Semestre 1 2011/2012

TD 2: Fonctions logarithme et exponentielle

Soit f la fonction définie par $f(x) = \frac{3+x^4}{x}$.

- 1. Déterminer le domaine de définition de f.
- 2. Calculer les dérivées première et seconde de f.
- 3. Déterminer les extrema de f.
- 4. Construire le tableau de variations de f. Les extrema de f sont-ils globaux?
- 5. Que peut-on dire des extrema de f si on restreint l'étude de f à chaque intervalle du domaine de définition?

Exercice 2

Résoudre dans \mathbb{R} les équations et inéquations suivantes :

1.
$$\ln(1-2x) = \ln(x+2) + \ln 3$$

2.
$$\ln(1-x^2) = \ln(2x-1)$$

3.
$$\ln \sqrt{2x-2} = \ln (4-x) - \frac{1}{2} \ln x$$

4.
$$2e^{2x} - 5e^x = -2$$

5.
$$e^x - 2e^{-x} - 1 = 0$$

6.
$$\ln(2-x) \le \ln(2x+1) - \ln(3)$$

7.
$$\ln(3x+2) \ge \ln\left(x^2 + \frac{1}{4}\right)$$

8.
$$e^x > -3$$

9.
$$\exp\left(1 + \frac{2}{x}\right) \leqslant e^x$$

Exercice 3

Étudier les limites aux bornes de son ensemble de définition de la fonction f définie par :

a)
$$f(x) = 3x + 2 - \ln x$$
;

$$f(x) = \frac{2x + \ln x}{2x + \ln x};$$

c)
$$f(x) = \frac{2 \ln x - 1}{x}$$
;

d)
$$f(x) = \frac{1}{x} - \ln x$$
;

e)
$$f(x) = \frac{e^x - 2}{e^x + 1}$$

a)
$$f(x) = 3x + 2 - \ln x$$
; b) $f(x) = \frac{2x + \ln x}{x}$; c) $f(x) = \frac{2 \ln x - 1}{x}$; d) $f(x) = \frac{1}{x} - \ln x$; e) $f(x) = \frac{e^x - 2}{e^x + 1}$; f) $f(x) = \exp\left(\frac{x + 3}{x^2 - 1}\right)$; g) $f(x) = xe^x - e^x + 1$

$$g) \quad f(x) = xe^x - e^x + 1$$

Exercice 4

1. Dans chacun des cas suivants, calculer la dérivée f' de la fonction f définie sur $]0; +\infty[$:

a)
$$f(x) = x \ln x - x$$
;

a)
$$f(x) = x \ln x - x$$
; b) $f(x) = \ln \left(\frac{1}{x}\right)$; c) $f(x) = \ln \sqrt{x}$; d) $f(x) = (\ln x)^2$; e) $\ln (x^2)$

c)
$$f(x) = \ln \sqrt{x}$$

$$d) \quad f(x) = (\ln x)^2$$

e)
$$\ln\left(x^2\right)$$

2. Calculer la dérivée f' de la fonction f sur son ensemble de définition :

a)
$$f(x) = \exp(x^2 + 3x - 1)$$
;

b)
$$f(x) = e^{\frac{1}{x}}$$
;

c)
$$f(x) = e^{e^x}$$

c)
$$f(x) = e^{e^x}$$
; d) $f(x) = e^{\sqrt{x} \ln x}$

_____(D'après sujet bac Amérique du Nord 2007)

PREMIÈRE PARTIE

On considère une fonction g définie sur l'intervalle $\left|-\frac{1}{2};+\infty\right|$ par :

$$g(x) = -x^2 + ax - \ln(2x + b)$$
, où a et b sont deux réels.

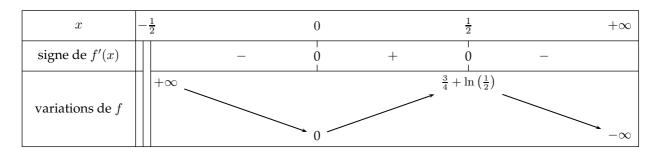
Calculer a et b pour que la courbe représentative de g dans un plan muni d'un repère $(0; \vec{i}, \vec{j})$ passe par l'origine du repère et admette une tangente parallèle à l'axe des abscisses au point d'abscisse $\frac{1}{2}$.

DEUXIÈME PARTIE

Soit f la fonction définie sur l'intervalle $\left|-\frac{1}{2}\right|$; $+\infty$ par $f(x)=-x^2+2x-\ln(2x+1)$.

On admet que f est dérivable et on note f' sa dérivée.

Le tableau de variations de la fonction f est le suivant :

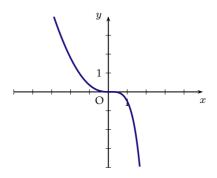


- 1. Justifier tous les éléments contenus dans ce tableau.
- 2. Montrer que l'équation f(x)=0 admet une unique solution α dans l'intervalle $\left[\frac{1}{2};1\right]$ $\left(f\left(\frac{1}{2}\right)\simeq0,057$ et $f(1)\simeq-0,099$).
- 3. Déterminer le signe de f(x) sur l'intervalle $\left]-\frac{1}{2}\,;\,+\infty\right[$.

On considère la fonction numérique f définie et dérivable sur \mathbb{R} telle que, pour tout réel x, on ait :

$$f(x) = \frac{x^2}{2} - x^2 e^{x-1}.$$

On note f' sa fonction dérivée sur \mathbb{R} . Le graphique ci-après est la courbe représentative de cette fonction telle que l'affiche une calculatrice dans un repère orthogonal.



1. Quelle conjecture pourrait-on faire concernant le sens de variation de f sur l'intervalle $[-3\ ;\ 2]$ en observant cette courbe ?

Dans la suite du problème, on va s'intéresser à la validité de cette conjecture.

- 2. Calculer f'(x) et vérifier que f'(x) = xg(x) où $g(x) = 1 (x+2)e^{x-1}$ pour tout x de \mathbb{R} . Pour la suite, on admet que g est dérivable sur \mathbb{R} et on note g' sa fonction dérivée.
- 3. Étude du signe de g(x) suivant les valeurs de x.
 - (a) Calculer les limites respectives de g(x) quand x tend vers $+\infty$ et quand x tend vers $-\infty$. On pourra utiliser (en la démontrant) l'égalité : $g(x) = 1 \frac{xe^x + 2e^x}{e}$.
 - (b) Calculer g'(x) et étudier son signe suivant les valeurs du nombre réel x.
 - (c) En déduire le sens de variation de la fonction g puis dresser son tableau de variation en y reportant les limites déterminées précédemment.
 - (d) Montrer que l'équation g(x)=0 possède une unique solution dans $\mathbb R$. On note α cette solution. On admet que $0,20<\alpha<0,21$.
 - (e) Déterminer le signe de g(x) suivant les valeurs de x.
- 4. Sens de variation de la fonction *f*
 - (a) Étudier le signe de f'(x) suivant les valeurs de x.
 - (b) En déduire le sens de variation de la fonction f.
 - (c) Que pensez-vous de la conjecture de la question 1?