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Abstract

It is proved that CTL+ is exponentially more succinct than CTL. More precisely,
it is shown that every CTL formula (and every modal �-calculus formula) equiv-
alent to the CTL+ formula E�Fp� � � � � � Fpn��� is of length at least

�
n

dn��e

�
,

which is ���n�
p
n�. This matches almost the upper bound provided by Emerson

and Halpern, which says that for every CTL+ formula of length n there exists an
equivalent CTL formula of length at most �n log n.

It follows that the exponential blow-up as incurred in known conversions of
nondeterministic Büchi word automata into alternation-free �-calculus formulas
is unavoidable. This answers a question posed by Kupferman and Vardi.

The proof of the above lower bound exploits the fact that for every CTL (�-
calculus) formula there exists an equivalent alternating tree automaton of linear
size. The core of the proof is an involved cut-and-paste argument for alternating
tree automata.



1 Introduction

Expressiveness and succinctness are two important aspects to consider when one
investigates a (specification) logic. When studying the expressiveness of a logic
one is interested in characterizingwhat properties can be expressed, whereas when
studying the succinctness one is interested in how short a formula can be found to
express a given property. Succinctness is especially of importance in a situation
where one has characterized the expressive power of a logic by a different but
equally expressive logic. In such a situation, succinctness is the foremost quanti-
tative measure to distinguish the logics. For instance, linear-time temporal logic
(LTL) is known to be exactly as expressive as first-order logic (FO), [9], but FO is
much more succinct than LTL: from work by Stockmeyer’s, [11], it follows that
there exists a sequence of FO formulas of linear length such that the length of
shortest equivalent LTL formulas cannot be bounded by an elementary recursive
function.

In this paper, the succinctness of computation tree logic (CTL) is compared
to the succinctness of CTL+, an extension of CTL, which is known to have ex-
actly the same expressive power as CTL, [4, 5]. I present a sequence of CTL+

formulas of lengthO�n� such that the length of shortest equivalent CTL formulas
is ���n�

p
n�. More precisely, I prove that every CTL formula equivalent to the

CTL+ formula

E�Fp� � � � � � Fpn���

is of length at least
�

n
dn��e

�
, which shows thatCTL+ is exponentially more succinct

than CTL. This lower bound is almost tight, because a result by Emerson and
Halpern’s, [4, 5], says that for every CTL+ formula of length n there exists an
equivalent CTL formula of length at most �n log n.

It is important to note that this exponential lower bound is not based on any
complexity-theoretic assumption, and it does not follow from the fact that model
checking for CTL is known to be P-complete whereas model checking for CTL+

is NP- and co-NP-hard (and in�p
�), [3, 4, 5].

The proof of the lower bound presented in this paper makes use of automata-
theoretic arguments, following other approaches to similar questions. The main
idea is based on the following fact. For every CTL formula (and for every �-
calculus formula) � there exists an alternating tree automatonA� of size linear in
the length of � that accepts exactly the models of �, [6, 1, 2]. So in order to obtain
a lower bound on the length of the CTL (or �-calculus) formulas defining a given

3



class of Kripke structures,1 it is enough to establish a lower bound on the number
of states of the alternating tree automata recognizing the given class of structures.

As mentioned above, automata-theoretic arguments have been used in this way
in different places, for instance by Etessami, Vardi, and myself in [8] or Kupfer-
man and Vardi in [10]. The difference, however, is that in this paper the au-
tomaton model (alternating automata on trees) is rather intricate compared to the
automaton models used in [8] and [10] (nondeterministic automata on words and
nondeterministic automata on trees, respectively).

The more elaborate argument that is needed here also answers a question
raised in the paper by Kupferman and Vardi. A particular problem the authors
consider is constructing for a given nondeterministic Büchi word automaton an
alternation free �-calculus (AFMC) formula that denotes in every Kripke struc-
ture the set of all worlds where all infinite paths originating in this world are
accepted by the automaton. They show that if such a formula exists, then there is
a formula of size at most exponential in the number of states of the given Büchi
automaton, but they cannot give a matching lower bound. This is what is provided
in this paper.

Outline. In Section 2, the syntax and semantics of CTL and CTL+ are reviewed
and the main result of the paper is presented. In Section 3, alternating tree au-
tomata are reviewed and subsequently, in Section 4, the succinctness problem is
reduced to an automata-theoretic problem. Section 5 describes this problem in a
more general setting, and in Section 6 the solution of this more general problem
is presented.

Acknowledgment. I would like to thank Kousha Etessami, Martin Grohe, Neil
Immerman, Christof Löding, Philippe Schnoebelen, and Moshe Y. Vardi for hav-
ing discussed with me the problem addressed in this paper.

Trees and tree arithmetic. In this paper, a tree is a triple �V�E� ��where �V�E�
is a directed tree in the graph-theoretic sense and � is a labeling function with
domain V . By convention, when T denotes a tree, then V , E, and � always
denote the set of nodes, set of edges, and labeling function of T . The same applies
to decorations such as T �, T �, T i, etc.

Let T be an arbitrary tree. A node v� � V is a successor of a node v � V in T
if �v� v�� � E. The set of all successors of a node v in T is denoted by Scs�T � v�.

1Strictly speaking, a CTL formula defines a class of pointed Kripke structures, see Section 2.
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The set of leaves of a tree T , that is, the set of nodes without successors, is denoted
by Lvs�T �. The set of inner nodes is denoted by Inn�T �.

