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Abstract

We show that the monadic second-order theory of any hyperalgebraic tree, i.e., an infinite
tree generated by a higher-order grammar of level 2, is decidable. Thus, for grammars
of level 2, we can remove the safety restriction from our previous decidability result [10],
although the question if this extends to higher levels remains open. The proof goes via

a characterization of (possibly unsafe) second-order grammars by a new variant of higher-
order pushdown automata, which we call panic automata. In addition to the standard pop

1

and pop
2

operations, these automata have an option of a destructive move called panic.
To show that the MSO theory of a tree recognized by a panic automaton is decidable,
we give a reduction to a suitable parity game, which itself can be MSO-defined within a
2-tree. We then use the decidability of the MSO theory of a 2-tree [18].

Introduction

Context-free tree grammars constitute the basic level in an infinite hierarchy of higher-order
grammars introduced by W. Damm [5] (building on the earlier ideas of [7]). Courcelle [4]
proved decidability of the monadic second-order (MSO) theory of any algebraic tree, i.e., a tree
generated by an algebraic (context-free) tree grammar. Later Knapik et al [10, 11] attempted
to extend the decidability result for algebraic trees to all levels of the Damm hierarchy. This
has been achieved partially, namely with an additional syntactic restriction imposed on the
grammars, called safety . In this paper we show the decidability for all grammars of the
second level of the hierarchy, also called hyperalgebraic grammars. In order to achieve this, we
introduce a new model of stack automata that captures all hyperalgebraic grammars in the
same way as second-order pushdown automata capture safe second-level grammars.

Context-free grammars can be seen as program schemes, i.e., recursive definitions of functions.
Higher-order grammars correspond to higher-order program schemes, i.e., when functions can
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take higher-order arguments. The tree generated by such a grammar describes completely the
semantics of the program scheme. Thus decidability of the MSO theory of such a tree implies
decidability for a large class of properties of behaviours of higher-order program schemes.

The safety requirement, roughly speaking, prevents the use of individual parameters in the
functional arguments of higher-order functions. This requirement was crucial in the previous
decidability results [10, 11]. The concept of safe (tree) grammars has been further justified
by a characterization in terms of higher-order pushdown automata originally introduced by
Maslov [12]: the trees generated by safe higher-order grammars of level n coincide with the
trees recognized (in suitable sense) by pushdown automata of level n [11]. Caucal [3] gave
a very elegant, “internal” characterization of the same hierarchy of trees, now often referred
to as Caucal hierarchy . Starting from regular trees, he has obtained the subsequent levels of
the hierarchy by applying two graph operations: inverse regular mapping and unfolding.

The above mentioned results suggest that some new tools may be needed to cope with unsafe
grammars. In this paper we characterize the second-level (hyperalgebraic) grammars by an
extension of second-order pushdown automata. We introduce a new destructive operation that
we call panic. This operation seems to be essential for capturing the power of unsafe grammars,
as it permits us to simulate the change of environment needed to evaluate parameters of unsafe
productions.

We further use the characterization of grammars by panic automata to show that the monadic
second-order theory of an infinite tree generated by any hyperalgebraic grammar is decidable.
As the algorithm is uniform, we obtain decidability of the model-checking problem for the
hyperalgebraic grammars. To show that the MSO theory of a tree recognized by a panic
automaton (of level 2) is decidable, we follow the ideas of [17]. That is, we reduce the problem
to solving a suitable parity game, which itself can be defined within a 2-tree. We then use the
decidability of the MSO theory of a 2-tree [18].

At present we do not know if the safety requirement really restricts the generating power of
the tree grammars. We conjecture that it is the case, and hope that panic automata can
be useful in proving this conjecture. Recently, de Miranda and Ong have studied the safety
restriction [13]. They have shown that it is inessential for the word grammars of level 2, where
a grammar, as usual, can generate a set of words. To simulate a non-safe grammar by a safe
one, they use nondeterminism in an essential way. Thus this result is not directly applicable
to the setting we consider here.

While finishing the work on this paper, the authors became aware that a result similar to the
main result of this paper had just been independently obtained by Klaus Aehlig [1].

1 Tree grammars

Types and terms

We consider a set of types T constructed from a unique basic type 0. Thus, 0 is a type and,
if τ1, τ2 are types, so is (τ1 → τ2) ∈ T . The operator → is assumed to associate to the right.
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Note that each type is of the form τ1 → · · · → τn → 0, for some n ≥ 0. A type 0 → · · · → 0

with n+ 1 occurrences of 0 is also written 0
n → 0.

The level `(τ) of a type τ is defined by `(0) = 0, and `(τ1 → τ2) = max(1 + `(τ1), `(τ2)).
Thus 0 is the only type of level 0 and each type of level 1 is of the form 0

n → 0 for some
n > 0. A type τ1 → · · · → τn → 0 is homogeneous (where n ≥ 0) if each τi is homogeneous
and `(τ1) ≥ `(τ2) ≥ . . . ≥ `(τn). For example a type ((0 → 0) → 0) → (0 → 0) → (0 → 0 →
0) → 0 → 0 is homogeneous, but a type 0 → (0 → 0) → 0 is not.

A typed alphabet is a set Γ of symbols, each symbol γ in Γ given a type τ in T , which we write
by γ : τ . We extend Γ to the set T (Γ) of applicative terms over Γ, inductively, by the rule

• if t : τ1 → τ2 and s : τ1 then (ts) : τ2.

Note that each applicative term can be presented in a form Zt1 . . . tn, where n ≥ 0, Z ∈ Γ, and
t1, . . . , tn are applicative terms. We adopt the usual notational convention that application
associates to the left, i.e. we write t0t1 . . . tn instead of (· · · ((t0t1)t2) · · · )tn. For applicative
terms t, t1, . . . , tm, and symbols z1, . . . , zm, of appropriate types, the term t[z1:=t1, . . . , zk:=tk]
is defined as the result of simultaneous replacement in t of zi by ti, for i = 1, . . . ,m.

Trees

The free monoid generated by a set X is written X∗ and the empty word is written ε. The
length of word w ∈ X∗ is denoted by |w|.

A tree is any nonempty prefix-closed subset T of X∗ (with ε as the root). If u ∈ T , x ∈ X,
and ux ∈ T then ux is an immediate successor of u in T . For w ∈ T , the set T.w = {v ∈ X∗ :
wv ∈ T} is the subtree of T induced by w. Note that T.w is also a tree, and T.ε = T .

Now let Σ be a signature, i.e., a typed alphabet of level 1. A symbol f in Σ is of type 0
n → 0,

for n ≥ 0, and can be viewed as a (first-order) function symbol of arity n. Let T ⊆ ω∗ be
a tree. A mapping t : T → Σ is called a Σ-tree provided that if t(w) :0k → 0 then w has
exactly k immediate successors which are w1, . . . , wk (hence w is a leaf whenever t(w) :0).
The set of Σ-trees is written T

∞

(Σ).

If t : T → Σ is a Σ-tree, then T is called the domain of t and denoted by T = dom t. For
v ∈ dom t, the subtree of t induced by v is a Σ-tree t.v such that dom t.v = (dom t).v, and
t.v(w) = t(vw), for w ∈ dom t.v.

We also need a concept of limit. For a Σ-tree t, let t¹n be its truncation to the level n, i.e., the
restriction of the function t to the set {w ∈ dom t | |w| ≤ n}. Suppose t0, t1, . . . is a sequence
of Σ-trees such that, for all k, there is an m, say m(k), such that, for all n, n′ ≥ m(k),
tn¹k = tn′¹k. (This is a Cauchy condition in a suitable metric space of trees.) Then the limit
of the sequence tn, in symbols lim tn, is a Σ-tree t which is the set-theoretical union of the
functions tn¹m(n) (understanding a function as a set of pairs).

In the sequel, we will often consider labelled trees (of bounded branching) more freely, but
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it will be always clear from the context that they can be presented in the above way, with
a suitable choice of signature Σ.

