
Alternating Timed Automata ?

S lawomir Lasota1?? and Igor Walukiewicz2

1 Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warszawa

2 LaBRI, Université Bordeaux-1
351, Cours de la Libération, F-33 405, Talence cedex, France

Abstract. A notion of alternating timed automata is proposed. It is
shown that such automata with only one clock have decidable emptiness
problem. This gives a new class of timed languages which is closed under
boolean operations and which has an effective presentation. We prove
that the complexity of the emptiness problem for alternating timed au-
tomata with one clock is non-primitive recursive. The proof gives also
the same lower bound for the universality problem for nondeterministic
timed automata with one clock thereby answering a question asked in a
recent paper by Ouaknine and Worrell.

1 Introduction

Timed automata is a widely studied model of real-time systems. It is obtained
from finite nondeterministic automata by adding clocks which can be reset and
whose values can be compared with constants. In this paper we consider alter-
nating version of timed automata obtained by introducing universal transitions
in the same way as it is done for standard nondeterministic automata. From
the results of Alur and Dill [2] it follows that such a model cannot have de-
cidable emptiness problem as the universality problem for timed automata is
not decidable. In the recent paper [16] Ouaknine and Worrell has shown that
the universality problem is decidable for nondeterministic automata with one
clock. Inspired by their construction, we show that the emptiness problem for
alternating timed automata with one clock is decidable as well. We also prove
not primitive recursive lower bound for the problem. The proof implies the same
bound for the universality problem for nondeterministic timed automata with
one clock. This answers the question posed by Ouaknine and Worrell [16]. To
complete the picture we also show that an extension of our model with epsilon-
transitions has undecidable emptiness problem.

The crucial property of timed automata models is the decidability of the
emptiness problem. The drawback of the model is that the class of languages rec-
ognized by timed automata is not closed under complement and the universality
? Work reported here has been partially supported by the European Community Re-

search Training Network Games.
?? Partially supported by the Polish Kbn grant No. 4 T11C 042 25. This work was

performed in part during the author’s stay at LaBRI, Université Bordeaux-1.

question is undecidable (Π1
1 -hard) [2]. One solution to this problem is to restrict

to deterministic timed automata. Another, is to restrict the reset operation; this
gives the event-clock automata model [4]. A different ad-hoc solution could be
to take the boolean closure of the languages recognized by timed automata. This
solution does not seem promising due to the complexity of the universality prob-
lem. This consideration leads to the idea of using automata with one clock for
which the universality problem is decidable. The obtained class of alternating
timed automata is by definition closed under boolean operations. Moreover, using
the method of Ouaknine and Worrell, we can show that the class has decidable
emptiness problem. As it can be expected, there are languages recognizable by
timed automata that are not recognizable by alternating timed automata with
one clock. More interestingly, the converse is also true: there are languages recog-
nizable by alternating timed automata with one clock that are not recognizable
by nondeterministic timed automata with any number of clocks.

Once the decidability of the emptiness problem for alternating timed au-
tomata with one clock is shown, the next natural question is the complexity of
the problem. We show a non-primitive recursive lower bound. For this we give a
reduction of the reachability problem for lossy channel systems [17]. The reduc-
tion shows that the lower bound holds also for purely universal alternating timed
automata. This implies non-primitive recursive lower bound for the universality
problem for nondeterministic timed automata with one clock. We also point out
that allowing epsilon transitions in our model permits to code perfect channel
systems and hence makes the emptiness problem undecidable.

Related work Our work is strongly inspired by the results of Ouaknine and Wor-
rell [16]. Except for [11], it seems that the notion of alternation in the context of
timed automata was not studied before. The reason was probably undecidabil-
ity of the universality problem. Some research (see [5, 10, 7, 3, 6] and references
within) was devoted to the control problem in the timed case. While in this case
one also needs to deal with some universal branching, these works do not seem
to have direct connection to our setting. Finally, let us mention that restrictions
to one clock have been already considered in the context of model-checking of
timed systems [12, 15].

Organization of the paper In the next section we define alternating timed au-
tomata; we discuss their basic properties and relations with nondeterministic
timed automata. In Section 3 we show decidability of the emptiness problem for
alternating timed automata with one clock. In the following section we show a
non-primitive recursive lower bound for the problem. Next we show the unde-
cidability result for an extension of our model with epsilon-moves.

2 Alternating Timed Automata

In this section we introduce the alternating timed automata model and study
its basic properties. The model is a quite straightforward extension of the non-
deterministic model. Nevertheless some care is needed to have the desirable

feature that complementation corresponds to exchanging existential and univer-
sal branchings (and final and non-final states). As can be expected, alternat-
ing timed automata can recognize more languages than their nondeterministic
counterparts. The price to pay for this is that the emptiness problem becomes
undecidable, in contrast to timed automata [2]. This motivates the restriction
to automata with one clock. With one clock alternating automata can still rec-
ognize languages not recognizable by nondeterministic automata and moreover,
as we show in the next section, they have decidable emptiness problem.