Given a tree T and a vertex v of T , the ancestors path, denoted T �v, is the
unique path from the root of T to v (inclusively). The descendants tree, denoted
T �v, is the subgraph of T induced by all nodes reachable from v (v itself in-
cluded).

I will use two kinds of concatenations for trees. When T and T � are trees and
v is a node of T , then T � �v�T �� denotes the tree that results from T by first
making an isomorphic copy of T � whose node set is disjoint from the set of nodes
of T and then adding an edge from v to the root of T �. Similarly, T � �v�T ��
denotes the tree that results from T by first making an isomorphic copy of T �

whose node set is disjoint from the set of nodes of T and then identifying the root
of the isomorphic copy of T � with v. By convention, the node v is retained in the
resulting tree (rather than the root of T �) and the label of v is kept.— These two
concatenation operations are extended in a straightforward way: when T is a tree
and M a set of pairs �v�T ��, with v � V and T � an arbitrary tree, I might write
T �M and T �M to denote the result of concatenating (in the respective way) all
trees fromM to T .

For ease in notation, when � is a finite path (a finite tree with exactly one leaf)
with last node v and T is a tree, I simply write � � T for the tree � � �v�T � as
defined above. To make things even simpler, strings and finite paths are identified.
So when u is a string and T a tree, I might write u � T to denote the tree which is
obtained by viewing u as a path and concatenating T to it.

2 CTL, CTL+, and Main Result

I start with recalling the syntax and the semantics ofCTL andCTL+. For technical
reasons, I only define formulas in positive normal form. This is not an essential
restriction, because every CTL formula is equivalent to a CTL formula in positive
normal form of the same length, and the same applies to CTL+.

Syntax of CTL. Let Prop � fp�� p�� p�� � � � g be an infinite supply of distinct
propositional variables. The set of all CTL formulas is the smallest set satisfzing
the following conditions.
1. 0 and 1 are CTL formulas.
2. For p � Prop, p and �p are CTL formulas.
3. If � and � are CTL formulas, then so are � � � and � � �.
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4. If � is a CTL formula, then so are EX� and AX�.
5. If � and � are CTL formulas, then so are EU��� ��, AU��� ��, ER��� ��,
and AR��� ��.

It is important that every path quantifier (E and A) is immediately followed by
a temporal modality such as X, U, or R. In this respect, CTL+ is less restrictive;
it allows to throw in boolean connectives between path quantifiers and temporal
modalities.

Syntax of CTL+. The formal definition of the syntax of CTL+ requires a defini-
tion of the notion of a path formula. The set of all CTL+ formulas and the set of
all path formulas are the smallest sets satisfying the following conditions.
1. 0 and 1 are CTL+ formulas.
2. For p � Prop, p and �p are CTL+ formulas.
3. If � and � are CTL+ formulas, then so are � � � and � � �.
4. Every CTL+ formula is a path formula.
5. If � and � are CTL+ formulas, then X�, U��� �� and R��� �� are path
formulas.

6. If � and � are path formulas, then so are � � � and � � �.
7. If � is a path formula, then E� and A� are CTL+ formulas.

Obviously, every CTL formula is a CTL+ formula.
I will use the standard shorthand F� for U��� �� when � is an arbitrary CTL+

formula.

Kripke structures. CTL and CTL+ formulas are interpreted in Kripke struc-
tures, which are directed graphs with specific labeling functions for their nodes.
Formally, a Kripke structure is a tuple

K � �W�R� 	� (1)

where
– W is a set of worlds,
– R 	 W 
W is an accessibility relation, and
– 	 � W � �Prop is a labeling function, which assigns to each world the set of
propositional variables that hold true in it.

Just as with trees I will follow the convention that whenever a Kripke structure
is denoted by K, then its components are denoted W , R, and 	, and the same
applies to decorations such asK�,K�, and so on.
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Given a world w of a Kripke structure K as above, a world w� is called a
successor of w inK if �w�w�� � R. Just as with trees, the set of all successors
of a world w is denoted by Scs�K� w�. A path through a Kripke structureK as
above is a nonempty sequence w�� w�� � � � such that �w�� w�� � R, �w�� w�� � R,
� � � A maximal path is a path that is either infinite or finite and ends in a world
without successor.

A pointed Kripke structure is a pair �K� w� of a Kripke structure and a distin-
guished world of it. A path through a pointed Kripke structure is a path through
this structure starting in the distinguished world. A path-equipped Kripke struc-
ture is a pair �K� �� of a Kripke structure and a maximal path through it.

Semantics of CTL and CTL+. As usual, I define what it means for a CTL+

formula to hold in a pointed Kripke structure, denoted �K� w� j� �, and simul-
taneously, what it means for a path formula to hold in a path-equipped Kripke
structure, denoted �K� �� j� �.

The boolean constants 0 and 1, the boolean connectives � and �, and the
propositional variables and its negations are dealt with in the usual way.

When �K� �� is a path-equipped Kripke structure with � � w�� w�� � � � and �
is a CTL+ formula, then

– �K� �� j� X� if � has length at least 2 and �K� w�� j� �.

Similarly, when � and � are CTL+ formulas, then
– �K� �� j� U��� �� if there exists i � 	 such that

� �K� wj� j� � for every j 
 i, and
� �K� wi� j� �,

– �K� �� j� R��� �� if for every i � 	,
� �K� wi� j� � or
� there exists j 
 i such that �K� wj� j� �.