Monadic second-order logic

Let R be a relational vocabulary , i.e., a set of relational symbols, each r in R given with an
arity ρ(r) > 0. The formulas of monadic second order (MSO) logic over vocabulary R use two
kinds of variables: individual variables x0, x1, . . ., and set variables X0, X1, . . . Atomic formulas
are xi = xj , r(xi1 , . . . , xiρ(r)

), and Xi(xj). The other formulas are built using propositional
connectives ∨,¬, and the quantifier ∃ ranging over both kinds of variables. (The connectives
∧,⇒, etc., as well as the quantifier ∀ are introduced in the usual way as abbreviations.)
A formula without free variables is called a sentence. Formulas are interpreted in relational
structures over the vocabulary R, which we usually present as A = 〈A, {rA : r ∈ R}〉, where
A is the universe of A, and rA ⊆ Aρ(r) is a ρ(r)-ary relation on A. A valuation is a mapping v
from the set of variables (of both kinds), such that v(xi) ∈ A, and v(Xi) ⊆ A. The satisfaction
of a formula ϕ in A under the valuation v, in symbols A, v |= ϕ is defined by induction on ϕ
in the usual manner. The monadic second-order theory of A is the set of all MSO sentences
satisfied in A, in symbols MSO(A) = {ϕ : A |= ϕ}.

Let Σ be a typed alphabet of level 1, and suppose that the maximum of the arities of symbols
in Σ exists and equals mΣ. A tree t ∈ T

∞

(Σ) can be viewed as a logical structure t, over the
vocabulary RΣ = {pf : f ∈ Σ} ∪ {di : 1 ≤ i ≤ mΣ}, with ρ(pf ) = 1, and ρ(di) = 2:

t = 〈dom t, {ptf : f ∈ Σ} ∪ {dti : 1 ≤ i ≤ mΣ}〉.

The universe of t is the domain of t, and the predicate symbols are interpreted by pt

f = {w ∈

dom t : t(w) = f}, for f ∈ Σ, and dti = {(w,wi) : wi ∈ dom t}, for 1 ≤ i ≤ mΣ. We refer the
reader to [16] for a survey of the results on monadic second-order theory of trees.

Grammars

Let X = {Xτ}τ∈T be an infinite typed alphabet of variables (or parameters).A grammar is a
tuple G = (Σ, V,S, E), where Σ is a signature (i.e., a finite alphabet of level 1), V is a finite
set of nonterminals, each of a fixed, homogeneous type, S ∈ V is a start symbol of type 0,
and E is a set of productions of the form

Fz1 . . . zm ⇒ w

where F : τ1 → τ2 · · · → τm → 0 is a nonterminal in V , zi is a variable of type τi, and w is an
applicative term of type 0 in T (Σ ∪ V ∪ {z1 . . . zm}). The level of a grammar is the highest
level of its nonterminals.

In this paper, we are interested in grammars as generators of Σ-trees. Let Σ⊥ = Σ ∪ {⊥},
with ⊥ : 0. First, with any applicative term t over Σ ∪ V , we associate an expression t⊥ over
signature Σ⊥ inductively as follows.

• If t = f , f ∈ Σ, then t⊥ = f .
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• If t = X, X ∈ V , then t⊥ = ⊥.

• If t = (sr) then if s⊥ 6= ⊥ then t⊥ = (s⊥r⊥), otherwise t⊥ = ⊥.

Informally speaking, the operation t 7→ t⊥ replaces in t each nonterminal, together with its
arguments, by ⊥. It is easy to see that if t is an applicative term (over Σ∪ V ) of type 0 then
t⊥ is an applicative term over Σ⊥ of type 0. Recall that applicative terms over Σ⊥ of type 0

can be identified with finite trees.

We will now define the single-step rewriting relation →
G

between terms over Σ∪V . Informally
speaking, t →

G
t′ whenever t′ is obtained from t by replacing some occurrence of a nonter-

minal F by the right-hand side of the appropriate production in which all parameters are in
turn replaced by the actual arguments of F . Such a replacement is allowed only if F occurs
as a head of a subterm of type 0. More precisely, the relation →

G
⊆ T (Σ ∪ V ) × T (Σ ∪ V ) is

defined inductively by the following clauses.

• Ft1 . . . tk →
G
t[z1:=t1, . . . , zk:=tk] if there is a production Fz1 . . . zk ⇒ t (with zi : ρi,

i = 1, . . . , k), and ti ∈ T (Σ ∪ V )ρi
, for i = 1, . . . , k.

• If t→
G
t′ then (st) →

G
(st′) and (tq) →

G
(t′q), whenever the expressions in question are

applicative terms.

A reduction is a finite or infinite sequence of terms in T (Σ ∪ V ), t0 →
G
t1 →

G
. . .. As usual,

the symbol →→G stands for the reflexive transitive closure of →G . We also define the relation
t ³∞

G t′, where t is an applicative term in T (Σ ∪ V ) and t′ is a tree in T
∞

(Σ⊥), by

• t′ is a finite tree, and there is a finite reduction sequence t = t0 →
G
. . .→

G
tn = t′, or

• t′ is infinite, and there is an infinite reduction sequence t = t0 →
G
t1 →

G
. . . such that

t′ = lim t⊥n .

To define a unique tree produced by the grammar, we recall a standard approximation ordering
on T

∞

(Σ⊥): t′ v t if dom t′ ⊆ dom t and, for each w ∈ dom t′, t′(w) = t(w) or t′(w) = ⊥.
(In other words, t′ is obtained from t by replacing some of its subtrees by ⊥.) Then we let

[[G]] = sup{t ∈ T
∞

(Σ⊥) : S ³∞
G t}

It is easy to see that, by the Church-Rosser property of our grammar, the above set is di-
rected, and hence [[G]] is well defined since T

∞

(Σ⊥) with the approximation ordering is a cpo.
Furthermore, it is routine to show that if an infinite reduction S = t0 →

G
t1 →

G
. . . is fair ,

i.e., any occurrence of a nonterminal symbol is eventually rewritten, then its result t′ = lim t⊥n
is [[G]].

In this paper we only study grammars of level 2, which we call hyperalgebraic, as they constitute
the next level above the algebraic (context-free) grammars.
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2 Panic automata

Let us start with basic concepts. A level 1 pushdown store (or a 1-pds or 1-stack) over an
alphabet A is simply a non-empty word a1 . . . al over A. A level 2 pds (or a 2-pds or 2-stack)
is a non-empty sequence s1 . . . sl of 1-pds’s, which may also be written as [s1][s2] . . . [sl] or
as s′[sl], where s′ stands for [s1][s2] . . . [sl−1]. The 1-stack si is called the i-th row of s. The
intuition is that push-down stores grow to the right, so that, for instance, the symbol a is on
top of the 1-stack wa, while wa is on top of s[wa].

The following operations are possible on push-down stores of level 1:

• push1〈 a 〉(s) = sa;

• pop1(sa) = s;

On push-down stores of level 2 one can perform the following operations:

• push2(s[w]) = s[w][w];

• pop2(s[v][w]) = s[v];

• push1〈 a 〉(s[w]) = s[wa];

• pop1(s[wa]) = s[w];

The operation pop2 (resp. pop1) is undefined on a 2-stack s if it contains only one row (resp.
the top row of s has only one element). We will use top(s) to denote the top element of the
top row of a 2-stack s.

Now let Σ be a signature, and let Q and Γ be finite sets. Let ⊥ ∈ Γ be a distinguished element
of Γ. The set I of instructions (parameterized by Σ, Q and Γ) consists of all tuples of the
following forms:

1. (push1〈 a 〉, p), where p ∈ Q, and a ∈ Γ, a 6= ⊥.

2. (push2, p), where p ∈ Q.

3. (popk, p), where p ∈ Q and k = 1, 2.

4. (panic, p), where p ∈ Q.

5. (f, p1, . . . , pr), where f ∈ Σr and p1, . . . , pr ∈ Q.

A panic automaton is defined as a tuple

A = 〈Σ, Q,Γ, q1, δ,⊥〉,

where Σ is a signature, Q is a finite set of states, with an initial state q1, Γ is a stack alphabet,
with a distinguished bottom symbol ⊥, and δ : Q × Γ → I is a transition function. That is,
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a panic automaton is a second-order push-down store automaton (cf. [11]) with one additional
type of instruction (panic, p). Because of this new instruction, a push-down store of a panic
automaton contains some additional information.

A configuration of an automaton A as above is a pair (q, s), where q ∈ Q, and s is a 2-pds over
Γ×ω (where ω denotes the set of natural numbers). The initial configuration is (q1, [(⊥, 0)]).

We define the relation →A on configurations as follows. In all the conditions below it is
assumed that s = [s1] . . . [sl], and (q,m) = top(s).