For a given finite set C of clock variables (or clocks in short), consider the set
Φ(C) of clock constraints σ defined by

σ ::= x < c | x ≤ c | σ1 ∧ σ2 | ¬σ,

where c stands for an arbitrary nonnegative integer constant, and x ∈ C. For
instance, note that tt (always true), or x = c, can be defined as abbreviations.
Each constraint σ denotes a subset [σ] of (R+)C , in a natural way, where R+

stands for the set of nonnegative reals.
Transition relation of a timed automaton [2] is usually defined by a finite set

of rules δ of the form

δ ⊆ Q×Σ × Φ(C)×Q× P(C),

where Q is a set of locations (control states) and Σ is an input alphabet. A rule
〈q, a, σ, q′, r〉 ∈ δ means, roughly, that when in a location q, if the next input
letter is a and the constraint σ is satisfied by the current valuation of clock
variables, the next location can be q′ and the clocks in r should be reset to 0.
Our definition below uses an easy observation, that the relation δ can be suitably
rearranged into a finite partial function

Q×Σ × Φ(C) ·→ P(Q× P(C)).

The definition below comes naturally when one thinks of an element of the
codomain as a disjunction of a finite number of pairs (q, r). Let B+(X) denote
the set of all positive boolean formulas over the set X of propositions, i.e., the
set generated by:

φ ::= X | φ1 ∧ φ2 | φ1 ∨ φ2.

Definition 1 (Alternating timed automaton). An alternating timed au-
tomaton is a tuple A = (Q, q0, Σ, C, F, δ) where: Q is a finite set of loca-
tions, Σ is a finite input alphabet, C is a finite set of clock variables, and
δ : Q×Σ×Φ(C) ·→ B+(Q×P(C)) is a finite partial function. Moreover q0 ∈ Q is
an initial state and F ⊆ Q is a set of accepting states. We also put an additional
restriction:

(Partition) For every q and a, the set {[σ] : δ(q, a, σ) is defined} gives a (finite)
partition of (R+)C.

The (Partition) condition does not limit the expressive power of automata. We
impose it because it permits to give a nice symmetric semantic for the automata.
We will often write rules of the automaton in a form: q, a, σ 7→ b.

By a timed word over Σ we mean a finite sequence

w = (a1, t1)(a2, t2) . . . (an, tn) (1)

of pairs from Σ×R+. Each ti describes the amount of time that passed between
reading ai−1 and ai, i.e., a1 was read at time t1, a2 was read at time t1+t2,
and so on. In Sections 4 and 5 it will be more convenient to use an alternative
representation where ti denotes the time elapsed since the beginning of the word.

To define an execution of an automaton, we will need two operations on
valuations v ∈ (R+)C . A valuation v+t, for t ∈ R+, is obtained from v by
augmenting value of each clock by t. A valuation v[r := 0], for r ⊆ C, is obtained
by reseting values of all clocks in r to zero.

For an alternating timed automaton A and a timed word w as in (1), we
define the acceptance game GA,w between two players Adam and Eve. Intuitively,
the objective of Eve is to accept w, while the aim of Adam is the opposite.
A play starts at the initial configuration (q0,v0), where v0 : C → R+ is a
valuation assigning 0 to each clock variable. It consists of n phases. The (k+1)-
th phase starts in (qk,vk), ends in some configuration (qk+1,vk+1) and proceeds
as follows. Let v̄ := vk+tk+1. Let σ be the unique constraint such that v̄ satisfies
σ and δ(qk, ak+1, σ) is defined. Now the outcome of the phase is determined by
the formula b. There are three cases:

– b = b1 ∧ b2: Adam chooses one of subformulas b1, b2 and the play continues
with b replaced by the chosen subformula;

– b = b1 ∨ b2: dually, Eve chooses one of subformulas;
– b = (q, r) ∈ Q × P(C): the phase ends with the result (qk+1,vk+1) :=

(q, v̄[r := 0]). A new phase is starting from this configuration if k+1 < n.

The winner is Eve if qn is accepting (qn ∈ F), otherwise Adam wins.

Definition 2 (Acceptance). The automaton A accepts w iff Eve has a win-
ning strategy in the game GA,w. By L(A) we denote the language of all timed
words w accepted by A.

To show the power of alternation we give an example of an automaton for a
language not recognizable by standard (i.e. nondeterministic) timed automata
(cf. [2]).