When � is a path formula, then
– �K� w� j� E� if there exists a maximal path � through �K� w� such that

�K� �� j� �, and
– �K� w� j� A� if �K� �� j� � for all maximal paths � through �K� w�.
Given a CTL+ formula �, I write Mod��� for the class of all pointed Kripke

structures that are models of �, i. e., Mod��� � f�K� w� j �K� w� j� �g. CTL+
formulas � and � are equivalent if they have the same models, i. e., if Mod��� �
Mod���.

Main Result. The main result of this paper is:
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Theorem 1 For every n � 	, let �n be the CTL+ formula defined by

�n � E�Fp� � � � � � Fpn��� � (2)

Every CTL formula equivalent to �n has length at least
�

n
dn��e

�
, which clearly is

���n�
p
n�.

In other words, CTL+ is exponentially more succinct than CTL.

It is easy to come up with a formula of lengthO�n
� equivalent to �n:

�
�

EF�p���� � EF�p���� � � � � � EFp��n���� � � � � (3)

where � ranges over all permutations on f	� � � � � n
 �g.

3 Alternating Tree Automata

As indicated in the abstract and the introduction, I will use an automata-theoretic
argument to prove Theorem 1. In this section, the automaton model I work with
is introduced. It differs from other models used in the literature in several re-
spects. First, it can handle trees with arbitrary degree of branching in a simple
way. Second, the class of objects accepted by an automaton as used here is a
class of pointed Kripke structures rather than just a set of trees. Both facts make
it much easier to phrase theorems such as Theorem 2 below and also simplify
the presentation of a combinatorial (lower-bound) argument like the one given in
Section 6.

Format. An alternating tree automaton (ATA) is a tuple

A � �Q�P� qI � 
��� (4)

where
– Q is a finite set of states,
– P is a finite subset of Prop,
– qI � Q is an initial state,
– 
 is a transition function as specified below, and
– � is an acceptance condition for �-automata such as a Büchi or Muller
condition.
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The transition function 
 is a function Q 
 �P � TC�Q�, where TC�Q� is
the set of transition conditions over Q, which is defined to be the smallest set
satisfying the following conditions.
1. 0 and 1 are transition conditions over Q.
2. For every q � Q, q is a transition condition over Q.
3. For every q � Q, �q and �q are transition conditions over Q.
4. If � and � are transition conditions over Q, then � � � and � � � are
transition conditions over Q.

A transition condition is said to be �-free if 2. is not needed to build the condition.
An ATA is said to be �-free if every condition 
�q� a� for q � Q and a � �P is
�-free; it is said to be in normal form if it is �-free and every condition 
�q� a� is in
disjunctive normal form.

I will use a notational convention with ATA’s analogous to the one used with
trees and Kripke structures.

Behavior. ATA’s work on pointed Kripke structures. Their computational be-
havior is explained using the notion of a run.

Assume A is an ATA as above and �K� wI� a pointed Kripke structure as
above. A run ofA on �K� wI� is a �W 
Q�-labeled tree

R � �V�E� �� (5)

satisfying the conditions described further below.
To explain these conditions, we need some more definitions. For simplicity in

notation, I will write wR�v� and qR�v� for the first and second component of ��v�,
respectively.

For every node v of R, I define what it means for a transition condition �
over Q to hold in v, denotedK�R� v j� � . This definition is by induction on the
structure of � , where the boolean constants 0 and 1 and the boolean connectives
are dealt with in the usual way. Further:
– K�R� v j� q if there exists v� � Scs�R� v� such that ��v�� � �wR�v�� q�,
– K�R� v j� �q if there exists v� � Scs�R� v� such that qR�v�� � q and
wR�v

�� � Scs�K� wR�v��, and
– K�R� v j� �q if for every w � Scs�K� wR�v�� there exists v� � Scs�R� v�
such that ��v�� � �w� q�.

I can now state the two additional conditions that are required of a run.

1. Initial condition. Let v� be the root of �V�E�. Then ��v�� � �wI � qI�.
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2. Local consistency. For every v � V ,

K�R� v j� 
�qR�v�� L�wR�v�� � P � � (6)

Note that the intersection with P allows us to deal easily with the fact that in
our definition of Kripke structure an infinite number of propositional variables is
always present.

A run R is said to be accepting if the state labeling of every infinite path
through R satisfies the given acceptance condition �. For instance, if � 	
�Q is a Muller condition, then every infinite path v�� v�� � � � through R must
have the property that the set formed by the states occurring infinitely often in
qR�v��� qR�v��� � � � is a member of �.

A pointed Kripke structure is accepted by A if there exists an accepting run
ofA on the Kripke structure. The class of pointed Kripke structures accepted by
A is denoted by K�A�; it is said to be the class of pointed Kripke structures that
is recognized byA.

4 Reduction to Automata-Theoretic Problem

In order to reduce the lower bound claim for the translation from CTL+ to CTL
to a claim on alternating automata, I describe the models of a CTL formula by an
alternating tree automaton, following the ideas of Kupferman, Vardi, and Wolper,
[2], but using the automaton model introduced in the previous section.

