u. Hence,
without loss of generality we can assume φ(tt1) = φ(z1s) = 3. Moreover, we prove that
φ(tt2) = φ(z2r). By contradiction, assume that φ(z2r) = α 6= φ(tt2) (α ∈ {1, 2, 4, 5}). We
recolour ww1 with α, uv with 6, and assign 2 to u1u.

Now let us uncolour uv and assign colour 2 to u1u. Observe that 7 ∈ {φ(ss1), φ(ss2)}.
Otherwise we can permute the colours of ww2 and w2z1, and assign colour 7 to uv. Observe
that φ(w1t) ∈ {φ(ss1), φ(ss2)}. Otherwise we use φ(w2z1) to recolour ww1, we recolour w2z1
with φ(w1t) (recall that {φ(tt1), φ(tt2)} = {φ(z1s), φ(z2r)}), and assign colour 6 to uv. It
follows that {7, φ(w1t)} = {φ(ss1), φ(ss2)} (φ(w1t) 6= 6).

Finally we permute the colours of w2z1 and ww1 and assign 6 to uv. A contradiction.

5.c Suppose w2 is a light 3-vertex as depicted in Figure 6.

xx1
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r2

r3

1
2 3

4

5
6

7

6

7

6

7

Figure 6: The configuration of Claim 4.5.c

Exactly as the first part of the proof of Claim 4.5.a we have:

{φ(w1t), φ(tt1), φ(tt2), φ(w2z1), φ(w2z2)} = {1, 2, 3, 4, 5}, 3 ∈ {φ(tt1), φ(tt2)}.

Let us uncolour uv and assign to u1u colour 2. If the permutation of the colours of ww2 and
w2z2 is possible, then uv can be recoloured with 7. Hence φ(rr1) = 7.

Now we uncolour vw and assign colour 3 to uv. Observe that:

{φ(w1t), φ(tt1), φ(tt2)} = {φ(z1s1), φ(z1s2), φ(z2r)}

By contradiction, let us suppose that there exists an α ∈ {φ(w1t), φ(tt1), φ(tt2)} \
{φ(z1s1), φ(z1s2), φ(z2r)}. Recall α ∈ {1, 2, 3, 4, 5} and φ(w2z2) 6= 3. We colour vw with
7, assign colour φ(w2z2) to ww2, and recolour w2z2 with α.

Finally we permute the colours of ww1 and w2z2, assign colour 6 to uv and colour 3 to vw.

�
The discharging rules are defined as follows:

(R1) Every 33-vertex gives 1
6 to each adjacent good 2-vertex.

(R2) Every 32-vertex and 31-vertex gives 1
4 to each adjacent good 2-vertex if this 2-vertex is not

adjacent to a 33-vertex.

(R3) Every 30-vertex gives 1
12 to each adjacent 32-vertex if any.

(R4) Every 31-vertex u gives 1
12 to each adjacent 32-vertex v if v has a 2-neighbour w adjacent to

a 33-vertex.

(R5) Every 3-vertex gives 1
3 to each adjacent 2-vertex which is a neighbour of 33-vertex.

(R6) Every 3-vertex gives 1
2 to each adjacent bad 2-vertex.

Let v ∈ V (H) be a k-vertex. By Claim 4.1, k ≥ 2.
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Case k = 2. Observe that ω(v) = − 1
2 . Suppose v is a good 2-vertex. If v is adjacent to

a 33-vertex, then v cannot be adjacent to another 33-vertex by Claim 4.4. Hence, ω∗(v) ≥
− 1

2 + 1 × 1
6 + 1 × 1

3 = 0 by (R1) and (R5). If v is not adjacent to a 33-vertex, then
ω∗(v) ≥ − 1

2 + 1 × 1
4 + 1 × 1

4 = 0 by (R2). Suppose v is bad. Vertex v is adjacent to one
3-vertex by Claim 4.2. Hence, ω∗(v) = − 1

2 + 1× 1
2 = 0 by (R6).