Example 1. Consider a language consisting of timed words w over a singleton
alphabet {a} that contain no pair of letters such that one of them is precisely
one time unit later than the other. The alternating automaton for this language
has three states q0, q1, q2. State q0 is initial. The automaton has a single clock x
and the following transition rules:

q0, a, tt 7→ (q0, ∅) ∧ (q1, {x})
q1, a, x=1 7→ (q2, ∅)

q1, a, x6=1 7→ (q1, ∅)
q2, a, tt 7→ (q2, ∅)

States q0 and q1 are accepting. Clearly, Adam has a strategy to reach q2 iff the
word is not in the language, i.e., some letter is one time unit after some other.

As one expects, we have the following:

Proposition 1. The class of languages accepted by alternating timed automata
is effectively closed under all boolean operations: union, intersection and com-
plementation. These operations to do not increase the number of clocks of the
automaton.

The closure under conjunction and disjunction is straightforward since we
permit positive boolean expressions as values of the transition function. Due
to the condition (Partition) the automaton for the complement is obtained by
exchanging conjunctions with disjunctions in all transitions and exchanging ac-
cepting states with non-accepting states.

Definition 3. An alternating timed automaton A is called purely universal if
the disjunction does not appear in the transition rules δ. Dually, A is purely
existential if no conjunction appears in δ.

It is obvious that every purely-existential automaton is a standard nondeter-
ministic timed automaton. The converse is not immediately true because of the
(Partition) condition. Nevertheless it is not difficult to show the following

Proposition 2. Every standard nondeterministic automaton is equivalent to a
purely-existential automaton.

In the following sections, we consider emptiness, universality and contain-
ment for different classes of alternating timed automata. For clarity, we recall
definitions here.

Definition 4. For a class C of automata we consider three problems:

– Emptiness: given A ∈ C is L(A) empty.
– Universality: given A ∈ C does L(A) contain all timed words.
– Containment: given A,B ∈ C does L(A) ⊆ L(B).

It is well known that the universality is undecidable for non-deterministic timed
automata [2] with at least two clocks. As a consequence, two other problems are
also undecidable for alternating timed automata with two clocks. This is why in
the rest of the paper we focus on automata with one clock only.

Proviso: In the following all automata have one clock.

Remark: The automaton from Example 1 uses only one clock. This shows that
one clock alternating automata can recognize some languages not recognizable
by nondeterministic automata with many clocks [2]. The converse is also true.
It is enough to consider the language consisting of the words containing an
appearance of a letter a at times t1, t2, t1+1, t2+1, for some 0<t1<t2<1, and
such that there is a at no time between t1 and t2 while there is one at a time
between t1+1 and t2+1. We omit the proof.

3 Decidability

The main result of this section is that the emptiness problem for one-clock alter-
nating timed automata is decidable. Due to closure under boolean operations,
this implies the decidability of the universality and the containment problems.

Theorem 1. Emptiness is decidable for one-clock alternating timed automata.

Corollary 1. The containment problem is decidable for one-clock alternating
timed automata.

The rest of this section is devoted to the proof of Theorem 1. Essentially,
we have adapted the method of Ouaknine and Worrell [16] for our more general
setting. We point out the differences below.

Fix a one-clock alternating timed automaton A = (Q, q0, Σ, {x}, F, δ). For
readability, assume w.l.o.g. that the boolean conditions appearing in rules of
δ are all in disjunctive normal form. In terms of acceptance games this means
that each phase consists of a single move of Eve followed by a single move of
Adam. Consider a labeled transition system T whose states are finite sets of
configurations, i.e., finite sets of pairs (q,v), where q ∈ Q and v ∈ R+. The
initial position in T is P0 = {(q0, 0)} and there is a transition P

a,t−→ P ′ in T iff
P ′ can be obtained from P by the following nondeterministic process:

– First, for each (q,v) ∈ P , do the following:
• let v′ := v+t,
• let b = δ(q, a, σ) for the uniquely determined σ satisfied in v′,
• choose one of disjuncts of b, say

(q1, r1) ∧ . . . ∧ (qk, rk) (k > 0),

• let Next(q,v) = {(qi,v′[ri := 0]) : i = 1 . . . k}.
– Then, let P ′ :=

⋃
(q,v)∈P Next(q,v).

This construction is very similar to the translation from alternating to nonde-
terministic automata over (untimed) words: we just collect all universal choices
in one set. Compared to [16], the essential difference is that we have to deal with
both disjunction and conjunction, while in [16] only one of them appeared. We
treat conjunction similarly to determinization in [16]. On the other hand, we
leave the existential choice, i.e., nondeterminism, essentially unaffected in T .

In what follows we will derive from T a finite-branching transition system
H, suitable for the decision procedure. Like in [16], the degree of the nodes of H
will not be bounded but nevertheless finite. This is sufficient for our purposes.

A state {(q1,v1), . . . , (qn,vn)} of T is called bad iff all control states qi are
accepting (qi ∈ F). The following proposition characterizes acceptance in A in
terms of reachability of bad states in T . As we consider finite words only, there
are no issues concerning the quality of a strategy in the acceptance game.