Let � be an arbitrary CTL formula and P the set of propositional variables
occurring in �. The ATAA� is defined by

A� � �Q�P� �� 
��� (7)

where
– Q is the set of all CTL subformulas of � including � itself,
– � is the Muller acceptance condition that contains all sets of subformulas
of � that do not contain formulas starting with EU, or AU, and

– 
 is defined by induction as follows. The induction base and the rules for �,
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�, and X are:

�	� a� � 	 � 
��� a� � � �


�p� a� �

�
� � if p � a,
	 � else,


��p� a� �
�
� � if p �� a,
	 � else,


�� � �� a� � � � � � 
�� � �� a� � � � � �


�EX�� a� � �� � 
�AX�� a� � �� �

The rules for U are:


�EU��� ��� a� � � � �� ��EU��� ��� � (8)


�AU��� ��� a� � � � �� ��EU��� �� � �AU��� ��� � (9)

The rules for R are perfectly dual to the rules for U:


�ER��� ��� a� � � � �� � �ER��� �� ��ER��� ��� � (10)


�AR��� ��� a� � � � �� � �ER��� ��� � (11)

Note that on the right-hand sides of the above equations the boolean connectives�
and � are part of the syntax of transition conditions, whereas on the left-hand sides
they are part of CTL formulas. I should also mention that the additional conjunct
�EU��� �� in the rule for AU��� �� and the additional disjunct �ER��� �� take
care of worlds without successors (dead ends). To simplify this, one could as well
introduce an always successful state qS (with 
�qS� a� � � for every a � �P ) and
an always failing state qF (with 
�qF � a� � 	 for every a � �P ) and replace the
additional conjunct by �qS (“there exists a succesor”) and the additional disjunct
by �qF (“there exists no successor”).

Similar to [2], we prove:

Theorem 2 Let � be an arbitrary CTL formula of length l. Then A� is an ATA
with at most l states such that Mod��� � K�A��.

Proof. The proof goes by induction on the length of �, the base cases being
trivial. Of the two boolean connectives, � and �, I treat only one, namely con-
junction; disjunction is dealt with in the same way. Similarly, I treat only EX of
the two operators involving X; the universal version is dealt with in the same way.

In the following let �K� w� be an arbitrary pointed Kripke structure.
Assume � � � � � and that A� and A� work correctly. Further, assume

�K� w� j� �. Then, by definition of the semantics of CTL, �K� w� is a model
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of � and of �, which means there are accepting runs R� and R� of A� and A�

on �K� w�. Let T be a one-node tree with root label �w� �� and suppose v is the
root of T . Clearly, T � f�v�R��� �v�R��g is an accepting run of A� on �K� w�.
Conversely, ifR is an accepting run ofA� on a pointed Kripke struckture �K� w�,
then, by definition of the transition function and because of local consistency,
the root of R must have two successors v� and v� labeled �w� �� and �w� ��,
respectively. The subtrees R�v� and R�v� are accepting runs of A� and A� on
�K� w�. By induction hypothesis, this means �K� w� j� � and �K� w� j� �,
which implies �K� w� j� �.

Next, let � � EX�. First, assume �K� w� j� �. Then, by definition of
the semantics of CTL, there exists w� � Scs�K� w� such that �K� w�� j� �. By
induction hypothesis, there is an accepting runR ofA� on �K� w�. As above, this
run can be easily modified so as to become an accepting run of A� on �K� w�:
let T be a one-node tree with root v labeled �w� ��; then T � �v�R� is such a
run. Conversely, assume R is an accepting run of A� on �K� w�. Because of
local consistency, the root of R has a successor v labeled �w�� �� where w� is a
successor of w inK. As R is an accepting run of A�, R�w� is an accepting run
ofA�. Thus, by induction hypothesis, �K� w�� j� �, hence �K� w� j� �.

Now, let � � EU��� ��. First, assume �K� w� j� �. Then there exists a
maximal path � � w�� w�� w�� � � � and i � 	 such that
– �K� wj� j� � for every j 
 i, and
– �K� wi� j� �.

The inductive assumption implies:
– there exists an accepting runRj ofA� on �K� wj� for every j 
 i, and
– there exists an accepting runRi ofA� on �K� wi�.

Let T be an arbitrary path of length i with nodes v�, � � � , vi such that every node
vj is labeled �wj� ��. Consider the treeR defined by

R � T � f�vj�Rj� j j � ig �

I claim this tree is an accepting run of A� on �K� w�. The only thing to verify
is local consistency for the nodes v�� � � � � vi. So let j � i. There are two cases
to distinguish. First, assume j 
 i. Remember that vj is labeled �wj� �� and
recall (8). Clearly, the second disjunct holds true in vj: the root ofRj , which is a
successor of vj, takes care of the first conjunct, and vj�� takes care of the second
conjunct. Second, consider vi. Remember that by construction vi has a successor
labeled �wi� ��. So the first disjunct of (8) holds in vi.

For the converse, assume there is an accepting run R of A� on �K� w�. Be-
cause of local consistency, (8) guarantees one of the following.
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1. There exists an infinite path v�� v�� � � � through R starting in the root of R
such that ��v�� � �w� �� and for every j the following holds.
(a) qR�vj� � � and wR�vj��� � Scs�K� wR�vj��.
(b) There exists v�j � Scs�R� vj� with qR�v�j� � � and wR�v�j� � wR�vj�.

2. There exists a finite path v�� � � � � vi through R starting in the root of R
such that for every j 
 i, the aforementioned conditions 1.(a) and 1.(b)
hold. Further, 1.(a) holds for j � i and there exists v�i � Scs�R� vi� with
qR�v

�
i� � � and wR�v�i� � Scs�K� wR�vi��.