1. If δ(q, a) = (push1〈 a
′ 〉, q′) then 〈q, s〉 →A 〈q′, push1〈 a

′, l − 1 〉(s)〉.

2. If δ(q, a) = (push2, q
′), then 〈q, s〉 →A 〈q′, push2(s)〉.

3. If δ(q, a) = (popk, q
′), k = 1, 2, then 〈q, s〉 →A 〈q′, popk(s)〉 (provided popk(s) is defined).

4. If δ(q, a) = (panic, q′) then 〈q, s〉 →A 〈q′, [s1] . . . [sm]〉, provided that 2 ≤ m < l. In this
case we write [s1] . . . [sm] = panic(s).

5. If δ(q, a) = (f, p1, . . . , pr) then 〈q, s〉 →A 〈pi, s〉, for all i = 1, . . . , r.

If one of the clauses (1)–(4) holds then we can write →◦
A instead of →A. The symbol →→A

stands for the reflexive and transitive closure of →A, and similarly for →→◦
A.

The idea of the second component in the push-down store is the following. A new symbol
a ∈ Γ is placed on the top of the stack together with the number of the stack row which
is directly below the current top row. Later the symbol can be duplicated several times by
subsequent executions of push2, but the second component keeps record of the level when it
first appeared in the stack.

It is easy to see that if a 2-pds [s1] . . . [sl] can be obtained by →→A from the initial configuration
then, for each symbol (a,m) in the row si, we have m < i. In particular, panic(s) is defined
(case 4 above), provided l ≥ 2.

In the sequel it will be convenient to separate the “material content” of a push-down store
(symbols in Γ) from the “history information” given at the second component. More specifi-
cally, let s = [s1] . . . [sn] be a 2-stack over Γ×ω, with si = (ai,1,mi,1) . . . (ai,ki

,mi,ki
), for all i.

We define
D(s) = {(i, j) : 1 ≤ i ≤ n and q ≤ j ≤ ki}.

So pairs in D(s) identify all positions in the 2-stack s. We call the mapping θs : (i, j) 7→ mi,j ,
for (i, j) ∈ D(s), the panic distribution for s. Again, it is easy to see that if the 2-pds
is reachable from the initial configuration then θ is monotone in both its arguments and
θ(i, j) < i for all i. Let π1(s) be the 2-pds over Γ obtained by projection of s on the first
component. Clearly, given π1(s) and θs, we can non-ambiguously reconstruct s.

In the sequel, we will usually present a configuration (q, s) as a triple (q, s′, θ), where s′ = π1(s)
and θ = θs. We will also occasionally write panic(s′) for the projection on the first component
of panic(s).
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Let t : T → Σ be a Σ-tree. A partial function % : T → C (where C is the set of all configurations)
defined on an initial fragment of T is called a partial run of A on t iff the following condition
holds:

If %(w) = 〈q, s, θ〉 for some w ∈ T then δ(q, a) = (f, p1, . . . , pr), where f = t(w)
and a = top(s). In addition 〈pi, s〉 →→

◦
A %(wi), for each i = 1, . . . , r when %(wi) is

defined.

If a partial run is a total function then it is called a run. As our automaton is deterministic,
there can be at most one tree over which A has a run. This is the tree accepted by A.

3 Automata to grammars

This section is not relevant to our main result and is added merely for completeness. Here we
prove that if a panic automaton accepts a tree then this tree must be hyperalgebraic.

We assume that the given automaton A hasm states, identified with numbers 1, . . . ,m, and we
use the abbreviation 1 = 0m → 0. The grammar we construct has the following nonterminals:

• For each q ∈ Q and each a ∈ Γ, there is a nonterminal Fa
q of type 1m → 0m → 0m → 0.

• In addition there are nonterminals S : 0, Void 1 : 1 and Void2 : 0.

Before introducing the rules of the grammar we will show how we are going to represent stacks
by expressions. Let s = [s1] . . . [sl] be a 2-pds, and let si = a1

i . . . a
ki

i , for all i = 1, ..., l. By

s|i,j we denote the pds [s1] . . . [si−1][a
1
i . . . a

j
i ]. Of course we have D(s|i,j) ⊆ D(s). Fix a panic

distribution θ for s. Then a restriction of θ to D(s|i,j) is a panic distribution for s|i,j , also
denoted by θ. By induction with respect to (i, j) we define m-tuples of terms:

• Ci : 0m, representing the 2-pds s|i,ki
;

• ci,j : 1m, representing the 1-pds [a1
i , . . . a

j
i ].

A stack is represented by an m-tuple. The q-th component πq(Ci) of this tuple should be
understood as the representation of the stack in state q.

We begin with C0 and ci,0, defined as follows

C0 = (Void2, . . . ,Void2), ci,0 = (Void1, . . . ,Void1).

Suppose Cj′ and ci′,j′ are defined for all (i′, j′) lexicographically preceding (i, j). Then:

• ci,j = (F
a

j
i

1 ci,j−1Cd, . . . ,F
a

j
i

m ci,j−1Cd) where d = θ(i, j) or d = 0 if i = 1;

• Ci = (π1(ci,ki
)Ci−1, . . . , πm(ci,ki

)Ci−1);
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Write Codeq,s,θ for πq(Cl). This term represents the configuration (q, s, θ).

The initial production of our grammar is

S ⇒ F⊥
q1

→

Void1

→

Void2

→

Void2,

where
→

Void1 stands for m occurrences of Void 1, and similarly for
→

Void2. Other productions
are as follows. Below we write

→
ϕ for ϕ1 . . . ϕm and similarly for

→
x and

→
y . The intuition

to be associated with the rules is that a term of the form F a
q

→
ϕ
→
x
→
y is a representation of

a configuration of the automaton.

• Fa
q

→
ϕ
→
x
→
y ⇒ Fa

p

→
ϕ
→
x (Fa

1
→
ϕ
→
x
→
y ) . . . (Fa

m

→
ϕ
→
x
→
y ), if δ(q, a) = (push2, p).

• Fa
q

→
ϕ
→
x
→
y ⇒ F b

p(Fa
1

→
ϕ
→
x) . . . (Fa

m

→
ϕ
→
x)

→
y
→
y , if δ(q, a) = (push1〈 b 〉, p).

• Fa
q

→
ϕ
→
x
→
y ⇒ yp, if δ(q, a) = (pop2, p).

• Fa
q

→
ϕ
→
x
→
y ⇒ ϕp →

y , if δ(q, a) = (pop1, p).

• Fa
q

→
ϕ
→
x
→
y ⇒ xp, if δ(q, a) = (panic, p).

• Fa
q

→
ϕ
→
x
→
y ⇒ f(Fa

p1

→
ϕ
→
x
→
y , . . . ,Fa

pr

→
ϕ
→
x
→
y ), if δ(q, a) = (f, p1, . . . , pr).

Lemma 3.1 Let (q, s, θ) →A (p, s′, θ′). Then Codeq,s,θ →G Codep,s′,θ′ .

Proof: The proof is similar to the proof for ordinary pds automata [11] in cases when the
computation step →A is an ordinary push-down operation. In the case of panic, one should
observe that the production Fa

q

→
ϕ
→
x
→
y ⇒ xp applied to Codeq,s,θ, where s = [s1, . . . , sl] and

sl is of length kl, delivers the code of sθ(l,kl).

Lemma 3.2 Let % be the run of A on t : T → Σ and let w ∈ T . Let %(w) = (q, s, θ),
with top(s) = a, and let δ(q, a) = (f, p1, . . . , pr). Then S →→G t

′, for some finite tree t′ with
t′(w) = Codeq,s,θ.

Proof: Induction with respect to the length of w.

Proposition 3.3 A tree accepted by a panic automaton must be hyperalgebraic.

Proof: From Lemmas 3.1 and 3.3.

4 Grammars to automata

Now we show the converse of Proposition 3.3. If a tree is generated by an arbitrary grammar
of level 2, then it is accepted by a panic automaton.
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Suppose a second-order grammar G generates t : T → Σ. With no loss of generality we may
assume that the initial nonterminal S does not occur at the right hand sides of productions.

Let ◦1, ◦2, . . . be new identifiers of type 0, not occurring in G. These identifiers are called
holes. The word operator abbreviates “variable or nonterminal”.