Case k = 3. Observe that ω(v) = 1
2 . We have the following cases for v:

• Vertex v is adjacent to three 2-vertices. By Claim 4.3 these 2-vertices are good. More-
over, by Claim 4.4 none of these 2-vertices is adjacent to another 33-vertex. Hence,
ω∗(v) = 1

2 − 3× 1
6 = 0 by (R1).

• Vertex v is adjacent to exactly two 2-vertices. By Claim 4.3, none of these 2-vertices
is bad. Suppose that none of these 2-vertices are adjacent to a 33-vertex. Hence,
ω∗(v) ≥ 1

2 − 2× 1
4 = 0 by (R2). Assume now that one of the 2-vertices adjacent to v is

adjacent to a 33-vertex (note that among the 2-vertices adjacent to v, at most one can
be adjacent to a 33-vertex by Claim 4.5.a). Hence v cannot be adjacent to a 32-vertex
by Claim 4.5.b. Then, v must have either a 31-vertex or a 30-vertex as a neighbour.
Hence, ω∗(v) ≥ 1

2 − 1× 1
4 + 1× 1

12 − 1× 1
3 = 0 by (R2), (R3) (or (R4)) and (R5).

• Vertex v is adjacent to exactly one 2-vertex u. If u is a bad 2-vertex, then by Claim 4.5.c,
v cannot be adjacent to a 32-vertex w which has a 2-neighbour y adjacent to a 33-vertex.
Hence, ω∗(v) ≥ 1

2 − 1 × 1
2 = 0 by (R6). Suppose u is a good 2-vertex. Let w be the

other neighbour of u (d(w) = 3). If w is a 33-vertex, then ω∗(v) ≥ 1
2 −2× 1

12 −1× 1
3 = 0

by (R4) and (R5). If w is not a 33-vertex, then ω∗(v) ≥ 1
2 − 2× 1

12 − 1× 1
4 > 0 by (R2)

and (R4).
• Vertex v is a 30-vertex. Hence, ω∗(v) ≥ 1

2 − 3× 1
12 > 0 by (R3).

This completes the proof.

2.1.3. Third part
Let H be a counterexample to Theorem 2.3 minimizing |E(H)|+ |V (H)|: H is not strong edge-

colourable with eight colours, mad(H) < 8
3 and for any edge e, χ′s(H − e) ≤ 8. One can assume

that H is connected; otherwise, by minimality of H, we can colour each connected component
independently. Recall that ω(x) = d(x)− 8

3 .

Claim 5. The minimal counterexample H to Theorem 2.3 satisfies the following properties:

1. H does not contain 1−-vertices.

2. H does not contain two adjacent 2-vertices.

3. H does not contain a 3-vertex adjacent to three 2-vertices.

4. H does not contain a 2-vertex adjacent to two 32-vertices.

5. H does not contain a 3-vertex adjacent to a 32-vertex and a 2-vertex.

6. H does not contain a 3-vertex adjacent to two 32-vertices.

Claims 5.1 to 5.4 are proved in [11].
Before proving Claims 5.5 and 5.6, we need to introduce some definitions and notations. Let

φ be a partial strong 8-edge-colouring of H. For an edge uv, we denote by PCφ(uv) the set of
permissible colours that would extend φ to uv. Let SC(N1(uv)) be the set of colours used by edges
at distance 1 from uv.

Proposition 1. Suppose H contains a 32-vertex x. Let u and r be its adjacent 2-neighbours, and
let y be its adjacent 3-neighbour. Also let v and s be the other neighbours (distinct from x) of u
and r respectively. Finally let z and t be the other neighbours of y (distinct from x).

Consider φ a strong 8-edge-colouring of H ′ = (V (H), E(H) \ {xy, xu, uv, xr, rs}). Then φ
satisfies the following:
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P1. PCφ(uv) ∩ PCφ(rs) = ∅.

P2. {φ(zy), φ(yt)} ∩ (PCφ(uv) ∪ PCφ(rs)) = ∅.

P3. PCφ(xy) ⊆ PCφ(uv) ∪ PCφ(rs).

P4. SC(N1(uv)) = SC(N1(rs)).