Lemma 1. A accepts a timed word w iff there is a path in T , labeled by w, from
P0 to a bad state.

Let T̂ be a labeled transition system obtained from T by erasing time informa-
tion from transition labels, i.e., there is a transition P

a−→ Q in T̂ iff there is
P

a,t−→ Q in T , for some t ∈ R+. Now we cannot talk about particular timed
words but still we have the following:

Lemma 2. L(A) is nonempty if and only if there is a path in T̂ from P0 to a
bad state.

Thus, the (non)emptiness problem for A is reduced to the reachability of a bad
state in T̂ . The last difficulty is that even if each state of T̂ is a finite set, there
are uncountably many states. The following definition allows to abstract from
the precise timing information in states. Let cmax denote the biggest constant
appearing in constraints in δ. Let set reg of regions be a partition of R+ into
2 · (cmax+1) sets as follows:

reg := {{0}, (0, 1), {1}, (1, 2), . . . , (cmax−1, cmax), {cmax}, (cmax, +∞)}.

For v ∈ R+, let reg(v) denote its region; and let fract(v) denote the fractional
part of v. Below we work with finite words over the alphabet Λ = P(Q × reg)
consisting of finite sets of pairs (q, r), where q ∈ Q is a control state and r ∈ reg
is a region.

Definition 5. For a state P of T̂ we define a word H(P) from Λ∗ as the one
obtained by the following procedure:

– replace each (q,v) ∈ P by a triple 〈q, reg(v), fract(v)〉 (this yields a finite
set of triples)

– sort all these triples w.r.t. fract(v) (this yields a finite sequence of triples)
– group together triples that have the same value of fract(v), ignoring multiple

occurrences (this yields a finite sequence of finite sets of triples)
– forget about fract(v), i.e., replace each triple 〈q, reg(v), fract(v)〉 by a pair

(q, reg(v)) (this yields a finite sequence of finite sets of pairs, a word in Λ∗).

Definition 6. Define an equivalence relation ∼ over states of T̂ as the kernel
of H, i.e., P∼P ′ iff H(P) = H(P ′).

The following observations are straightforward:

Lemma 3. Relation ∼ is a bisimulation over transition system T̂ .

Lemma 4. If P is bad and P∼P ′ then P ′ is bad.

Let H denote the quotient of the transition system T̂ by ∼. To put it more
explicitly: states of H are all words H(P), for a state P of T̂ ; there is a transition
W1

a−→ W2 in H if there is a transition P1
a−→ P2 in T̂ with H(P1) = W1,

H(P2) = W2. Since ∼ is a bisimulation, the definition does not depend on a
particular choice of P1 (and P2). The initial state W0 in H is H(P0).

By Lemma 4 it is correct to call a state W in H bad if W = H(P) for a bad
state P . Because H is a quotient of T̂ by bisimulation, from Lemma 2 we derive:

Lemma 5. L(A) is nonempty iff a bad state is reachable in H from W0.

At this point, we have reduced emptiness of L(A) to the reachability of a bad
state in a countably infinite transition system H. The rest of the proof is quite
standard [1, 13] and exploits the fact that one can put an appropriate well-quasi-
order (wqo in short) on states of H. Unfortunately, we are obliged to redo the
proofs as we could not find a theorem that fits precisely our setting.

Definition 7. Let � denote the monotone domination ordering over Λ∗ induced
by the subset inclusion over Λ, defined as follows: a1 . . . an � b1 . . . bm iff there
exists a strictly increasing function f : {1, . . . , n} → {1, . . . ,m} such that for
each i ≤ n, ai ⊆ bf(i).

Lemma 6 ([14]). Relation � is a wqo, i.e., for arbitrary infinite sequence
W1,W2, . . . of words over Λ, there exist indexes i < j such that Wi � Wj.

The decision procedure for reachability of bad states will work by an exhaustive
search through a sufficiently large portion of the whole reachability tree. Thus
we need to know that an arbitrarily large part of that tree can be effectively
constructed. Roughly, all time delays of an action a from W can be captured by
a finite number of cyclic shifts of W with an appropriate change of region.

Lemma 7. For each state W in H, its set of successors {W ′ ∈ Λ∗ : W
a−→

W ′ for some a} is finite and effectively computable.

The following observation is proved in the same way as Lemma 15 in [16].

Lemma 8. The inverse of � relation is a simulation: whenever W1 � W2 and
W2

a−→ W ′
2, there is some W ′

1 such that W1
a−→ W ′

1 and W ′
1 � W ′

2.

The next observation is more specific to our setting but fortunately very easy.

Lemma 9 (Downward closedness of badness). Whenever W � W ′ and
W ′ is bad then W is bad as well.