We construct a panic automaton A accepting t. The push-down alphabet Γ of A consists of
subterms of the right hand sides of the productions of G, possibly applied to some holes, so
that the result is of type 0. More precisely, let u = Ft1 . . . td be such a subterm, where F is
an operator of type τ1 → · · · → τd → 0k → 0. Then u ◦1 . . . ◦k ∈ Γ. In particular, if u : 0 then
simply u ∈ Γ.

The holes ◦1, . . . , ◦k represent “missing arguments” of the operator F . Since holes are new
identifiers, one can safely identify Ft1 . . . td ◦1 . . . ◦k with Ft1 . . . td if this is convenient.

The idea of our simulation is that the top of pds (an expression u) represents a variable-
free expression u′ occurring in a derivation of G. Since the pds alphabet must be finite, the
term u′ can only be an “approximation” of u. This approximation is “evaluated” to yield an
approximate representation of the next step of reduction. The contents of the pds represents
an environment in which the evaluation takes place. The environment is searched if one needs
to find the meaning of a variable, or to find a missing argument.

The bottom pds symbol is S, the initial nonterminal. This is our first approximation. The
automaton then works in phases, each phase beginning and ending in the distinguished state q1.
We now describe the possible behaviour in a phase, beginning with a configuration (q1, s, θ).

T1 Let top(s) = Fu1 . . . ud, where F is a nonterminal, and let the corresponding production
be Fx1 . . . xn ⇒ u. The right hand side u of this production is our next approximation.
That is, the automaton executes the instruction δ(q1,Fu1 . . . ud) = (push1〈u 〉, q1).

In other words, as long as the current approximation begins with a nonterminal, we
can determine the next production. The top-level information about such productions
is recorded on the pds. In some cases, this top-level information is sufficient to make
actual progress: we finally obtain an expression beginning with a terminal symbol.

T2 If top(s) = ft1 . . . tn where f is a terminal, then the the automaton executes the instruc-
tion δ(q1, ft1 . . . tn) = (f, p1, . . . , pr), followed (at the i-th branch of the run) by a pop1

and push1〈 ti 〉. That is, the next approximation at the i-th branch is ti. (The latter
applies only when r 6= 0. In case when r = 0, i.e., when f is a constant, there is of
course no further step.)

T3 Let top(s) = x, where x is an (ordinary) variable of type 0. To “evaluate” x, the automaton
restores the environment where x was defined. It executes pop1 and inspects the new
top symbol. It should be of the form Ft1 . . . te, where F is a nonterminal. In addition,
the variable x should be one of the formal parameters of F , say, the j-th one. The
next approximation is tj , and it should be evaluated in the present environment (that
of the caller). Another pop1 is now executed, followed by a push1〈 tj 〉, and the machine
returns to state q1.

T4 Let top(s) = ϕu1 . . . uh where ϕ is a variable of type 0h → 0. If we now executed a pop1
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as above then the information about the actual parameters u1, . . . , uh would be lost.
Instead, a push2 is executed, followed by a pop1. Then we proceed as in the previous
case, but now the new approximant tj is an expression of a functional type and we
actually place tj ◦1 . . . ◦h on the pds rather than tj .

T5 The last case is when top(s) is a hole, say ◦i. The automaton gets now into a panic. After
the panic move the top of the pds should be ψv1 . . . vl for some variable ψ. The new
approximation is vi. We execute in order pop1 and push1〈 vi 〉 and return to state q1.

The last case requires some explanation. Let us observe first of all that holes (missing argu-
ments) are created when we attempt to evaluate a function variable (the fourth case). Holes
correspond to the arguments (actual parameters) of this function variable that were “left be-
hind” for a while. Later, a hole is found at top of the pds when we need to evaluate such
a missing argument of an operator. In order to do so, we must restore the situation from the
time of the call. It now becomes important how the panic distribution is defined. It points out
to exactly the moment in the past we need, namely to the stage when the hole was created.

Now we show the correctness of this construction. Assume for the beginning that we have
a 2-pds s = [s1, . . . , sl] with si = [ui,1, . . . , ui,ki

], for all i = 1, ..., l. Each ui,j is a subterm of
the right hand side of some rule (possibly filled with holes) and has type 0. We have defined
the automaton so that the stack content (in state q1, at the end of each phase) will have the
following additional properties:

P1 Every ui,j , except for j = ki, is a term starting with a nonterminal. Terms ui,ki
, for i < l

must begin with a variable, and only the topmost term ul,kl
is arbitrary.

P2 Every ui,j is of type 0 and of the form u′ ◦1 . . . ◦k where u′ contains no holes (holes can
only occur at the end). Only ul,kl

may simply be a hole.

P3 Variables appearing in ui,j are the formal parameters of the head nonterminal symbol in
ui,j−1. For all i, the element ui,1 is always S.

P4 If ui,j is not a hole and ends with h > 0 holes then d = θ(i, j) is defined and ud,kd
is

a term starting with a variable of type 0h → 0.

P5 If the top term ul,kl
is a hole ◦r then d = θ(i, j) is defined and ud,kd

is a term starting
with a variable of arity at least r (of type 0h → 0, where h ≥ r).

For each operator F of type τ1 → · · · → τr → 0 we define the virtual parameters of F as
x̄1, . . . , x̄r. These are new variables, i.e., variables not occurring in G and different from holes
(to avoid confusion we put bars over virtual parameters). The virtual parameters at (i, j)
(not to be confused with variables actually occurring in the expressions ui,j) are the virtual
parameters of the head symbol of ui,j .

Lemma 4.1 Every reachable configuration (q1, s, θ) of the automaton satisfies P1–P5.

Proof: It follows from the definition that the conditions P1–P5 are invariants of the com-
putations of the automaton.
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The next step is to define the meaning of an expression u at (i, j), written as [[u]]i,j . This
meaning is taken with respect to a fixed panic distribution θ. The expression u can contain
variables occurring in ui,j , virtual parameters at (i, j), and holes.

• If F is a signature constant or a nonterminal, then [[F ]]i,j = F for all i, j.

• If u is an application t1t2 then [[u]]i,j = [[t1]]i,j [[t2]]i,j .

• If u is a variable x then this variable is a formal parameter of the head symbol in ui,j−1,
say the e-th one. We put [[x]]i,j = [[x̄e]]i,j−1.

• If u is a virtual parameter x̄d, and ui,j = Ft1 . . . tr, for some F , then [[u]]i,j = [[td]]i,j .

• If u is a hole ◦r then [[◦r]]i,j = [[x̄r]]l,kl
, where l = θ(i, j).

Write [[s]]θ for [[ul,kl
]]l,kl

. This is the expression that will result from an “evaluation” of top(s)
under the environment provided by s and θ.

Lemma 4.2 For every reachable configuration (q1, s, θ) of the automaton, the meaning [[s]]θ
is a term of type 0, which contains no variables.

Proof: Straightforward.

Lemma 4.3 If (q1, s, θ) →→A (q1, s
′, θ′) and top(s) does not begin with a terminal then

[[s]]θ →→G [[s′]]θ.

Proof: Suppose that (q1, s, θ) →→A (q1, s
′, θ′) in at least one step, and that in addition no

configuration of the form (q1, s
′′, θ′′) occurs during this computation. We show that:

1. If top(s) begins with a variable or top(s) is a hole, then [[s]]θ = [[s′]]θ.

2. If top(s) begins with a nonterminal, then [[s]]θ →G [[s′]]θ.

We consider five cases, depending on the types T1–T5 of moves that A can do. The appropriate
type is in turn determined by top(s).

If A has made move of type T1 then top(s) = Fu1 . . . un and top(s′) = u where Fx1 . . . xn ⇒ u

is a production. Then [[s]]θ = (Fx1 . . . xn)[xl := [[ul]]i,j ]
n
l=1 and [[s′]]i,j+1 = u[xl := [[ul]]i,j ]

n
l=1,

so that indeed [[s]]θ →G [[s′]]θ.

Move of type T2 is not possible as top(s) does not start with a terminal.

In case of T3 we have top(s) = x : 0 then [[s]]i,j = [[x]]i,j = [[te]]i,j−1 = [[s′]]θ, where te is the
appropriate actual parameter.