P5. |PCφ(uv)| = 2 = |PCφ(rs)|.

P6. SC(N1(uv)) ∩ {φ(zy), φ(yt)}) = ∅.

Proof
In the following we prove the proposition for each of the items.

P1. Suppose PCφ(uv) ∩ PCφ(rs) 6= ∅. Let α be a colour of the intersection. First we colour uv
and rs with α, then we colour xy (|PCφ(xy)| ≥ 2 ; hence it remains at least one colour).
Finally we colour ux (|SC(N2(ux))| ≤ 7) and xr (|SC(N2(ux))| ≤ 8, but colour α is repeated
twice).

P2. By contradiction, assume that φ(zy) ∈ PCφ(uv). We colour uv with φ(zy). Then we colour
xy (|PCφ(xy)| ≥ 2; hence it remains at least one colour). We colour sequentially rs (at
least one available colour), xr (at least two available colours, since zy and uv have the same
colour), and ux (at least one available colour, again zy and uv have the same colour).

P3. By contradiction. Observe that |PCφ(uv)| ≥ 2. Let α, β ∈ PCφ(uv). Similarly, let γ, λ ∈
PCφ(rs). Finally let ζ ∈ PCφ(xy) \ (PCφ(uv)∪PCφ(rs)). Assign ζ to xy, α to uv, β to ux,
γ to rs. Finally, by P1 and P2 we can assign colour λ to xr.

P4. By contradiction. Colour first xy, then uv and rs. Count the number of available colours
for ux and xr. If one of them has two available colours, then we colour it the last. So
each has one available colour. Suppose these two colours are the same. Then we have
SC(N1(uv)) = SC(N1(rs)).

P5. By contradiction suppose |PCφ(uv)| ≥ 3 and α, β, γ ∈ PCφ(uv). Suppose PCφ(xy) *
PCφ(uv). Colour first xy with a colour that does not appear in PCφ(uv), then rs. Assign α to
uv, β to ux, and γ to xr (possible by P1, P2 and P4). Now suppose that PCφ(xy) ⊆ PCφ(uv)
and PCφ(xy) contains α, β. Colour xy with α, ux with β, uv with γ, xr and rs with the
colours of PCφ(rs) (that is possible by P1 and P2).

P6. If not true one can colour sequentially xy, uv, rs, xr, ux.

�
To summarize Proposition 1 one can assume without loss of generality that: PCφ(uv) =

{1, 2}, PCφ(rs) = {3, 4}, φ(zy) = 5, φ(yt) = 6, SC(N1(uv)) = SC(N1(rs)) = {7, 8}, PCφ(xy) ⊆
{1, 2, 3, 4}.

Now we prove the remaining parts of the claim.

Proof of Claim 5.5. This follows from the previous discussion in Proposition 1. By contra-
diction suppose t is a 2-vertex. Observe that the edge yt is coloured with α and has also an
other available colour, say β (at most six other coloured edges at distance at most 2). Now
β /∈ PCφ(uv)∪PCφ(rs). Otherwise we permute α and β, and this contradicts P2. It suffices then
to colour xy with β, the edges uv and ux with the colours of PCφ(uv), and the edges rs and xr
with the colours of PCφ(rs). This extends φ to whole H. �

Proof of Claim 5.6. By contradiction, suppose H contains a 3-vertex y adjacent to two
32-vertices x1 and x2. Let ui and ri be the two 2-neighbours of xi (i = 1, 2). Fi-
nally let vi and si be the two other neighbours of ui and ri respectively (i = 1, 2). Con-
sider H ′ = (V (H), E(H) \ {yx1, x1u1, u1v1, x1r1, r1s1}). By minimality of H, H ′ admits a
strong 8-edge-colouring φ. By the previous discussion and without loss of generality one
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can assume that PCφ(u1v1) = {1, 2}, PCφ(r1s1) = {3, 4}, φ(zy) = 5, φ(yx2) = 6,
SC(N1(u1v1)) = SC(N1(r1s1)) = {7, 8}, PCφ(yx1) ⊆ {1, 2, 3, 4}.