The first option is impossible: it implies that � � EU��� �� occurs infinitely often
on the path v�, v�, � � � , contradicting the acceptance condition. So 2. holds true.
Let’s rewrite 2. using the induction hypothesis: there exists a finite pathw�� � � � � wi

starting with w� such that for every j 
 i, �K� wj� j� � and �K� wi� j� �.
Extending w�� � � � � wn to a maximal path shows �K� w� j� �.

The argument for � � AU��� �� is similar to the argument for EU��� ��. In
the first part, where it needs to be shown that if a pointed Kripke structure satisfies
� then it is accepted by A�, one uses that if �K� w� j� � then there exist set
W��W� 	 W such that
– � holds in every world ofW�,
– � holds in every world ofW�,
– on everymaximal path through �K� w�worlds fromW� appear until a world
fromW� appears.

Using this and the induction hypothesis, one constructs an accepting run of A�

on �K� w� similar to above. In the second part of the proof, where it needs to be
shown that if A� accepts then �K� w� j� �, the additional conjunct �EU��� ��
guarantees that in 1. and 2. above the path is infinite respectively ends in a node
that satisfies the additional condition mentioned under 2.

The proofs for � � ER��� �� and � � �� are similar to the proofs for
� � EU��� �� and � � EU��� ��, respectively.2 �

It should be noted that in the above definition ofA� one could use a mode of
acceptance simpler (and weaker) than Muller’s mode, but this is not relevant in
this context. See also [2].

So in order to prove Theorem 1 we only need to show:

Theorem 3 Every ATA recognizing Mod��n� has at least
�

n
dn��e

�
states.

2As ER��� �� is the negation of AU������� and AR��� �� is the negation of EU�������
we could also use the fact that if one exchanges� with � and �with � in an ATA then the resulting
ATA recognizes the complement class. But this we haven’t proved here. Of course, it follows from
determinacy theorems such as the one given in [12].
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This is what we are going to show in the two subsequent sections.
The following proposition states that without loss of generality we can restrict

our considerations to ATA’s in normal form.

Proposition 1 For every ATA there exists an equivalent ATA in normal form with
the same number of states.

Proof. Clearly, it is enough to show that for every ATA there exists an equivalent
�-free ATA with the same number of states, and this is what I prove.

The construction that is used in the proof of this proposition is similar to the
class-room construction that is used to convert NFA’s into �-free NFA’s by building
“�-closures.” The situation here is only a little more involved; one has to define
what the �-closure of a transition condition is.

The formal proof goes as follows. AssumeA is an arbitrary ATA. Let A� be
the ATA that results fromQ as follows.
– The state set is replaced by Q � �f���g 
Q�.
– In every transition condition 
�q� a� subformulas of the form�q and �q are
replaced by ��� q� and ��� q�, respectively.

– For every state q � Q, 
���q� a� and 
���q� a� are set to 1.
For every state q � Q, denote byAq the ATA that results fromA

� by changing its
initial state to q. Observe that in the values of the transition function of the Aq’s
neither � nor � occurs.

Let q � Q and a � �P . A set M 	 f���g 
 Q is an �-option of �q� a� if
there exists an accepting runR ofAq on the pointed one-node Kripke structure a
such thatM is the of all states from f���g
Q occurring inR. The �-closure of
�q� a�, denoted ��q� a�, contains all �-options for �q� a�.

For every set M 	 f���g 
 Q let �M be a conjunction which for every
element �X� q� contains the formulaXq as a conjunct but no other conjuncts.

A choice function for �q� a� is a function mapping every subformula q� of

�q� a� to an element of ��q�� a�. Given a choice function � for �q� a�, the formula
��a� q� is obtained from 
�q� a� by replacing every occurrence of a subformula q�

by ���q��.
To obtain an �-free ATA equivalent to A, one only needs to modify the tran-

sition function as follows. For every �q� a� � Q 
 �P , replace 
�q� a� by the
disjunction

W
��q� a� where � ranges over all choice function for �q� a�. So, in par-

ticular, if there is no choice function � for �q� a�, the disjunction is empty, which,
as usual, is interpreted as false. Formally, the resulting transition condition is 0.

It should be clear that the resulting ATA is an �-free ATA equivalent toA. �
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In other words, all we need to show is:

Theorem 3� Every ATA in normal form recognizing Mod��n� has at least
�

n
dn��e

�
states.

5 The General Setting

The method I use to prove Theorem 3� (a cut-and-paste argument) does not only
apply to the specific properties defined by the �n’s but to a large class of “path
properties.” As with many other situations, the method is best understood when
presented in its full generality. In this section, I explain the general setting and
present the extended version of Theorem 3�, namely Theorem 4.

In the following, word stands for nonempty string or �-word. The set of all
words over a given alphabetA is denoted byA�. A language is a subset of ��P ��

where P is some finite subset of Prop. Given a language L over some alphabet
�P , EL denotes the class of pointed Kripke structures �K� w� where there exists
a maximal path through �K� w� whose labeling (restricted to the propositional
variables in P ) is an element of L. (Remember that a path through a pointed
Kripke structure always starts in its distinguished world.)

Observe that for every n, we clearly have Mod��n� � ELn where

Ln � fa�a� � � � � P�
n j �i�i 
 n� �j�pi � aj��g

and Pn � fp�� � � � � pn��g.
Let L be a regular language. We say a family f�ui� u�i�gi�m is a discriminating

family for L if uiu�i � L and uiu�j �� L for all i 
 m and all j 
 m with
j �� i. Obviously, the number of classes of the Nerode congruence3 associated
with L is an upper bound form. The maximum numberm such that there exists a
discriminating family of that size for L is denoted ��L�.