For the case of T4 we have top(s) = ϕu1 . . . ud with ϕ a variable of type 0d → 0. Then [[s]]θ =
[[ϕ]]i,j [[u1]]i,j . . .[[ud]]i,j = [[te]]i,j−1[[u1]]i,j . . .[[ud]]i,j = [[te]]i+1,j−1[[◦1]]i+1,j−1. . .[[◦d]]i+1,j−1 = [[s′]]θ′ .
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Observe that the equality [[te]]i,j−1 = [[te]]i+1,j−1 follows from the fact that [[t]]i,j depends only
on the contents of si and on the contents of the 1-pds’s reachable from s|i,j by panic moves.

Finally, in the case of T5, we have top(s) = ◦r then [[s]]θ = [[◦r ]]i,j = [[x̄r]]d,kd
, where d = θ(i, j).

Given the shape of s′ (cf. condition P5) we have again [[s]]θ = [[s′]]θ′ .

Lemma 4.4 If (q1, s, θ) is a reachable configuration then (q1, s, θ) →→A (q1, s
′, θ′), where

top(s′) begins with a terminal or with a nonterminal.

Proof: Observe that if top(s) begins with a function variable and top(s′) does not begin with
a terminal or with a nonterminal then it must again begin with a function variable. Moreover
in this case, the top row of s′ is shorter than that of s. Thus the number of such steps is
bounded.

Now suppose that top(s) is a variable of type 0 or a hole. Then s′ is of a smaller size than s.
Thus, after a finite number of steps, the term on the top of the stack must begin with a terminal
or a nonterminal or with a function variable. But then the previous case applies.

Lemma 4.5 Suppose that A accepts a tree t. Then t is the tree generated by G.

Proof: Let % be the run of A on t. Observe that, for every w, %(w) is a configuration with
the state q1. Define tn as the term obtained by truncating t to level n and inserting [[sw]]θw

at
node w. We claim that S →→G tn for every n.

To prove the claim observe the following. If top(sw) = fu1 . . . un (and thus t(w) = f) then
[[swd]]θwd

= [[ud]]l,kl
, for d = 1, . . . , n, so that [[sw]]θ →G f [[sw1]]θw1

. . . [[swn]]θwn
. The above,

together with Lemma 4.3, implies the claim.

Lemma 4.6 Suppose that G generates a tree t. Then A accepts t.

Proof: We claim that any (properly) partial run can be extended. The automaton started
in any reachable configuration must eventually encounter a top(s) beginning with a terminal
or nonterminal (Lemma 4.4). In the latter case, a production is simulated and we again apply
Lemma 4.4. This cannot run forever.

Indeed, since G generates a tree, we can assume that every sequence of (leftmost) reductions
t1 →G t2 →G · · · must lead to a term beginning with a terminal. (Nonterminals that generate
loops can be eliminated as unreachable.)

Proposition 4.7 Each hyperalgebraic tree is accepted by a panic automaton.

Proof: From Lemmas 4.5 and 4.6.
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Remark. The proof of proposition 4.7 is based on an idea from [8]. The difference between
the construction in Section 4 and that in [8] is that, in the latter case, individual parameters
were passed by value. Thus, a nonlocal access to an individual meant an immediate access to
a register value and did not require any additional evaluation. In the present case, parameters
of type 0 are passed by name. This means that a variable of type 0 must be evaluated, and
for this a proper environment must be restored. This is exactly the use of panic: to restore
the environment in which a ground type expression is to be evaluated.

5 Automata as games

In the previous sections we have considered panic automata as acceptors of trees over some
signature. We will now study in more detail the full computation trees of automata. However,
in view of the subsequent applications, we will present here an extension of the concept of
panic automaton by two features: alternation and ranks.

An alternating panic automaton with ranks can be presented by

A = 〈Σ ∪ {e}, Q,Q∃,Γ, q1, δ,⊥,Ω 〉,

where e is a fresh symbol of type 02 → 0, Q∃ ⊆ Q is the set of existential states, and the
function Ω : Q→ ω assigns a rank Ω(q) to each state q.

Here 〈Σ ∪ {e}, Q,Γ, q1, δ,⊥〉 is a panic automaton as defined in Section 2 with the only
restriction that, for q ∈ Q∃ and any a ∈ Γ, the corresponding instruction has the form
δ(q, a) = (e, p1, p2), for some p1, p2 ∈ Q. (Intuitively, this is a nondeterministic choice.) The
states in Q−Q∃ are called universal .

The definition of the relation →A applies without changes.

Definition 5.1 The tree of all the computations of A, denoted Tr(A), is defined by the
following conditions.

• The root is labelled by the initial configuration of A.

• If a vertex is labelled by 〈q, s, θ〉 and δ(q, top(s)) = (f, q′1, . . . , q
′
r) then there are r sons

labelled 〈q′1, s, θ〉, . . . , 〈q
′
r, s, θ〉 respectively.

• If a vertex is labelled by 〈q, s, θ〉 but δ(q, top(s)) is not of the form (f, q ′1, . . . , q
′
r) then

there is only one son labelled by 〈q′, s′, θ′〉 such that 〈q, s, θ〉 →A 〈q′, s′, θ′〉.

We will now view Tr(A) as an arena of a parity game, denoted Gr(A). The game is played by
two players, Eve and Adam. The set of positions of the game is dom Tr(A). The positions of
Eve are those labelled by 〈q, s, θ〉 with q ∈ Q∃, the remaining ones are positions of Adam. The
rank of a position labelled by 〈q, s, θ〉 is Ω(q). The players start the play in the root of Tr(A),
and then move the token according to the move relation (always to an immediate successor of
the current position), thus forming a path in the tree. If a player cannot make a move, this
player looses. Otherwise, the result of the play is an infinite path in dom Tr(A) labelled by
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〈q0, s0, θ0〉, 〈q1, s1, θ1〉, . . . (with 〈q0, s0, θ0〉 being an initial configuration). Eve wins the play if
lim supn→∞ Ω(qn), i.e., the highest rank repeating infinitely often is even, otherwise Adam is
the winner. We refer the reader to [16] and, e.g., [2], for basic introduction to parity games.

Now let A be an ordinary panic automaton, as defined in Section 2 (it can be viewed as
a special case of the above, with Q∃ = ∅ and Ω constantly 0). Let T̂r(A) be a tree with
dom T̂r(A) = dom Tr(A) such that T̂r(A)(w) = 〈q, top(s)〉, whenever Tr(A)(w) = 〈q, s, θ〉.
Thus T̂r(A) projects Tr(A) on the set Q × Γ. As the label (q, a) determines the branching
degree of a node, we can view Q× Γ as a (finite) signature and T̂r(A) as a (Q× Γ)-tree. We
can further consider the monadic second-order theory of this tree as in Section 1 page 4, where
we have a predicate for each element of Q× Γ.

Remark: It is easy to see that the tree t accepted by the automaton A (cf. page 8) is MSO-
definable within the tree T̂r(A). Therefore, in order to establish decidability of the MSO
theory of t, it is enough to show decidability of the MSO theory of T̂r(A).

To this end, we will use a translation of MSO logic to automata, introduced already by
Rabin [15]. More specifically, let Σ be a finite signature. Then, for any MSO sentence ϕ over
the vocabulary RΣ (cf. Section 1, page 4), one can construct a non-deterministic parity tree
automaton Bϕ which accepts precisely the Σ-trees satisfying ϕ.1

Let us briefly recall the concept of a non-deterministic parity tree automaton over a signa-
ture Σ. It can be presented as a tuple

B = 〈Σ, Q, q1, δ,Ω〉

where Q is a finite set of states with the initial state q1, Ω : Q→ ω is a ranking function, and
δ is a transition relation, δ ⊆

⋃

f∈Σ(Q× {f} ×Qar(f)), where f : 0ar(f) → 0.

A run of the automaton B on a Σ-tree t is a tree r : dom r → Q with dom r = dom t, consistent
with the transition relation. That is, 〈r(w), f, t(w1), . . . , t(war(f))〉 ∈ δ, whenever t(w) = f .
A run r is accepting if lim supn→∞ Ω(r(vn)) is even, for any infinite path v0, v1, v2, . . . The
automaton accepts a tree t if it admits some accepting run on it.

By the considerations above,

Problem 1: Given a 2nd order grammar G and an MSO sentence ϕ; decide if the
tree [[G]] satisfies ϕ?

can be reduced to the problem:

Problem 2: Given a panic automaton A and a parity tree automaton B (over
signature Q× Γ); does B accept T̂r(A)?