Proof. Take a letter wi of W . We need to show that q ∈ F for every (q, r) ∈ wi.
By the definition of W � W ′ we have wi ⊆ w′

j for some letter w′
j of W ′. Hence,

(q, r) ∈ w′
j and q ∈ F as W ′ is bad.

Now we are ready to finally prove the following:

Lemma 10. It is decidable whether a bad state is reachable in H from W0.

Proof. The reachability tree is the unraveling of H from W0. The algorithm
constructs a portion t of the tree conforming to the following rule: do not add
a node W ′ to t in a situation when among its ancestors there is some W � W ′.
Now, Lemma 6 guarantees that each path in t is finite. Furthermore, since the
degree of each node is finite, t is a finite tree.

We need only to prove that if a bad state is reachable in H from W0 then t
contains at least one bad state. Let W be such a bad state reachable from W0

in H by a path π of the shortest length. Assume that W is not in t, i.e., there

are two other nodes in π, say W1 and W2 such that W1 is an ancestor of W2 in
reachability tree and W1 � W2 (i.e., W2 was not added into t). Since the inverse
of � is a simulation by Lemma 8, the sequence of transitions in π from W2 to W
can be imitated by the corresponding sequence of transitions from W1 to some
other W ′ � W . W ′ is bad as well by Lemma 9. Moreover, the path leading to
W ′ is strictly shorter than π, a contradiction. ut

Theorem 1 follows immediately from Lemma 10 and Lemma 5.

Remark: In fact, Ouaknine and Worrell showed decidability of ”L(A) ⊆ L(B)”
in a slightly more general case, namely when automaton A has an arbitrary
many clocks. Along the same lines one can adapt our proof for ”L(A) ⊆ L(B)”,
assumed that A is an arbitrary nondeterministic timed automaton and B is a
one-clock alternating timed automaton.

4 Lower Bound

In this section we prove the following lower bound result.

Theorem 2. The complexity of the emptiness problem for one-clock purely uni-
versal alternating timed automata is not bounded by a primitive recursive func-
tion.

Since emptiness and universality are dual in the setting of alternating automata,
as a direct conclusion we get the following:

Corollary 2. The complexity of the universality problem for one-clock purely
existential alternating (i.e., nondeterministic) timed automata is not bounded by
a primitive recursive function.

This answers the question posed by Ouaknine and Worrell [16].
The rest of this section contains the proof of Theorem 2. The proof is a

reduction of the reachability problem for lossy one-channel systems [17].

Definition 8 (Channel system). A channel system is given by a tuple S =
(Q, q0, Σ,∆), where Q is a finite set of control states, q0 ∈ Q is an initial state,
Σ is a finite channel alphabet and ∆ ⊆ Q× ({!a : a∈Σ}∪ {?a : a∈Σ}∪ {ε})×Q
is a finite set of transition rules.

A configuration of S is a pair (q, w) of a control state q and a channel content
w ∈ Σ∗. Transition rules allow the system to pass from one configuration to
another. In particular, a rule 〈q, !a, q′〉 allows in a state q to write to the channel
and to pass to the new state q′. Similarly, 〈q, ?a, q′〉 means reading from a channel
and is allowed in state q only when a is at the end of the channel. The channel
is a FIFO, and by convention S writes at the beginning and reads at the end.
Finally, a rule 〈q, ε, q′〉 allows for a silent change of control state, without reading
or writing.

Formally, there is a (perfect) transition (q, w)
γ−→ (q′, w′) if one of the fol-

lowing conditions is satisfied:

– γ = 〈q, ε, q′〉 and w = w′, or
– γ = 〈q, !a, q′〉 for some a∈Σ, and w′ = aw, or
– γ = 〈q, ?a, q′〉 for some a∈Σ, and w = w′a.

The initial configuration is (q0, ε), i.e., execution of S starts with the empty
channel. For technical convenience, we assume w.l.o.g. that there is no rule re-
turning back to the initial state: for each rule 〈q, x, q′〉 ∈ ∆, q′ 6= q0.

A lossy channel system differs from the perfect one in only one respect: during
the transition step, an arbitrary number of messages stored in the channel may
be lost. To define lossy transitions, we need the subsequence ordering on Σ∗,
denoted by v (e.g., tata v atlanta). We say that there is a lossy transition
from (q, w) to (q′, w′), denoted by (q, w)

γ
=⇒ (q′, w′), iff there exists u, u′ ∈ Σ∗

such that u v w, (q, u)
γ−→ (q′, u′) and w′ v u′.

By a lossy computation of a channel system S we mean a finite sequence:

(q0, ε)
γ1=⇒ (q1, w1)

γ2=⇒ (q2, w2) . . .
γn=⇒ (qn, wn). (2)

Definition 9. Lossy reachability problem for channel systems is: given a chan-
nel system S and a configuration (qf , wf), with qf 6=q0, decide whether there is
a lossy computation of S ending in (qf , wf).