Hence observe that if we can change the colour of yx2, then we will be able to extend the
colouring (by P2 or P6). To do this uncolour x2r2. Recolour yx2 with an available colour distinct
from 6. Colour x2r2. We are done. �

We apply now a discharging procedure with the following rules:

(R) Every 3-vertex gives 1
3 to each adjacent 2-vertex and to each adjacent 32-vertex.

Let v ∈ V (H) be a k-vertex. By Claim 5.1, k ≥ 2.

Case k = 2. Observe that ω(v) = − 2
3 . By Claim 5.2, the neighbours of v have degree 3.

Hence v receives twice 1
3 by (R), and so ω∗(v) = − 2

3 + 2× 1
3 = 0.

Case k = 3. Observe that ω(v) = 1
3 . We have the following cases for v:

• If v is not adjacent to any 2-vertices, then v is adjacent to at most one 32-vertex by
Claim 5.6, and so gives at most 1

3 by (R) ; it follows ω∗(v) ≥ 1
3 −

1
3 = 0.

• If v is adjacent to exactly one 2-vertex, then its 3-neighbours are not 32-vertices by
Claim 5.5. It follows that ω∗(v) = 1

3 −
1
3 = 0 by (R).

• If v is a 32-vertex, then it receives 1
3 from its 3-neighbour (which is not a 32-vertex by

Claim 5.5) and gives 1
3 to each adjacent 2-vertex. Hence ω∗(v) = 1

3 + 1
3 − 2× 1

3 = 0.
• The case where v is adjacent to three 2-vertices does not appear by Claim 5.3.

This completes the proof.

2.1.4. Fourth part
Let H be a counterexample to Theorem 2.4 minimizing |V (H)| + |E(H)|. We can assume

that H is connected as otherwise, by minimality of H, we can colour each connected component
independently. Recall that ω(x) = d(x)− 20

7 . We first prove some structural properties of H.

Claim 6. The minimum counterexample to Theorem 2.4 does not contain:

1. 1−-vertices.

2. two adjacent 2-vertices.

3. a 3-vertex adjacent to two 2-vertices.

4. two adjacent 31-vertices.

5. a triangle.

6. a path of three 3-vertices ztu where z and u are 31-vertices.

Proof
The proofs of first four parts are given in [11].

5. Suppose H contains a triangle xyz.
If d(x) = 2, then by minimality of H, the graph H − xy can be strongly edge-coloured with
at most nine colours. Since |N2(xy)| ≤ 6, there exists at least three colours left for xy. Hence
d(x) = d(y) = d(z) = 3.
Let u, v and t be the neighbours of x, y and z respectively (u, v and t being outside the
triangle). Let H ′ = H − x. By minimality of H, we have χ′s(H ′) ≤ 9. Consider a strong
edge-colouring φ of H ′ using the minimum number. We show how to extend it to H. We
colour xu and xy (in each case there exists a free colour). If we have a colour left for xz,
then we are done. Therefore, |N2(xz)| = 9 and |SC(N2(xz))| = 9, which implies that all
edges in N2(xz) are assigned pairwise distinct colours. Now, one of the following assignment
of colours is possible:
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• Assign φ(xz) = φ(yz) and recolour yz with a free colour.

• Assign φ(xz) = φ(xy) and recolour xy with a free colour.

This is a contradiction.

6. Let ztu be such a path and y and v be the 2-vertices neighbours of z and u respectively.
Let x be the neighbour of y distinct from z and w be the neighbour of v distinct from u.
By Claims 6.1, 6.2 and 6.3, x and w are 3-vertices. By Claims 6.3 and 6.4, t is a 30-vertex.
Let z1, t1 and u1 be the neighbours of z, t and u respectively. Since H has no triangles (by
Claim 6.5), we have the configuration depicted in Figure 7. Note that in H there might exist
edges z1t1, t1u1 or z1u1 and the representation of the given figure is a general one.

x1

x2

x y z t u v w

z1

z2 z3

t1

t2 t3

u1

u2 u3

w1

w2

Figure 7: The configuration of Claim 6.6

Let H ′ = H − y. By minimality of H, H ′ can be strongly edge-coloured with at most nine
colours. Let us consider such a colouring φ. We show how to extend φ to H.

x1

x2

x y z t u v w

z1

z2 z3

t1

t2 t3

u1

u2 u3

w1

w2

1
2

3

4

5 6

7

8 9

Figure 8: The initial fixed colouring of the edges of the configuration of Claim 6.6. Edge yz is the
only non-coloured edge.