1Originally, Rabin showed it for n-ary trees in slightly different setting, but the extension to the above
statement is straightforward; it can be found, e.g., in [14].
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We will now reduce the last problem to solving the game Gr(C) for a suitable alternating panic
automaton C with ranks. The automaton C will be obtained by a rather standard product
construction. We will use symbols QA, QB, QC etc. to distinguish between the items of the
respective automata. For simplicity, let us assume that, for each state p ∈ QB, and for each
symbol (q, a) ∈ QA × ΓA = ΣB, the automaton B has exactly two transitions: tr 1(p, q, a) and
tr2(p, q, a).

The states of C are QA×QB ∪QA× δB, and the existential states are precisely QA×QB. The
initial state is, of course, (qA1 , q

B
1 ). The stack alphabet of C coincides with the one of A. The

signature of C is Σ ∪ {e}. The transitions of C at the existential states are

δC(〈q, p〉, a) = (e, (q, tr 1(p, q, a)), (q, tr2(p, q, a)))

For universal states, the transitions simply follow the transitions of the two automata. It is
enough to define δC((q, γ), a) for the case where the transition γ of B corresponds to the
symbol (q, a). (By definition, only such states will be reachable.)

If δA(q, a) = (I, q′) where I is one of the operations push1〈 a
′ 〉, push2, popk, panic, we let

δC((q, γ), a) = (I, (q′, p′)) where γ = (p, (q, a), p′).

If δA(q, a) = (f, q1, . . . , qr), then (q, a) seen as a signature symbol of the automaton B is r-ary.
In this case we let

δC((q, γ), a) = (f, (q1, p1), . . . , (qr, pr)) where γ = (p, (q, a), p1, . . . , pr)

We claim the following.

Lemma 5.2 Eve has a winning strategy in the game Gr(C) iff the automaton B accepts the
tree T̂r(A).

Proof: The construction of C induces an obvious mapping from the arena of Gr(C), i.e.,
dom Tr(C), to dom Tr(A). As dom Tr(A) = dom T̂r(A), we can think of it as of a mapping
between Gr(C) and T̂r(A). In particular, an Eve’s position labelled by ((q, p), s, θ) in Tr(C)
corresponds to a node labelled by (q, s, θ) in Tr(A), and by (q, top(s)) in T̂r(A).

Now, a strategy for Eve in Gr(C) can be viewed as a choice of one of the successors in
every position of Eve. This corresponds to a non-deterministic choice of a transition by the
automaton B in its run on T̂r(A). So, given an accepting run, it is straightforward to construct
a winning strategy and vice versa.

Henceforth we will be interested in the decidability of:

Problem 3: Given an alternating panic automaton with ranks A; does Eve win
the game Gr(A)?
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6 Making panic automata rank-aware

Rather than solving directly the game Gr(A) introduced in the previous section, we will first
show that the problem can be reduced to solving games for automata A with some additional
good properties.

When an automaton makes a panic move in a configuration (q, s, θ), the contents of the pds
is brought back to a state which was already encountered earlier in the computation. More
precisely, if the next configuration is (q′, s′, θ′) then there has been a previous configuration
(p, s′, θ′), where s′ and θ′ were the same. We want to know what was the highest rank of
a state visited between (p, s′, θ′) and (q, s, θ).

We formulate the notion of a rank-aware automaton in terms of Tr(A). It is useful to recall
that a node of the tree determines a computation up to this node.

Definition 6.1 Consider a node v of Tr(A) labelled with 〈q, s, θ〉 such that panic(s) is defined.
Let v′ be the closest to v ancestor of v labelled with 〈q′, panic(s), θ′〉, for some q′ and θ′. We
call v′ the panic ancestor of v. A panic rank of v is the maximal rank of a state occurring
between the panic ancestor of v and v.

Definition 6.2 A panic automaton A with ranks is rank-aware iff there exists a function
Rank : Γ → Rg(Ω) such that the panic rank of every node v of Tr(A) labelled (q, s, θ) is equal
to Rank(top(s)). That is, the panic rank is determined by the top of the stack.

The goal of this section is to show that we can restrict our attention to rank-aware automata.

Lemma 6.3 For every automaton A with ranks there is a rank-aware automaton A′ such
that Eve has a winning strategy in Gr(A′) iff she has one in Gr(A).

The proof of Lemma 6.3 occupies the rest of this section. Consider an alternating panic
automaton A = 〈Σ∪{e}, Q,Q∃,Γ, q0, δ,⊥0,Ω 〉. We construct a rank-aware panic automaton
A′ = 〈Σ ∪ {e}, Q′, Q∃,Γ

′, q′0, δ
′,⊥′

0,Ω
′ 〉

The interpretation of Tr(A) in Tr(A′) is quite straightforward. The idea is that configurations
of A′ are like configurations of A with additional information stored on the stack. In particular,
the set of states Q is a subset of Q′ and the existential states are the same. The stack alphabet
of A is defined as Γ′ = Γ × {0, . . . , d} × {0, . . . , d}, where d is the highest rank in the range
of Ω. That is, each stack symbol is now of the form (a,mp,ml) and consists of an “ordinary”
stack symbol a plus an additional pair of numbers mp and ml. These are used to code the
information about panic rank as follows. If (a,mp,ml) is currently on top of the stack, then:

mp is the panic rank of the node;

ml is the highest rank of a state seen since the creation of the current top row.

We now define the transitions of the automaton A′. Sometimes we describe only the expected
behaviour of A′, leaving details to the reader. Below, the notation → and →→ abbreviates
respectively →A′ and →→A′ .
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Case 1: Let δ(q, a) = (f, q′1, . . . , q
′
r) for some q and a. Define transitions of the automaton A′

so that for all i (and all v, w, θ),

(q, v[w(a,mp,ml)], θ) →→ (q′i, v[w(a,m′
p,m

′
l)], θ),

where m′
p = max(mp,Ω(q′)) and m′

l = max(ml,Ω(q′)).

Case 2: If δ(q, a) = (q′, push1〈 b 〉) then

δ′(q, (a,mp,ml)) = (q′, push1〈 b,m
′
p,m

′
l 〉),

where m′
l = m′

p = max(ml,Ω(q′)).

Case 3: If δ(q, a) = (q′, push2) then A′ also executes push2 and adjusts the auxiliary infor-
mation so that:

(q, v[w(a,mp,ml)], θ) →→ (q′i, v[w(a,mp,ml)][w(a,m′
p,m

′
l)], θ

′),

where m′
p = max(mp,Ω(q′)) and m′

l = Ω(q′).

Case 4: If δ(q, a) = (q′, pop1) then the new automaton must of course execute a pop1, but
the information at the top must be also adjusted so that we have:

(q, v[w(b,m2
p,m

2
l )(a,m

1
p,m

1
l )], θ) →→ (q′v[w(b,m′

p,m
′
l)], θ

′)

where m′
p = max(m2

p,m
1
p,Ω(q′)) and m′

l = max(m1
l ,Ω(q′)).

Case 5: Let δ(q, a) = (q′, pop2). The automaton makes of course pop2 but it must also update
the auxiliary information:

(q, v[w2(b,m2
p,m

2
l )][w

1(a,m1
p,m

1
l )], θ) →→ (q′, v[w(b,m′

p,m
′
l)], θ)

where m′
p = max(m2

p,m
1
l ,Ω(q′)) and m′

l = max(m1
l ,m

2
l ,Ω(q′)).

Case 6: Finally, we consider the case δ(q, a) = (q′, panic). Of course, A′ must panic
too, but again we have to adjust the auxiliary values. Suppose that the configuration is
(q, v[w(a,m1

p,m
1
l )], θ) and after the panic we obtain (q′, v′[w′(b,m2

p,m
2
l )], θ

′). We want the
automaton to do the updates so that it arrives at the configuration (q ′, v′[w′(b,m′

p,m
′
l)], θ

′)
where m′

p = max(m1
p,m

2
p,Ω(q′)) and m′

l = max(m1
p,m

2
l ,Ω(q′)).

Each move of A is simulated by a sequence of moves of A′, beginning and ending in nodes
of the form (q, s, θ), where q is a state of A. We call such nodes the true nodes of Tr(A′).
During the simulation, A′ uses auxiliary states, not in Q. These auxiliary states are of rank
zero and they have no importance for the game. The correctness of the construction is implied
by Lemma 6.5 below. For the proof to go through we must also say what is the meaning of
the labels “inside” the stack and this requires an extension of Definition 6.1.