Theorem 3 ([17]). The lossy reachability problem for channel systems has non-
primitive recursive complexity.

The result of [17] was showed for a slightly different model. Namely, during a
single transition, a finite sequence of messages was allowed to be read or written
to the channel. Clearly, reachability problems in both models are polynomial-
time equivalent.

In the sequel we describe a reduction from the lossy reachability for chan-
nel systems to the emptiness problem for one-clock purely-universal alternating
timed automata. Given a channel system S = (Q, q0, Σ,∆), and a configuration
(qf , wf), we effectively construct a purely-universal automaton A with a single
clock x, and the input alphabet Σ = Q ∪ Σ ∪ ∆. The construction will assure
that A accepts precisely correct encodings of lossy computations of S ending in
(qf , wf). A computation as in (2) will be encoded as the following word over Σ:

qnγnwn qn−1γn−1wn−1 . . . q1γ1w1 q0, (3)

where qi ∈ Q, γi ∈ ∆, wi ∈ Σ∗. Let S be fixed in this section.
It will be convenient here to write timed words in a slightly different way than

before. From now on, whenever we write a word w = (a1, t1)(a2, t2) . . . (an, tn)
we mean that the letter ai appeared ti time units after the beginning of the
word. In particular, ai+1 appeared ti+1 − ti time units after ai. Clearly this is
correct only when ti+1 ≥ ti, for i = 1 . . . n−1.

Before the formal definition of encoding of a computation by a timed word
we outline shortly the underlying intuition. We will require that the letter qn

appears at time 0 and then that each letter qi appears at time n − i. Hence,

each configuration will be placed in a unit interval. To ensure consistency of
the channel contents at consecutive configurations we require that if a message
survived during a step i (it was neither read nor written nor lost) then the
distance in time between its appearances in the sequences wi and wi−1 should
be precisely 1.

We will need a new piece of notation : by (w + 1) we mean the word obtained
from w by increasing all ti by one time unit, i.e., (w + 1) = (a1, t1 + 1)(a2, t2 +
1) . . . (an, tn + 1).

Definition 10. By a lossy computation encoding ending in (qf , wf) we mean
any timed word over Σ of the form:

(qn, tn)(γn, t′n)vn (qn−1, tn−1)(γn−1, t
′
n−1)vn−1 . . . (q1, t1)(γ1, t

′
1)v1 (q0, t0),

where each vi = (a1
i , u

1
i) . . . (ali

i , uli
i) is a timed word over Σ. Additionally we

require that for each i ≤ n and j = 1, . . . , li, the following conditions hold:

(P1) Structure:

qi ∈ Q, γi ∈ ∆, aj
i ∈ Σ, γi = 〈qi−1, x, qi〉, qn = qf and a1

n . . . aln
n = wf .

(P2) Distribution in time:

n−i = ti < t′i < u1
i < u2

i < . . . < uli
i < ti+1 = n−i+1.

(P3a) Epsilon move: if γi = 〈qi−1, ε, qi〉 then (vi + 1) v vi−1.
(P3b) Write move: if γi = 〈qi−1, !a, qi〉 then either a1

i = a and (a2
i . . . ali

i + 1) v
vi−1, or (vi + 1) v vi−1.

(P3c) Read move: if γi = 〈qi−1, ?a, qi〉 then vi−1 = v′(a, t)v′′ for some timed
words v′, v′′ and t ∈ R+, such that (vi + 1) v v′.

Lemma 11. S has a computation of the form (2) ending in (qn, wn) = (qf , wf)
if and only if there exists a lossy computation encoding ending in (qf , wf) as in
Definition 10.

Our aim is:

Lemma 12. A purely universal automaton A can be effectively constructed such
that L(A) contains precisely all lossy computation encodings ending in (qf , wf).

The proof of this lemma will occupy the rest of this section. Automaton A
will be defined as a conjunction of four automata, each responsible for some of
the conditions from Definition 10:

A := Astruct ∧ Aunit ∧ Astrict ∧ Acheck.

All four automata will be purely universal and will use at most one clock. Au-
tomaton Astruct verifies condition (P1), automata Aunit and Astrict jointly check
condition (P2), and Acheck enforces the most involved conditions (P3a) – (P3c).

We omit an obvious definition of Astruct. We also omit the construction of
the automaton Aunit checking that letters from Q appear precisely at times
0, 1, . . . , n, and automaton Astrict that accepts a timed word iff the first letter is
at time 0 and no two consecutive letters appear at the same time.

Till now, all the automata were not only purely universal but also purely
existential, i.e., deterministic. The power of universal choice will be only used
in the last automaton Acheck, that checks for correctness of each transition step
of S. While analyzing definition of Acheck we will comfortably assume that an
input word meets all conditions verified by the other automata, otherwise the
word is anyway not accepted. For conciseness, We implicitly assume that the
automaton fails to accept if no rule is applicable. Moreover, when no clock is
reset, we will omit writing it explicitly.