In order to complete the colouring of H one need to assign a colour to xy and yz. By counting
the number of edges in N2(xy), it is easy to see that there is at least one colour left for xy,
so we assign it to this edge. Now, if there is a colour left for yz, then we are done. Therefore,
since |N2(yz)| = 9, all the colours of J9K must appear exactly once in N2(yz) and without
loss of generality we can fix the colours of all edges of N2(yz) as depicted in Figure 8.

Observe that {5, 6, 7, 9} ⊆ SC(N2(xy)) as otherwise one could recolour xy with one of these
colours and assign φ(yz) = 1. Therefore, all edges incident to x1 and x2 for which we
did not fix a colour yet, must have distinct colours from the set {5, 6, 7, 9}. If one could
recolour tu with 1, 2, 3, 5 or 6 then yz could be coloured 9 which is impossible. Hence
{1, 2, 3, 5, 6} ⊆ SC(N2(tu)). Observe that t cannot be neither x1 nor x2 as none of the edges
incident to t is coloured 2 or 3. Also, since u is adjacent to v which is a 2-vertex, by Claim 6.4
u cannot be neither x1 nor x2. Therefore, if one could permute the colours of tu and zt, then
8 would not belong to SC(N2(xy)) any more, thus xy could be recoloured with 8 and yz
could be assigned colour 1. Therefore, 8 ∈ {φ(u1u2), φ(u1u3), φ(vw)}.
Observe that recolouring zz1 with 2 or 3 must not be possible as otherwise colour 4 could be
used for yz to complete the colouring of H. Hence out of all the edges incident to z2 and z3,
two of them must be coloured 2 and 3 respectively. Let us uncolour edges xy, zz1, zt and
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tu. We claim that it is not possible to assign colour 4 to tu. Indeed, if tu could be coloured
with 4, then we assign φ(tu) = φ(xy) = 4 and by using the fact that two out of all the edges
incident to z2 and z3 must be coloured 2 and 3 respectively, one of the following assignments
of colours would be valid:

• φ(yz) = 1, φ(zz1) = 9 and φ(zt) = 8.

• φ(yz) = 9, φ(zz1) = 1 and φ(zt) = 8.

• φ(yz) = 1, φ(zz1) = 8 and φ(zt) = 9.

Therefore, tu cannot be assigned colour 4 and we must have the following statement:

{φ(t1t2), φ(t1t3), φ(uu1), φ(u1u2), φ(u1u3), φ(uv), φ(vw)} = {1, 2, 3, 4, 5, 6, 8} (?)

Observe that in (?) both sets have the same cardinality and hence φ(t1t2), φ(t1t3), φ(uu1),
φ(u1u2), φ(u1u3), φ(uv), φ(vw) are pairwise distinct and this implies that there is no edge
between t1 and u1.

Consider the edge uv. Since at the beginning of the proof we have fixed φ(tt1) = 7, φ(zt) = 8
and φ(tu) = 9, obviously φ(uv) ∈ J6K.

We distinguish the following cases for φ(uv):

(a) Suppose φ(uv) ∈ {1, 2, 3, 5, 6}. We will denote this colour a. By (?) we know that
φ(t1t2) 6= a and φ(t1t3) 6= a. We uncolour uv and do the following assignment of
colours: φ(xy) = 1, φ(yz) = 9, φ(zt) = 8 and φ(tu) = a. If we manage to colour
uv, then we are done. In order to do this, observe that by (?), {9, φ(t1t2), φ(t1t3)} ∩
{φ(uu1), φ(u1u2), φ(u1u3), φ(vw)} = ∅. Therefore we could use one of the three colours
9, φ(t1t2) or φ(t1t3) for uv, distinct from the colours assigned to ww1 and ww2. A
contradiction.