The generalized version of Theorem 3� now reads:

Theorem 4 Let L be a regular language. Then every ATA recognizing EL has at
least ��L� states.

Before we turn to the proof of this theorem in the next section, let’s apply it to
the languages Ln (as defined above) to obtain the desired lower bounds.

3The Nerode congruence of a language L is the congruence that considers strings u and v
equivalent if for every word x (including the empty word), ux � L iff vx � L.
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Fix an arbitrary positive natural number n � � and let m � dn��e and t ��
n
m

�
. Write N for the set f	� � � � � n 
 �g and 
 for set-theoretic complementation

with respect toN . For everyM 	 N , let u�M� be a string over �Pn of length jM j
such that for every pi �M , the letter fpig occurs in u�M�. (In other words, u�M�
should be a sequence of singletons where for each i �M the singleton fpig occurs
exactly once and no other singleton occurs.) LetM�� � � � �Mt�� be an enumeration
of allm-subsets of N and let ui � u�Mi� and u�i � u� 
Mi�. Then f�ui� u�i�gi�t is a
discriminating family for Ln, which means ��Ln� �

�
n

dn��e

�
. So from Theorem 4,

we can conclude that Theorem 3� is true, which means Theorem 1 is true as well.
(Observe that for n � � the claim is trivial.)

The only thing left is the proof of Theorem 4. This is what we will do in the
next section.

6 Saturation

In this section, where our objective is to prove Theorem 4, we will see trees in two
different roles. On the one hand, we will look at runs of ATA’s, and runs of ATA’s
are trees by definition. On the other hand, we will consider Kripke structures
that are trees. In order to not get confused, I will strictly follow the notational
conventions introduced earlier, for instance, that the labeling function of a runR�

is referred to by ��. As we will only work with Kripke structures that are trees,
I will use the term Kripke tree. A Kripke tree will also be viewed as a pointed
Kripke structure where the root of the tree is the distinguished node.

For the rest of this section, fix a language L over some alphabet �P , and an
arbitrary ATA A. For each state q, write Aq for the ATA that results from A by
changing its initial state to q and Kq for the class K�Aq�, the class of pointed
Kripke structures recognized byAq.

As stated above, the main argument in the proof of Theorem 4 will be a cut-
and-paste argument for runs of alternating tree automata. Clearly, transition con-
ditions of the form �q make runs complicated, because they require to consider
all successors of a world (rather than just one). So we will try to “avoid” as many
�q conditions as possible. Formally, we use the following definition.

Let u be a string, K a Kripke tree, and q a state of A. The Kripke tree K
avoids q in u if u �K �� EL andK �� Kq. If there exists a Kripke tree avoiding
q in u, then q is avoidable in u. The set of all states avoidable in u is denoted by
avd�u�. For every state q � avd�u�we pick once and for all a Kripke tree avoiding
q in u and denote it byKu

q .
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The important observation here is that if K is a Kripke tree, w � W , and
q � avd�K�w�, then K� defined by K� � K � �w�Ku

q � with u � K�w has
the following two properties. First, if K �� EL, then K� �� EL. Second, there
exists no accepting run R of A on K� that has a node v with wR�v� � w and
K��R� v j� �q. In a certain sense, by addingKq

u, the condition �q is “avoided”
in w.

So adding avoiding trees as subtrees avoids conditions of the form �q. On the
other hand, the added subtrees can potentially satisfy conditions of the form �q
which were not satisfied before. This leads to the following definition.

Let q, K, and u as above. Further, let q� be another state of A. The state q
makes q� successful in u ifKu

q � Kq� . If there exists a state q making q� successful
in u, then q� is successful in u. The set of all states successful in u is denoted
by scf�u�. For every state q � scf�u�, we pick once and for all a state making q
successful in u and denote it by qu.

A world w in a Kripke treeK is saturated if for every state q � avd�K�w�,
that is, for every state q avoidable inK�w, there exists w� � Scs�K� w� such that
K�w� �Ku

q with u �K�w.
LetK be an arbitrary Kripke tree. The completion ofK is the Kripke treeKc

defined by

Kc �K � f�w�Ku
q � j w � Inn�K�, u �K�w, and q � avd�K�w�g � (12)

that is, inKc, every inner node fromK is saturated.

Remark 1 LetK be an arbitrary Kripke tree. IfK � EL, thenKc � EL.
This is because every maximal path through K is also present in Kc; no

successors are added to leaves.
In the next two paragraphs, I will introduce the notion of a “partial run,” which

combines avoidable and successful states in one definition and connects runs on
Kripke trees with their completions.

Let � be an arbitrary transition condition over Q and X� Y 	 Q. The X-Y -
reduct of � , denoted �X�Y , is obtained from � by replacing
– every atomic subformula of the form �q with q � X by 	,
– every atomic subformula of the form �q with q � Q nX by �, and
– every atomic subformula of the form �q with q � Y by 1.
Let K be an arbitrary Kripke tree. A partial run of A on K is defined just

as an ordinary accepting run with the following modification of local consistency.
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For every v � V such that wR�v� � Inn�K�, it is required that

K�R� v j� �Xv �Yv
v (13)

where

�v � 
�qR�v�� L�wR�v�� � P � � (14)

and

Xv � avd�K�wR�v�� � Yv � scf�K�wR�v�� � (15)

For ease in notation, I will write IntNds�R� for the set of all v � V with wR�v� �
Inn�K�, the set of all interior nodes of R. Accordingly, I will write FrtNds�R�
for the set of all v � V with wR�v� � Lvs�K�, the set of all frontier nodes ofR.
(Observe that both definitions also refer to K, which is, for ease in writing, not
mentioned in the notation.)