The transition rules of Acheck from the initial state s0 are as follows:

s0, Σ ∪∆, tt 7→ s0 s0, q, tt 7→ s0 ∧ (sstep, {x}), for q ∈ Q \ {q0}
s0, q0, tt 7→ >.

Intuitively, at each q ∈ Q, except at q0, an extra automaton is run from the state
sstep, in order to check correctness of a single step. Symbol > on the right-hand
side stands for a distinguished state that accepts unconditionally.

Now the rules sstep, γ, . . . 7→ . . . depend on γ = 〈q, x, q′〉. There are three
cases, corresponding to conditions (P3a), (P3b) and (P3c), respectively. Case
(P3b), not much different from (P3a), is omitted here.

I. Case γ = 〈q, ε, q′〉: sstep, 〈q, ε, q′〉, tt 7→ schannel.

In state schannel, the automaton checks the condition (P3a), i.e., whether all
consecutive letters from Σ are copied one time unit later. This is done by:

schannel, Q, tt 7→ > schannel, a, tt 7→ schannel ∧ (s+1
a , {x}), for a ∈ Σ.

Hence, the automaton starts a check from s+1
a at every letter read. Note that

this is precisely here where the universal branching is essential. The task of s+1
a

is to check that there is letter a one time unit later:

s+1
a , a, x = 1 7→ > s+1

a , Σ, x < 1 7→ s+1
a

II. Case γ = 〈q, ?a, q′〉: sstep, 〈q, ?a, q′〉, tt 7→ s?a ∧ (stry?a, {x}).

The behaviour of s?a is very similar to schannel but additionally it will start
a new copy of the automaton in the state stry?a. The goal of stry?a is to check
for the letter a at the end of the present configuration.

s?a, Q, tt 7→ > s?a, b, tt 7→ s?a ∧ (s+1
b , {x}) ∧ (stry?a, {x}), for b ∈ Σ.

Note the clock reset when entering to stry?a. As we cannot know when the
configuration ends we start stry?a at each letter read. If we realize that this was

not the end (we see another channel letter) then the check just succeeds. If this
was the end (we see a state) then the true check starts from the state scheck?a:

stry?a, Σ, tt 7→ > stry?a, Q, tt 7→ scheck?a.

From scheck?a we look for some a that appears more than one time unit later:

scheck?a, Σ, x ≤ 1 7→ scheck?a

scheck?a, a, x > 1 7→ > scheck?a, b, x > 1 7→ scheck?a, for b ∈ Σ\{a}.

Automaton Acheck has no other accepting states but >.
By the very construction, A satisfies Lemma 12. By Lemma 11, S has a com-

putation (2) ending in (qf , wf) if and only if L(A) is nonempty. This completes
the proof of Theorem 2.

5 Undecidability

In this section we point out that the alternating timed automata model cannot
be extended with ε-transitions. It is known that ε-transitions extend the power of
nondeterministic timed automata [2, 9]. Here we show some evidence that every
extension of alternating timed automata with ε-transitions will have undecidable
emptiness problem.

It turns out that there are many possible ways of introducing ε-transitions
to alternating timed automata. To see the issues involved consider the question
of whether such an automaton should be allowed to start uncountably many
copies of itself or not. Facing these problems we have decided not to present any
precise definition but rather to show where the problem is. We will show that the
universality problem for purely existential automata with a very simple notion
of ε-transitions is undecidable.

Timed words are written here in the same convention as in previous section:
w = (a1, t1)(a2, t2) . . . (an, tn) means that the letter ai appeared at time ti.

We consider purely existential (i.e. nondeterministic) automata with one
clock. We equip them now with additional ε-transitions of the form q, ε, σ 7→ b.
The following trick is used to shorten formal definitions.

Definition 11. A nondeterministic timed automaton with ε-transitions over Σ
is a nondeterministic timed automaton over the alphabet Σε = Σ ∪ {ε}.

For convenience, we want to distinguish an automaton A with ε-transitions over
Σ from the corresponding automaton over Σε; the latter will be denoted Aε.
Given a timed word v over Σε, by |v|ε we mean the timed word over Σ obtained
from w by erasing all (timed) occurrences of ε.

Definition 12. A timed word over Σ is accepted by a timed automaton A with
ε-transitions if there is a timed word v over Σε accepted by Aε such that w = |v|ε.

Note that according to the definition, an accepting run is always finite. The main
result of this section is:

Theorem 4. The universality problem for one-clock nondeterministic timed au-
tomata with ε-transitions is undecidable.