(b) We have φ(uv) = 4. Let us come back to the fixed colouring of Figure 8. If one
could recolour zt with 2 or 3, then yz could be coloured 8. Therefore, two of the three
edges t1t2, t1t3 and uu1 must be coloured with 2 and 3 respectively. Without loss of
generality we can assume that φ(t1t2) = 2. Moreover, by (?) φ(uv) 6∈ {φ(t1t2), φ(t1t3)} =
{2, φ(t1t3)}, which means that {φ(ww1), φ(ww2)} = {2, φ(t1t3)} and without loss of
generality we have φ(ww1) = 2. Now, we uncolour zz1, zt, uv and assign φ(xy) =
φ(tu) = 4. We obtain a valid partial stong edge-colouring of the configuration as depicted
in Figure 9.

x1

x2

x y z t u v w

z1

z2 z3

t1

t2 t3

u1

u2 u3

w1

w2

4

2

2

3

5 6

7

4

2

φ(t1t3)

Figure 9: Case (b) of the proof of Claim 6.6. The dashed edges are not coloured.

Since φ(t1t3) 6= 9 and none of the other edges of N2(uv) is coloured 9, we assign φ(uv) =
9.
We claim that out of all edges incident to z2 and z3, two of them must be coloured
with 1 and 9. Indeed, if it is not the case then by assigning φ(zt) = 8, we could assign
either φ(zz1) = 1 and φ(yz) = 9 or φ(zz1) = 9 and φ(yz) = 1 and we would be done.
Therefore, four edges incident to z2 and z3 except z1z2 and z1z3 must have distinct
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colours which are namely 2, 3, 1 and 9. If none of the edges t1t3 and uu1 is coloured 1
then one of the following assignments of colours would be a valid strong edge-colouring:

• φ(yz) = 1, φ(zt) = 8 and φ(zz1) = 9.
• φ(yz) = 9, φ(zt) = 8 and φ(zz1) = 1.
• φ(yz) = 9, φ(zt) = 1 and φ(zz1) = 8.

Therefore, one of the edges t1t3 and uu1 must be coloured 1. On the other hand, as
proved previously, one of these edges must be coloured 3. Therefore, {φ(t1t3), φ(uu1)} =
{1, 3}. Recall from the previous paragraph that in N2(zz1), none of the edges is coloured
7. We recolour zz1 with 7 and uncolour edges tt1 and tu. Observe that by (?) 7 6∈
{φ(uu1), φ(u1u2), φ(u1u3), φ(vw), φ(ww1), φ(ww2)}, so we recolour uv with 7. Moreover,
we assign colour 1 to yz and obtain the partial strong edge-colouring of the configuration
as depicted in Figure 10.

x1

x2

x y z t u v w

z1

z2 z3

t1

t2 t3

u1

u2 u3

w1

w2

4 1

72

2

3

5 6

7

2

φ(t1t3)

Figure 10: A partial strong edge-colouring of the configuration of Claim 6.6. The dashed edges are
not coloured.

In order to finish the colouring of H we must assign colours to zt, tt1 and tu. We know
that φ(t1t3) ∈ {1, 3} and φ(t1t2) = 2. Let us consider temporarily the colouring given
in Figure 8. If one could recolour edge tt1 with 5 or 6, then colour 7 could be assigned
to yz which implies that out of all the edges incident to t2 and t3, two of them must be
coloured 5 and 6 respectively. Applying these to the colouring given in Figure 10, we
conclude that one of the following assignments of colours is valid:

• φ(zt) = 8, φ(tt1) = 4 and φ(tu) = 9.
• φ(zt) = 8, φ(tt1) = 9 and φ(tu) = 4.
• φ(zt) = 9, φ(tt1) = 8 and φ(tu) = 4.

This is a contradiction.