Note that in general neither � implies �X�Y nor �X�Y implies � . So there is no
apriori relation between the existence of runs and partial runs. But we have the
following.

Lemma 1 Let K be an arbitrary Kripke tree. Assume K�A� � EL and K �
K�A�. Then there exists a partial run ofA onK.

Proof. Since we assume K�A� � EL andK � K�A�, we know, by Remark 1,
there exists an accepting runR� ofA onKc. An appropriate “restriction” of this
run is a partial run ofA onK.

Formally, restrictions of runs are defined as follows. Let R be a run of A on
a Kripke treeK and assumeW� is a subset of W containing the root ofK. The
restriction ofR toW� is the maximal subgraph ofR which is a tree and contains
the root ofR and only nodes v with wR�v� � W�.

I claim that the restriction R of R� on W is a partial run of A on K. Ob-
viously, the initial condition and the acceptance condition are satisfied. We only
have to check for local consistency in the sense of (13).

Let v � IntNds�R� be arbitrary, and write q for qR�v�, w for wR�v�, and u for
K�w. We have

Kc�R�� v j� � (16)
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where� is some disjunct of �v (as defined in (14)). Without loss of generality, we
can assume� is of the form�

q��Q�

�q� �
�

q��Q�

�q�
�
q��Q�

�q� �
�
q��Q�

�q� (17)

where Q� 	 avd�u�, Q� � avd�u� � �, Q� 	 scf�u�, and Q� � scf�u� � �. By
construction, w is saturated, which means Q� must be the empty set. (Recall that
for every q� � avd�u� there is no accepting run ofA onKq�

u , which is a subtree of
Kc rooted at some successor of w.) Therefore, �� defined by

�� �
�
q��Q�

�q� �
�
q��Q�

�q� (18)

is (equivalent to) a disjunct of �Xv �Yv
v (withXv and Yv as defined in (15)). I claim

K�R� v j� �� � (19)

which is obviously enough. AsR results fromR� by a restriction to the worlds of
K, (16) implies

K�R� v j�
�
q��Q�

�q� � (20)

which means the first big conjunct of �� is satisfied.
To see that the other big conjunct is satisfied, assume q� � Q�. Then there

exists v� � Scs�R�� v� such that qR��v�� � q� because of the local consistency
of R�. We only need to show that wR��v�� � W , because if this is true, then v�

belongs toR and is a successor of v inR. For contradiction, assumewR��v�� does
not belong toW . ThenKc�wR��v�� �Kq��

u for some state q�� � avd�u�. But this
would mean q� � scf�u�—a contradiction. �

Letm be a natural number. A Kripke treeK ism-branching if for every world
w � W the following is true. For every successorw� ofw there exist at leastm
�
other successors w�� � � � � wm�� of w such that all subtreesK�w�, � � � ,K�wm��

are isomorphic.
Let R be a partial run of A on a Kripke tree K. The run R is distributed

if for every w � W there exists at most one v � V with wR�v� � w. The set
of frontier pairs of R, denoted FrtPrs�R�, is defined by FrtPrs�R� � f��v� j
v � FrtNds�R�g. Similarly, the set of frontier states ofR, denoted FrtSts�R�, is
defined by FrtSts�R� � fqR�v� j v � FrtNds�R�g. (Observe that this definition
refers toK, but, for ease in writing, it is not mentioned in the notation.)
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Lemma 2 LetK be a jQj-branching Kripke tree andR a partial run ofA onK.
Then there exists a distributed partial runR� of A onK such that FrtSts�R�� 	
FrtSts�R�.

Proof. This is a straightforward inductive argument. Remember that in a partial
run no constraint of the form �q is important. �

The crucial lemma connecting saturated trees and partial runs is as follows.

Lemma 3 Let K be a Kripke tree and R a distributed partial run of A on K.
Assume that for every q � FrtSts�R�, there exists a Kripke tree Kq � Kq such
that the treeK� defined by

K� �K � f�w�Kq� j �q� w� � FrtPrs�R�g (21)

does not belong to EL.
Then there exists an accepting run ofA on the Kripke treeK�� defined by

K�� �Kc � f�w�Kq� j �q� w� � FrtPrs�R�g � (22)

which does not belong to EL.

Note that because R is supposed to be distributed, the treesK� andK�� are
obtained fromK andKc, respectively, by adding to each leaf at most one of the
treesKq.

Proof. I first construct a run R�� of A on K�� and then argue it is in fact
accepting.

By assumption,Kq � Kq for every q � FrtSts�R�. So we can pick an accept-
ing runRq ofAq onKq for every q � FrtSts�R�.