The proof is by reduction of the reachability problem for perfect channel sys-
tems, defined similarly as lossy reachability in Definition 9, but w.r.t. perfect
computation of a channel systems. Not surprisingly, a perfect computation is
any finite sequence of (perfect) transitions:

(q0, ε)
γ1−→ (q1, w1)

γ2−→ (q2, w2) . . .
γn−→ (qn, wn),

Theorem 5 ([8]). The perfect reachability problem for channel systems is un-
decidable, assumed |Σ| ≥ 2.

Given a channel system S = (Q, q0, Σ,∆) and a configuration (qf , wf), we effec-
tively construct a one-clock nondeterministic timed automaton with ε-transitions
A′ over Σ. Automaton A′ will accept precisely the complement of the set of all
perfect computations encodings ending in (qf , wf), defined by:

Definition 13. A perfect computation encoding ending in (qf , wf) is defined
as in Definition 10, but with the conditions (P3a) – (P3c) replaced by:

(P3a) if γi = 〈qi−1, ε, qi〉 then (vi + 1) = vi−1,
(P3b) if γi = 〈qi−1, !a, qi〉 then (vi + 1) = (a, t)vi−1, for some t ∈ R+.
(P3c) if γi = 〈qi−1, ?a, qi〉 then (vi(a, t) + 1) = vi−1, for some t ∈ R+.

Since each perfect computation encoding is a lossy one, A′ will be defined as a
disjunction, A′ := ¬A ∨ Â, of the complement of the automaton A from the
previous section and another automaton Â. As automaton ¬A takes care of all
timed words that are not lossy computation encodings, it is enough to have:

Lemma 13. Automaton Â accepts precisely these lossy computation encodings
ending in (qf , wf) that are not perfect computation encodings.

This will be enough for correctness of our reduction: A′ will accept precisely the
complement of the set of all perfect computation encodings. The construction of
Â, omitted here, will be given in the full version of this paper.

6 Final Remarks

In this paper we have explored the possibilities opened by the observation that
the universality problem for nondeterministic timed automata is decidable. We
have extended this result to obtain a class of timed automata that is closed under
boolean operations and that has decidable emptiness problem. We have shown
that despite being decidable the problem has prohibitively high complexity. We
have also considered the extension of the model with epsilon transitions which
points out what makes the model decidable and what further extensions are not
possible. Maybe somewhat surprisingly universality for 1-clock nondeterministic
timed automata but over infinite words is undecidable. We plan to discuss this
issue in the full version of the paper.

We see several topics for further work: (1) Adding event-clocks to the model.
It seems that one would still obtain a decidable model. (2) Finding logical char-
acterizations of the languages accepted by alternating timed automata with one
clock. Since we have the closure under boolean operations, we may hope to find
one. (3) Finding a different syntax that will avoid the prohibitive complexity of
the emptiness problem. There may well be another way of presenting alternat-
ing timed automata that will give the same expressive power but for which the
emptiness test will be easier.

Acknowledgments We thank anonymous referees for valuable remarks.

References

1. P. Abdulla, K. Čerāns, B. Jonsson, and Y. Tsay. General decidability theorems
for infinite state systems. In LICS’96, p. 313–323, 1996.

2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

3. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted
timed games. In ICALP’04, volume 3124 of LNCS, p. 122–133, 2004.

4. R. Alur, L. Fix, and T. Henzinger. Event-clock automata: A determinizable class
of timed automata. Theoretical Computer Science, 204:253-273, 1999.

5. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In Proc. IFAC Symp. System Structure and Control, p. 469–474, 1998.

6. P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced
timed game automata. In FSTTCS’04, LNCS, 2004.

7. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. In CAV’03, volume 2725 of LNCS, p. 180–192, 2003.

8. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

9. B. Bérard, V. Diekert, P. Gastin, and A. Petit. Characterization of the expres-
sive power of silent transitions in timed automata. Fundamenta Informaticae,
36(2):145–182, 1998.

10. F. Cassez, T. A. Henzinger, and J.-F. Raskin. A comparison of control prob-
lems for timed and hybrid systems. In Hybrid Systems Computation and Control
(HSCC’02), volume 2289 of LNCS, p. 134–148, 2002.

11. M. Dickhöfer, T. Wilke. Timed alternating tree automata: the automata-theoretic
solution to the TCTL model checking problem. In ICALP’99, volume 1644 of
LNCS, p. 281-290, 1999.

12. C. Dima. Real-time automata and the Kleene algebra of sets of real numbers. In
STACS’00, volume 1170 of LNCS, p. 279–289, 2000.

13. A. Finkel and Ph. Schnoebelen. Well structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

14. G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math.
Soc., 2(7):326–336, 1952.

15. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking timed automata
with one or two clocks. In CONCUR’04, volume 3170 of LNCS, p. 387–401, 2004.

16. J. Ouaknine and J. Worrell. On the language inclusion problem for timed automata:
Closing a decidability gap. In LICS’04, p. 54–63, 2004.

17. Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive com-
plexity. Information Processing Letters, 83(5):251–261, 2002.