�
The discharging rules are defined as follows:

(R1) Every 30-vertex gives 1
7 to each adjacent 31-vertex.

(R2) Every 31-vertex gives 3
7 to its adjacent 2-vertex.

Let v ∈ V (H) be a k-vertex. By Claim 6.1, k ≥ 2.

Case k = 2. Observe that ω(v) = − 6
7 . By Claims 6.2 and 6.3, v is adjacent to two 31-vertices.

Hence, by (R2), ω∗(v) = − 6
7 + 2× 3

7 = 0.

Case k = 3. Observe that ω(v) = 1
7 . By Claim 6.3, v can be a 31-vertex or a 30-vertex.

Suppose, v is a 31-vertex. By Claim 6.4 and by (R1) and (R2), ω′(v) = 1
7 + 2 × 1

7 −
3
7 = 0.

Suppose now that v is a 30-vertex. By Claim 6.6, v is adjacent to at most one 31-vertex.
Then by (R1), ω∗(v) ≥ 1

7 − 1× 1
7 = 0.

This completes the proof.
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2.2. Optimality
In [11], the question about the optimality of the bounds on the strong chromatic index of

subcubic graphs in terms of maximum average degree was raised. Let f(r) = inf{mad(G) | χ′s(G) >
r}. It was proved that:

f(6) ≤ 7

3
, f(7) ≤ 5

2
, f(8) ≤ 20

7
and f(9) ≤ 20

7
.

The authors provided graphs reaching the upper bounds for f(6), f(7) and f(9), as depicted
in Figure 11.

By Theorem 2, we have:

7

3
≤ f(6),

5

2
≤ f(7) and

20

7
≤ f(9).

Hence the upper bounds on the maximum average degree for f(6), f(7) and f(9) are best
possible. Although, we improved the lower bound for f(8) given in [11] from 13

5 to 8
3 , we did not

manage to find a better upper bound. The problem of finding this value is even more challenging
since till now we do not have an example of subcubic graph G having χ′s(G) = 9 and mad(G) < 20

7 .

(a) A graph G with mad(G) = 7
3

and χ′
s(G) > 6. (b) A graph G with mad(G) = 5

2
and χ′

s(G) > 7.

(c) A graphG with mad(G) = 20
7

having χ′
s(G) > 9.

Figure 11: Graphs proving the optimality of the bounds of parts 1, 2 and 4 of Theorem 2.

3. Proof of Theorem 4

We prove Theorem 4 by contradiction. Suppose the statement is not true and let H be a
counterexample minimizing |V (H)| + |E(H)|. We will prove some structural properties of H in
order to show that H does not exist.

In the following we use Claim 6 of the proof of Theorem 2.4 as the proof of this claim remains
valid within the hypothesis of Theorem 4.

Claim 7. H has no 6-cycle C = xyztuvx where y is a 2-vertex.

Proof
Suppose there exists such a cycle C as depicted in Figure 12. Observe that x, z, t, u, v, x1, z1, t1,
v1 are 3-vertices by Claims 6.2, 6.3, 6.4 and u1 is a 3-vertex by Claim 6.6.
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t

t1

t′1 t′′1

u

u1

u′1

u′′1

v

v1

v′1

v′′1
x

x1

x′1 x′′1

y

z

z1

z′1

z′′1

Figure 12: An induced cycle C of length 6 of H having a 2-vertex on its boundary.

Consider the graph H ′ = H − y. Consider a strong edge-colouring φ of H ′ using at most nine
colours. We will extend φ to H in order to obtain a contradiction. Observe that |SC(N2(xy))| ≤ 8,
thus there exists a colour left for xy. If we can colour yz, then we are done. Therefore, since
|N2(yz)| = 9, we must have SC(N2(yz)) = J9K and every colour is used exactly once in N2(yz).
Therefore, we claim that |SC(N2[xy])| = 9 as otherwise one could recolour xy with another colour
and obtain a free colour for yz. Without loss of generality we can assume that φ(zt) = 1, φ(zz1) = 2,
φ(xx1) = 3, φ(vx) = 4, φ(uv) = 5, φ(vv1) = 6, φ(x1x

′
1) = 7, φ(x1x

′′
1) = 8 and φ(xy) = 9.