Remember that for every q � scf�u�, the state q� defined by q� � qu is a state in
avd�u� such that there exists an accepting run ofAq onK

u
q� . So for every v � V

and q � scf�K�wR�v��, we can pick an accepting run �R
v
q of Aq on K

u
q� where

u �K�wK�v� and q� � qu.
Also, remember that for every q � Q n avd�u� and every Kripke treeK� such

that u �K� �� EL, there exists an accepting run ofAq onK�. So for every v � V ,
q �� avd�K�wR�v��, and w � Scs�K��� wR�v��, we can pick an accepting run
�R
w

q ofAq onK���w.
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Consider the treeR�� defined by

R�� � R � f�v� �Rv
q� j v � IntNds�R� and q � scf�R�v�g (23)

� f�v� �Rw

v � j v � IntNds�R�, q � Q n avd�K�v�� (24)

and w � Scs�K��� wR�v��g (25)

� f�v�Rq� j v � FrtNds�R� and q � qR�v�g � (26)

I claim that R�� is an accepting run of A on K��. First of all, the initial
condition is satisfied. Clearly, the acceptance condition is satisfied as well. And
as all runsRw

q , �R
v
q , and �R

w

v are accepting, we only need to show

K���R��� v j� �v (27)

for every v � V .
So let v � V be arbitrary, and write w for wR�v�, q for qR�q�, and u forK�w.

Note that wR�v� � wR���v� and qR�q� � qR���v�. We distinguish two cases. In
the first case, when v � FrtNds�R�, there is nothing to show because of the trees
we added to R in (26). (Remember that R is assumed to be distributed.) The
other case, where v � IntNds�R�, is more complicated.

We know

K�R� v j� �� � (28)

where �� is some disjunct of �Xv �Yv
v , say

�� �
�
q��Q�

�q� (29)

with Q� � scf�u� � �. Let � be the corresponding disjunct of �v, say

� �
�
q��Q�

�q� �
�
q��Q�

�q� �
�
q��Q�

�q� � (30)

with Q� 	 scf�u� and Q� � avd�u� � �. I will argue that

K���R��� v j� � � (31)

which obviously is enough. To this end, we consider the three big conjuncts of�,
one by one.
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BecauseK�� results fromK by only adding worlds and because of (28), we
have

K���R��� v j�
�
q�Q�

�q � (32)

This shows the first big conjunct of � holds.
From (23) we can conclude that for every q� � Q� there exists v� � Scs�R��� v�

such that R���v� is isomorphic to �R
v
q� , in particular, wR���v�� � q�. This shows

the second big conjunct of � holds.
From (24) we can conclude that for every q� � Q� and everyw� � Scs�K��� w�

there exists v� � Scs�R��� v� such thatR���v� is isomorphic to �R
w�

q� , in particular,
����v�� � �q�� w��. This shows the third big conjunct of � holds. �

We can now prove Theorem 4.

Proof of Theorem 4. Let f�ui� u�i�gi�m be a discriminating family for L of size
��L� andA an ATA with K�A� � EL. I claim that for every i 
 m, there exists a
state q such that u�i � Kq, but u�j �� Kq for j 
 m and j �� i. This clearly implies
the claim.

By way of contradiction, assume this is not the case. Then there exists i 
 m
such that for every q � Q with u�i � Kq there exists j �� i such that u�j � Kq. For
every such q let jq be an appropriate index j.

Let K be a jQj-branching Kripke tree such that every maximal path starting
with the root is labeled uiai where ai is the first letter of u�i. Consider the Kripke
tree K� defined by K� � K � f�w� u�i� j w � Lvs�K�g. Clearly, K� � EL
(because every maximal path through K� is labeled uiu�i). Thus, by Lemma 1,
there exists a partial run of A onK�. By restricting this run to the worlds inK,
just as in the proof of Lemma 1, we obtain a partial run ofA onK. This run has
the obvious property that for every q � FrtSts�R� there exists an accepting run of
Aq on u�jq . So, by Lemma 2, there also exists a distributed partial run with this
property. This run, in turn, together with the u�jq’s replacing theKq satisfies the
assumptions of Lemma 3. Therefore, the Kripke treeK�� as defined in Lemma 3,
which does not belong to EL, is accepted byA—a contradiction. �

7 Further Consequences

One can show that Theorem 2 also holds for the modal �-calculus (see, for in-
stance, [2]). As the proof of the two previous sections does not depend on the ac-
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ceptance conditions used, we also obtain: every modal �-calculus formula equiv-
alent to the CTL+ formula

E�Fp� � � � � � Fpn��� (33)

has length at least
�

n
dn��e

�
. This is interesting because of the following.

As the modal �-calculus is closed under syntactic negation, the above also
says that every modal �-calculus formula equivalent to the CTL+ formula

A�G�p� � � � � �G�pn��� (34)

has length at least
�

n
dn��e

�
. And, clearly, this property can easily be expressed

by an alternation-free �-calculus (AFMC) formula (according to the definition of
alternation-freeness as introduced by Emerson and Lei in [7]), because it can be
expressed in CTL. On the other hand, the set of all �-words over �Pn satisfying
the linear-time temporal property

G�p� � � � � �G�pn�� (35)

is recognized by a nondeterministic Büchi word automaton (NBW) with n � �
states. We therefore have:

Corollary 1 There is an exponential lower bound for the translation NBW ��
AFMC in the sense of Kupferman and Vardi, [10].

This answers a question left open by Kupferman and Vardi in [10].
Further, the translation from CTL formulas to alternating tree automata does

not make use of the fact that we are starting from a formula; it would also work
if we were given a “CTL circuit,” that is, a DAG whose nodes are labeled with
propositional variables and their negations, � and �, and the operators EX, AX,
� � � , provided with a straightforward semantics. So we can also state:

Corollary 2 Every CTL circuit equivalent to the CTL+ formula

E�Fp� � � � � � Fpn� � (36)

has at least
�

n
dn��e

�
gates.
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