Definition 6.4 Consider a node v of Tr(A) labelled with 〈q, s, θ〉 and a position (i, j) ∈ D(s).
Let v′ be the closest to v ancestor of v labelled with 〈q′, [s1] . . . [sθ(i,j)], θ

′〉; where s = [s1] . . . [sl].
We call v′ the panic ancestor of the position (i, j) in s. The panic rank of (i, j) in v is the
maximal rank of a state occurring between the panic ancestor of (i, j) and v.
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Remark A panic ancestor of a node (cf. Definition 6.1) is the panic ancestor of the topmost
position of the stack from the label of the node.

The following lemma describes the invariant of the construction. In particular it implies the
properties of mp and ml announced before.

Lemma 6.5 Let v be a true node of Tr(A′) labelled with (q, s, θ). Let (a(i,j),m
(i,j)
p ,m

(i,j)
l )

be the element at the position (i, j) of the stack s. Let (n, kn) be the topmost position in s

and let (i, ki) be the top position of the i-th row of s. We have the following:

P1 The panic rank of (i, j) is max({m
(i,j)
p ,m

(i,ki)
p } ∪ {m

(x,kx)
l : x = i+ 1, . . . , n}).

P2 The value of m
(i,ki)
l is the maximal rank of a state visited since the i-th row of s was

created, but not after the i+ 1-th row of s was created.

Proof: The properties hold in the root of A′. We suppose that they hold in a true node v
of Tr(A′) and we show that they are satisfied in every next true node v ′ of Tr(A′). We proceed
by cases as in the definition of A′.

A general observation is that the panic rank of a position (i, j) in v ′ is just the maximum of
the panic rank of the position in v of Ω(q′), i.e., the rank of the newly seen state.

Case 1 The effect of updates m′
p = max(mp,Ω(q′)) and m′

l = max(ml,Ω(q′)) is that P1 is
satisfied (due to the remark above). Also obviously the new ml at the top of the stack should
be the maximum of the previous value and Ω(q′).

Case 2 In the case of push1, the panic return for the newly created position is the stack just
below. Thus the panic rank of the new position should be the maximum of the previous ml

and of Ω(q′). For the same reason, the new ml should be the same as the new mp. The panic
returns of all other positions satisfy P1.

Case 3 In the case of push2, the panic return for the newly created top symbol is the same as
for the previous top. Thus m′

p is just max(mp,Ω(q′)). The only state seen since the creation
of the new level is q′, thus m′

l = Ω(q′). These two changes also guarantee P1.

Case 4 In the case of pop1, the correctness of our definition of m′
p follows from P1. Also m′

l

is calculated from m1
l because the top row has not changed. To show that P1 is satisfied,

observe that m′
l ≥ Ω(q′) and that that return rank of any position in the stack is not smaller

then m2
p (the other returns go at least to the same depth as the top one). It follows that

property P1 still holds also in the top row.

Case 5 The case of pop2 follows directly from the properties P1 and P2.

Case 6 The main observation here is that by property P2 we have m2
p = max{m

(i,ki)
l : i =

d+ 1, . . . , n}, where d = θ(n, kn). Thus the settings of m′
p and m′

l are correct.
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7 Deciding the winner in Gr(C)

Let C be an alternating panic automaton with ranks over signature Σ∪{e}. We assume that C
is rank-aware, that is, we have a function Rank : Γ → {0, . . . , d} such that for any node (q, s, θ)
of Tr(A), the value of Rank(top(s)) is the highest rank of a state visited between the panic
ancestor and the current node.

We transform the game Gr(C) into a yet another game Game(C). The advantage of the latter
game is that we are able to define it within a 2-tree – a structure whose MSO theory is known
to be decidable.

A 2-tree is a structure obtained from an ordinary tree by the ?-operation considered2 in [18].
In general, for a structure M = 〈D, r, . . .〉 with a universe D, over some relational vocabulary
{r, . . .}, the ?-operation creates a new logical structure

M? = 〈D∗, son, clone, r?, . . .〉

over the universe D∗ (the free monoid generated by D). Here son(w,wd) and clone(wd,wdd)
hold for every w ∈ D∗ and d ∈ D, and r?(wd1, . . . , wdk) iff r(d1, . . . , dk). It is shown in [18]
that if the MSO theory of M is decidable, so is the MSO theory of M ?.

Intuitively, if T ⊆ X∗ is a tree then the 2-tree T ? is a tree of trees.3 Its nodes can be viewed
as the 2-stacks over X (cf. Section 2). By the definition of a 2-tree, there are edges from v[w]
to v[wx] for every x ∈ X; and there are also edges from v[w] to v[w][w] and to v. These edges
permit to define basic stack operations (without panic) in the 2-tree.

To explain the construction to follow, let us first recall how the computations of a level 1
pushdown automaton can be coded into a full tree (Γ ∪ Q)∗, where Γ is the stack alphabet
and Q is the set of states. A configuration is represented as a string from Γ∗Q. We put an
edge from waq to waa′q′ if there is a transition δ(q, a) = (q′, push(a′)) in the automaton.
For a transition δ(q, a) = (q′, pop), we put an edge from waq to wq′. This way we interpret
in the tree the graph of configurations of a pushdown automaton. This definition is clearly
formalizable in the MSO logic, hence by the Rabin Tree Theorem, the MSO theory of the
graph of configurations of a pushdown automaton is decidable.

For an ordinary 2-pushdown automaton (i.e. one without panic moves) we proceed similarly
but now in 2-trees. A configuration is represented as a sequence (Γ∗)∗(Γ∗Q). A push move
δ(q, a) = (q′, push(a′)) gives rise to an edge from v[waq] to v[waa′q′]. Similarly for pop.
Now, a transition δ(q, a) = (q′, push2) is represented by an edge from v[waq] to v[wa][waq′].
A transition δ(q, a) = (q′, pop2) gives rise to an edge from v[w′][waq] to v[w′q′]. These new
transitions are definable in MSO logic thanks to the additional relations we have in 2-tree. As
the MSO-theory of a 2-tree ((Γ∪Q)∗)? is decidable [18], we get the decidability result for the
pushdown graphs of 2-stack automata.

The method does not work directly for panic automata because a move δ(q, a) = (q ′, panic)
would require an edge from a node v[waq] to v′[w′q′] where v′[w′] is the prefix of v[w] deter-

2The idea of this operation can be traced back to Shelah, Semenov, and A.A. Muchnik (cf. [18]).
3Of course, T

? should not be confused with the subset of X
∗ obtained by the closure of T under the

language-theoretical star operation.
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mined by the panic distribution. It seems to be difficult (impossible?) to code panic distri-
bution information directly into configurations. Therefore, we take here another approach,
based on alternation: a nondeterministic panic prediction followed by a universal verification.

Let us explain the idea of panic prediction. When we perform a push2 move, then we get
a new possible place where panic moves can return, namely the row, say l-th, just below the
newly created (l + 1)-st row. At this moment we guess all possible states with which we will
do a panic return to the l-th row. (Actually we need to know also the maximal rank of a state

seen in the meantime, so we will guess an element of Ret = Q
·
→ {0, . . . , d}, rather than

just a subset of Q. But for a moment let us assume that it is just a set of states that we are
guessing.) Guessing a set R′ allows us to check at the same time as simulating the push2 move,
what will happen when we return to the stack of height l with a state from R′. We can do this
because now we have stack of height l at hand (and this is what we will miss while making
the panic move). Suppose that we have checked that, from all states in R′, the behaviour of
the automaton is correct. We can now keep this R′ as a guarantee for all the positions from
which we will want to do a panic move to the stack of height l. Whenever in such a position
the automaton wants to make a panic move (q′, panic), we do not simulate this move at all,
but simply check if q′ is in the set of predicted states, i.e., in R′. If so, we know that we
have explored the future of the computation already, so we can stop here and accept. If not,
we have incorrectly predicted the set of returns and we abort the whole process. Hence, it is
enough to keep the right R′ in the right positions. This is what is happening below and this
is why we change the stack alphabet to Γ×Ret . The states are also from Q×Ret , as we want
to keep the last prediction handy in case we want to create a new position.