Since SC(N2(yz)) = J9K we have {φ(tu), φ(tt1), φ(z1z
′
1), φ(z1z

′′
1 )} = {5, 6, 7, 8}. Observe that since

5 ∈ SC(N2(tu)) and 5 ∈ SC(N2(tt1)), without loss of generality we can assume that φ(z1z
′
1) = 5.

Also, 6 ∈ SC(N2(tu)) and therefore φ(tu) ∈ {7, 8}. Since colours 7 and 8 are fixed only on edges
x1x
′
1 and x1x′′1 respectively, we can assume without loss of generality that φ(tu) = 7 and therefore

{φ(tt1), φ(z1z
′′
1 )} = {6, 8}. Figure 13 shows the unique colouring (up to permutation) of the edges

described previously.
We claim that one of the edges v1v′1 or v1v′′1 , say v1v′1, must have the same colour as the edge zt

(colour 1 in Figure 13). Otherwise, one could change the colour of vx to the colour of zt and colour
yz with 4. Similarly, 2 ∈ {φ(v1v

′′
1 ), φ(uu1)} (we can assign 2 to vx and 4 to yz). Observe that

one can use the same argument conversely (by trying to assign to tz the colour of vx) by recalling
from the previous paragraph that {φ(tt1), φ(z1z

′′
1 )} = {6, 8}. Hence, we conclude that one of the

edges t1t′1 or t1t′′1 , say t1t′1, must have the same colour as the edge vx (colour 4 in Figure 13). If
it is possible to permute the colours of edges uv and vx, one could obtain a free colour (colour 4)
for yz, thus either uu′1 or uu′′1 must have the same colour as vx (colour 4 in Figure 13). Without
loss of generality φ(u1u

′
1) = 4. If it is possible to permute the colours of edges tu and uv (7 and 5

respectively), then one could obtain a free colour for yz. Hence either φ(v1v
′′
1 ) = 7 or φ(t1t

′′
1) = 5

(or both).

1. Suppose φ(v1v
′′
1 ) = 7. Hence φ(uu1) = 2. If one can permute the colours of tu and zt, such

that tu is assigned colour 1 and zt is assigned colour 7, then xy could be recoloured with 1
and colour 9 would be free for yz. Hence φ(u1u

′′
1) = 1. But now it is possible to permute the

colours of xy and uv and to use colour 9 for yz. A contradiction.

2. Suppose φ(t1t
′′
1) = 5. If it is possible to change the colour of edge zt (which is 1) to the

colour of the edge xx1 (which is 3), then yz could be coloured with 1. Hence φ(uu1) = 3 and
therefore, φ(v1v

′′
1 ) = 2. By permuting the colours of edges vx and xy (4 and 9 respectively)

and by recolouring zt with 9, we can colour yz with 1. A contradiction.
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Figure 13: The unique colouring of C − yz in H ′.

�
By Claim 6.5 H has no triangle and by hypothesis of the theorem H does not contain induced

cycles of length 4 or 5. Hence the counterexample H must have girth g ≥ 6.
Consider now the graph H1 obtained from H by replacing each path of two edges xyz, where

y is a 2-vertex and x, z are 3-vertices, by an edge xz. Clearly, H1 is planar. By Claim 6.5 H has
no triangle and since it does not contain an induced 4-cycle, H1 is simple. Moreover, since it has
no 1−-vertices (Claim 6.1) and no two adjacent 2-vertices (Claim 6.2), H1 is 3-regular. Therefore,
H1 must contain a face of length at most 5, say C ′. Recall that H has girth at least 6, thus by
Claim 6.2, Claim 6.3 and Claim 6.4, C ′ cannot be obtained from a cycle of H of length l ≥ 7.
Therefore, in H there exists a cycle C of length 6 having a vertex of degree 2 on its boundary. But
this is impossible by Claim 7. Hence H cannot exist.

This completes the proof of Theorem 4.
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