Before we describe the construction we introduce a useful ordering on ranks:

m 4 n iff











m ≤ n and both even

m ≥ n and both odd

m odd and n even

Intuitively if m 4 n then m is a rank at most as good as n with respect to the acceptance
condition. The least element in this order is the largest odd number in {0, . . . , d}.

The set of returns can now be defined as:

Ret = Q
·
→ {0, . . . , d},

i.e. as the set of all partial functions from states to ranks. Intuitively, such a function assigns
to each state q the worst, in 4-order, panic rank still acceptable for the panic moves ending
in state q.

We proceed with the definition of Game(C) over a 2-tree (X∗)?, where the underlying set X is

(Γ × Ret) ∪ (Q× Ret) ∪ Ret ∪ {⊥,>} ∪ {push2(q, b) : q ∈ Q, b ∈ Ret ∪ {?}}

The positions of the game are just the elements of (X∗)?.

We are ready to define the moves of the game. They will correspond to the possible moves
of C. From a vertex s[w(a,R)(q,R′)] we put edges:
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• to s[w(a,R)(qi, R
′)] for δ(q, a) = (f, q1, . . . , qr), i = 1, . . . , r, where f ∈ Σ ∪ {e};

• to s[w(a,R)(a′, R′)(q′, R′)] for δ(q, a) = (q′, push(a′));

• to s[w(a,R)R′][w(a,R)push2(q
′, ?)] for δ(q, a) = (q′, push2);

• to s[w(q′, R′)] for δ(q, a) = (q′, pop1);

• to s′[w′′(q′, R′′)] for δ(q, a) = (q′, pop2), where s = s′[w′′R′′];

• to > for δ(q, a) = (q′, panic) if Rank(a) < R(q′);

• to ⊥ for δ(q, a) = (q′, panic) if Rank(a) 6< R(q′) or R(q′) not defined.

The intuition behind the transition to > is that if the priority seen since panic ancestor, which
is given by Rank(a), is not worse than previewed by R(q′) then we can just accept without
further verification.

From a vertex s[w · push2(q
′, ?)] there is an edge to s[w · push2(q

′, R′)] for every R′ ∈ Ret .

From a vertex s[wR][w · push2(q
′, R′)] we have the edges to:

• s[wR][w(q′, R′)]; and

• s[w(q′′, R)] for every q′′ ∈ dom R′ (recall that R′ is a partial function).

This completes the definition of the underlying graph of the game Game(C).

The vertices of Eve will be:

• the vertices ending in push2(q, ?);

• the vertices where the rule (e, q0, q1) was applied (note that these vertices are well defined
as the automaton is deterministic).

A finite play terminating in position > is won by Eve, while in ⊥ Adam is the winner.

Finally, we need to define the winning condition for infinite plays. This will be again a parity
condition, but this time given in terms of ranks associated to the edges of the game graph.

Definition 7.1 A rank of an edge is defined by the following clauses:

• if it links s[wR][w · push2(q
′, R′)] to s[w(q′′, R)] then the rank is R′(q′′);

• for all other edges it is the rank of the state in source node of the edge.

Lemma 7.2 For a given rank-aware alternating panic automaton C, it is decidable if Eve has
a winning strategy in Game(C).
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Proof: By construction, the arena of the game, i.e., the move relation and ranking of edges
are definable in the MSO theory of the 2-tree (X∗)?. It is well known that the set of winning
positions in a parity game is MSO definable in the arena; it follows in particular from the
µ-calculus definition of this set (see, e.g., [2]). Then the result follows from the decidability of
the MSO theory of the 2-tree (X∗)? [18].

Theorem 7.3 Eve wins in Game(C) iff she wins in Gr(C).

The theorem is proved by the two following lemmas. But first we need some definitions.

Definition 7.4 We say that a vertex v = [w1R1] . . . [wkRk][wk+1(q,Rk+1)] represents a con-
figuration (q, s, θ) if

• s = [s1] . . . [sk+1] and for all i, si = wi ↓1, i.e. s is the projection of wi on first components
(wi is a word over Γ × Ret and si is a word over Γ).

• for every (i, j) ∈ D(s) we have Ri,j = Rθ(i,j)+1, where Ri,j is the second component of
the symbol occurring in v at the position (i, j).

Definition 7.5 Let n, o, be nodes of Gr(C). We say that o makes a panic jump of type
(ρ, q′, l) over n if

• δ(q, top(s)) = (q′, panic); where (q, s, θ) is the configuration labelling o;

• panic ancestor of o is an ancestor of n;

• panic(s) is a 2-stack containing l 1-stacks;

• ρ = Rank(top(s)).

Lemma 7.6 If Adam wins in Gr(C) then he wins in Game(C).

Proof: Fix a winning strategy σ for Adam in Gr(C). This is a subtree of the game tree
Gr(C). We “copy” it to get a winning strategy in Game(C).

Suppose that the play is in the position v[w(q,R)] = [w1R1] . . . [wkRk][wk+1(q,Rk+1)] and
there is an associated node n of Gr(C) with the following properties:

• v represents the label of n which is (q, s, θ);

• if in the strategy tree σ there is a descendant o of n that makes a panic jump of type
(ρ, q′, l) over n then ρ 6< Rl(q

′).

We determine the next move of Adam in Game(C) by copying the move of Adam in σ from n.
This is easy in all the cases but if the move from n is (q′, push2). In this case in Game(C), Adam
must move to v[wR][w · push2(q

′, ?)]. Now Eve chooses a position v[wR][w · push2(q
′, R′)]. If

there is a state q′′ such that in σ there is a panic jump from some descendant o of n to n of type
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(ρ, q′′, l) with ρ < R′(q′′) then Adam chooses v[w(q′′, R)] and the associated node becomes o′,
the successor of o. If it is not the case then Adam chooses the position v[wR][w(q ′, R′)] and
the associated node is the successor of n.

Because of the above properties Adam is assured not to reach >. It is not difficult to see that
he wins also all infinite plays.

Lemma 7.7 If Eve wins in Gr(C) then Eve wins in Game(C).

Proof: Fix a strategy σ for Eve in Gr(C). It is a part of the tree Gr(C).

We say that v = [w1R1] . . . [wkRk][wk+1(q,Rk+1)] covers all panic jumps over n if whenever
in σ there is a panic jump of type (ρ, q′, l) over n then ρ < Rl(q

′).

We want to define a strategy for Eve, that is to say what set to choose for each play ending
either in a position of the form v[wR][w · push(q′, ?)], or in a position of the form v[w(q,R)]
where the move (E, q0, q1) is played. To do this we will associate to each such position a node n
of Gr(A) such that

• the position represents the label of n;

• all the panic jumps over n are covered by the position.

Suppose that we have a position v[w(q,R)] and an associated node n. Let (q, s, θ) be the label
of n. We consider the case when δ(q, top(s)) = (q′, push2), the rest being easy.

Suppose δ(q, top(s)) = (q′, push2). We have in this case a unique successor of v[w(q,R)] which
is v[w(a,R)][w · push2(q

′, ?)]. Now it is the time for Eve to respond with R′. We put

R′(q) = min
4

{ρ : there is a panic jump to n in σ of type (ρ, q, l)}

The minimum is taken with respect to the 4 order and the function is undefined if the set is
empty.

Now, if Adam chooses v[wR][w(q′, R′)] then we associate to this position the successor n′ of n.
If, on the other hand, Adam chooses v[w(q′′, R)], for some q′′ ∈ dom R′, then we know that in
the strategy σ there is a descendant o of n which makes a panic jump of type (R′(q′′), q′′, l).
We choose the successor of o as the associated node.

It is not difficult to check that this strategy is winning for Eve in Game(C).

This completes the proof of Theorem 7.3.

Take a hyperalgebraic (i.e., level 2) grammar G and an MSOL formula ϕ. We want to decide
if [[G]] ² ϕ holds; recall that [[G]] is the tree generated by G. By Proposition 4.7 we have
a panic automaton A accepting precisely [[G]]. Using the transformation discussed in Section 5
we reduce the problem to finding the winner in the game Gr(C) for an alternating panic
automaton with ranks C constructed from A and ϕ. By Lemma 6.3 we can assume that C is
rank-aware. From C we construct a new game Game(C) and know by Lemma 7.2 that finding
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the winner in this game is decidable. By Theorem 7.3, the same player wins in Gr(C). Thus
we obtain our main result.

Theorem 7.8 The MSO theory of any hyperalgebraic tree is decidable.
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