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� INTRODUCTION �

� Introduction

In this notes we consider propositional ��calculus as introduced by Kozen in �
��
The main purpose of these notes is to present the completeness proof of the
Kozen�s axiomatisation of the ��calculus �
�� To achieve this goal we develop
tools which allow us to give relatively simple proofs of results for the logic like�

� syntactic characterisation of satis�ability and validity�

� small model theorem�

� decidability�

� equivalence of the ��calculus over binary trees and Rabin automata�

� a notion of disjunctive formula and the proof that every formula is equiv�
alent to a disjunctive formula�

� linear satis�ability checking algorithm for disjunctive formulas�

These notes are intended to supplement a � hours course given in February
�

� at BRICS centre� Because of the time limit some of the topics naturally
connected to the subject have been omitted� In these notes we have deliberately
tried to minimise the use of automata theory� This is why the remarks about
the correspondence between the ��calculus and automata theory are grouped
in one small subsection� which is not intended to give the full overview of the
correspondence� This choice also means that we will not consider the model
checking problem� although some tools we develop are very similar to so called
local model checking ����� we feel that one cannot give the full overview of
the subject without mentioning automata theory and alternating automata in
particular�

The contents of these notes are based on three papers ���� �� �
��

��� Synopsis

We start by giving some preliminary de�nitions� First we present the syntax
and the semantics of the ��calculus� Then we introduce the notions of posi�
tive and guarded formulas� We also de�ne a new modality operator which can
replace two standard modalities� In these notes we will mostly work with pos�
itive guarded formulas and use the new modality operator� Next we introduce
binding functions which is a tool we use to deal with subformulas of a given
formula� We �nish this preliminary section by de�ning automata on in�nite
strings and trees and stating theorems showing equivalence between Rabin and
parity conditions� We will use automata in two of the proofs�

In the next section we present what we call operational semantics of for�
mulas� We give a characterisation of satis�ability of a given formula in a given
state by means of markings of in�nite tableaux� This result makes very explicit
the main tools used in the fundamental paper of Streett and Emerson �����

After that we show some applications of operational semantics� We prove
the small model theorem and the decidability result �i�e� the results from ������



� INTRODUCTION �

We also de�ne the notion of refutation and state the characterisation of validity
�or rather unsatis�ability� by means of refutations ����� We �nish this section
by presenting a new application of the operational semantics� namely tableau
equivalence� We show that if two formulas have equivalent tableaux then they
are equivalent� This result turns out to be very useful�

The next step is the de�nition of disjunctive formulas and the proof that
every formula is equivalent to a disjunctive formula�

The following section gives some results concerning disjunctive formulas�
We show that satis�ability testing is linear for this class of formulas and that
there is a very straightforward method of constructing models for satis�able
disjunctive formulas� We also discuss the connections between disjunctive for�
mulas and automata� We consider ��calculus restricted to binary trees� In this
case there is a straightforward connection between disjunctive formulas and par�
ity automata on trees� In this restricted case it is still true that every formula
is equivalent to a disjunctive formula� Hence we obtain �yet another� proof
of Rabin�s complementation lemma and the proof of the equivalence between
monadic second order logic of two successors and the ��calculus over binary
trees ���� ��� At the end of this section we argue that disjunctive formulas give
rise to a new concept of automata� In contrast with usual notions of automata
on in�nite strings or trees� the notion of a run of these automata is de�ned
for arbitrary transition systems� Hence these automata are designed to cope
with arbitrary branching of the structure� Moreover they have exactly the same
expressive power as the ��calculus� A di�erent concept of automata which can
adapt to structures with varying degrees of nodes was proposed in ��� but this
automata are in general stronger than the ��calculus�

After this development we come back to the questions of provability in
Kozen�s axiom system� We �rst consider some restricted cases� It turns out
that there is a very simple way of proving the negation of every unsatis�able
disjunctive formula� Then we the recall the de�nition of an aconjunctive for�
mula from �
� and propose a small generalisation of this concept called weakly
aconjunctive formula� In �
� Kozen showed a method of proving the negation
of every unsatis�able aconjunctive formula� As we need a generalisation of this
result we introduce the notion of thin refutation to isolate the cases where the
method still works�

Finally we prove our main theorem which states that for every formula �
there is a disjunctive formula b� for which the implication � � b� is provable�
This gives us the completeness theorem as an easy corollary� The proof is done
by induction on the structure of � and uses tableau equivalence in case of the
greatest �xpoint operator and conjunction� In case of the least �xpoint we need
to generalise the concept of tableau equivalence to tableau consequence� This
notion is de�ned using in�nite games and can be seen as an extension of the
notion of simulation of transition systems�
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� Preliminaries

��� Syntax and semantics of the ��calculus

Let Prop � fp� q� � � �g�f���g be a set of propositional letters� Var � fX� Y� � � �g
a set of variables and Act � fa� b� � � �g a set of actions� The set of formulas of
the ��calculus over this three sets is the smallest set such that�

� propositional letters and variables are formulas�

� if �� � are formulas then so are � ��� � � �� � � ��

� if a 	 Act and � is a formula then hai� and �a�� are formulas� Later
we will introduce one more construct �a 
 ��� where � is a �nite set of
formulas�

� Let ��X� be a formula� We will say that an occurrence of X in ��X�
is positive i� it is proceeded by an even number of negations� If all oc�
currences of X in ��X� are positive then �X���X� and �X���X� are
formulas� Variable X is bound in �X���X� and �X���X��

Remark ��� We will assume that the modalities �hai� �a�� and the �xpoint
operators ��� �� bind weaker than propositional connectives� Hence �X�haiX�p
is a shorthand for �X��hai�X� p��� Later on in these notes we will use �a
 ��
construct which should simplify formula parsing�

In the following� �� �� �� ��	� � � �will denote formulas� and �������� � � �will
denote �nite sets of formulas� We shall use 
 to denote either � or �� Variables�
propositional letters and their negations will be called literals�

Formulas are interpreted in transition systems of the form M � hS�R� �i�
where�

� S is a nonempty set of states�

� R � Act 
 P�S�S� is a function assigning a binary relation on S to each
action in Act �

� � � Prop 
 P�S� is a function assigning a set of states to every proposi�
tional letter�

For a given model M and a valuation Val � Var 
 P�S�� the set of states
in which a formula � is true� k � kMV al� is de�ned inductively as follows �we will
omit superscript M when it causes no ambiguity��

k p kV al � ��p� k � kV al � � k � kV al � �
k X kV al � Val�X�
k �p kV al � S 
 ��p�

k � � � kV al � k � kV al � k � kV al
k � � � kV al � k � kV al � k � kV al
k hai� kV al � fs � �s���s� s�� 	 R�a� � s� 	 k � kV alg
k �a�� kV al � fs � �s���s� s�� 	 R�a� � s� 	 k � kV alg

k �X���X� kV al �
T
fT � S � k � kV al�T�X� � Tg

k �X���X� kV al �
S
fT � S � T � k � kV al�T�X�g
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whereVal �T�X � is the valuation such that�Val �T�X ��X� � T andVal �T�X ��Y � �
Val�Y � for every Y �� X �

Remark ��� The meaning of a formula is the set of states where it is satis�ed�
We can consider that a formula ��X� with a free variable X de�nes a function
from sets of states to sets of states f� � P�S� 
 P�S� which maps T � P�S�
to k ��X� k

Val �T�X�� If X occurs only positively in ��X� then f� is a monotone

function� i�e�� f��T � � f��T
�� whenever T � T �� Monotone functions on com�

plete latices have the least and the greatest �xpoint� The least �xpoint is the
intersection of all pre��xpoints� i�e�� sets T such that f��T � � T � The greatest
�xpoint is the sum of all post��xpoints� i�e�� sets T such that T � f��T ��

The following proposition states that both �X���X� and �X���X� are �x�
points of the corresponding function� Its proof follows directly from the seman�
tics�

Proposition ��� For any model M and valuation Val �

k �X���X� kMV al � k ���X���X�� kMV al k �X���X� kMV al � k ���X���X�� kMV al

We shall say that a formula � is satis�ed in a state s of a model M with a
valuation Val � in symbolsM� s�Val j� �� when s 	 k � kMV al� Formula � is valid
i� for every model M� state s and valuation Val we have M� s�Val j� �� We
will use �� � as an abbreviation of ����� We say that two formulas � and �
are semantically equivalent i� formula ��� ��� ��� �� is valid� For example
Proposition ��� states that �X���X� is semantically equivalent to ���X���X���
We will usually say just equivalent instead of semantically equivalent�

Proposition ��� �Dualities� For every formula � and action a� the formula
hai� is semantically equivalent to ��a���� Formula �X���X� is semantically
equivalent to ��X�����X��

Exercises�

� Prove Propositions ��� and ����

� Show that M� t� j� �X��a�X i� there is no in�nite path t�� t�� t�� � � � with
�ti� ti��� 	 R�a� for i � 
� �� �� � � �What is the meaning of �X��a�X�

� Is there a transition system M and a valuation Val such that for every
formula ��X��

k �X���X� kMV al � k �X���X� kMV al

��� Restrictions and extensions of the syntax

As our tools will be mostly syntactic� the form of the formula itself will be
important to us� We are interested in restrictions on the use of some of the
connectives of the calculus which do not restrict its expressive power� The
main result of this kind will be the proof that every formula is equivalent to
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a disjunctive formula but this will be done only in Section �� Here we will
introduce the notions of positive and guarded formulas and show that every
formula is equivalent to a positive guarded formula� We also introduce a special
construct of the form �a
 �� which can replace both hai and �a� modalities�

De�nition ��	 �Positive and guarded formulas� A formula is positive i�
all negations in the formula appear only before literals� Variable X in a formula
��X� is guarded i� every occurrence of X in ��X� is in the scope of some
modality operator h i or � �� We say that a formula � is guarded i� for every
subformula 
X���X� of �� variable X is guarded in ��X��

Example ��
 The formula �Y�X � haiY is guarded while �X��Y�X � haiY is
not because X is not guarded�

In the following we will often restrict ourselves to positive guarded formulas�
This is not essential but substantially simpli�es many notions� The following
proposition shows that such a restriction is �harmless� at least from the seman�
tical point of view�

Proposition ��� �Kozen� Every formula is equivalent to some positive guarded
formula�

Proof
Let � be a formula� we �rst show how to obtain an equivalent guarded formula�
The proof proceeds by induction on the structure of the formula with the only
nontrivial cases being �xpoint constructors� We present here the case for the
least �xpoint� The case for the greatest �xpoint is similar�

Assume that � � �X���X� and ��X� is a guarded formula� Suppose X
is unguarded in some subformula of ��X� of the form 
Y���Y�X�� Variable
Y is guarded in 
Y���Y�X� by the assumption� We can use the equivalence
of 
Y���Y�X� with ��
Y���Y�X��X� to obtain a formula with all unguarded
occurrences of X outside the �xpoint operator� This way we obtain a formula
equivalent to ��X� with all unguarded occurrences of X not in the scope of a
�xpoint operator�

Now using the laws of classical propositional logic we can transform this
formula to the conjunctive normal form �considering �xpoint formulas and for�
mulas of the form hai� and �a�� as propositional constants�� This way we obtain
a formula

�X � ���X��� � � �� �X � �i�X��� ��X� ���

where all occurrences of X in ���X�� � � � � �i�X�� ��X� are guarded� Observe
that some of �j�X� may be just � and ��X� may be �� Variable X occurs
only positively in ��� because it did so in our original formula� Formula ��� is
equivalent to

�X � ����X�� � � �� �i�X���� ��X�

We will show that �X��X � ���X��� ��X� is equivalent to �X����X�� ��X�� It
is obvious that

��X����X�� ��X�� � ��X��X � ���X��� ��X��
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Let � stand for �X����X� � ��X�� To prove another implication it is enough
to observe that � is a pre��xpoint of �X��X � ���X��� ��X� as the following
calculation shows�

�� � ������� ���� �
�������� ������ ������� ���� �

������ ���� � �

If � is a guarded formula then we use dualities of the ��calculus �see Propo�
sition ���� to produce an equivalent positive formula� It is easy to see that it
will be still a guarded formula�

In analysing the role of each connective of the ��calculus we will see that
the conjunction has two functions� To help us distinguish this two functions
we introduce the following concept which is related to a normal form for the
simple modal logic�

De�nition ��� We extend the syntax of the ��calculus by allowing new con�
struction of the form �a 
 ��� where a is an action and � is a �nite �pos�
sibly empty� set of formulas� Such a formula is semantically equivalent toV
fhai� � � 	 �g� �a�

W
�� We adopt the convention that the conjunction of the

empty set of formulas is the formula � and the disjunction of the empty set is
��

Remark ��� A formula hai� is equivalent to �a
 f���g� and a formula �a��
is equivalent to �a
 f�g���a
 ��� It follows that any formula can be written
with this new construction in place of modalities�

Remark ���� The notions of positive and guarded formulas can be extended
in a straightforward way to formulas with this new construct�

Exercises�

� Give a proof of the induction step for the greatest �xpoint case in the
proof of Proposition ��	�

� Is there a transition system M and a valuation Val such that for every
guarded formula �X���X��

k �X���X� kMV al � k �X���X� kMV al

� Find a positive guarded formula equivalent to ��a
 �� where � is a set
of positive guarded formulas�

��� Binding de�nitions

In this subsection we would like to introduce some tools to deal with subformulas
of a given formula� They are very similar to those used in �
� or �����

We would like to have a di�erent name �which will be a variable� for every
�x�point subformula of a given formula� We will also introduce a notion of a
binding function which will associate subformulas to names�
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De�nition ���� �Binding� We call a formula well named i� every variable
is bound at most once in the formula� For a variable X bound in a well named
formula � there exists the unique subterm of � of the form 
X���X�� from now
on called the binding de�nition of X in � and denoted D��X�� We will omit
subscript � when it causes no ambiguity� We call X a ��variable when 
 � ��
otherwise we call X a ��variable�

The function D� assigning to every bound variable its binding de�nition in
� will be called the binding function associated with ��

Remark ���� Note that every formula is equivalent to a well�named one with
some ad hoc consistent renaming of bound variables� The substitution of a
formula � for all free occurrences of a variable X in �� denoted ����X �� can
be made modulo some consistent renaming of bound variables of �� so that the
obtained formula ����X � is still well�named�

De�nition ���� �Dependency order� Given a formula � we de�ne the de�
pendency order over the bound variables of �� denoted ��� as the least partial
order relation such that if X occurs in D��Y � and D��Y � is a subformula of
D��X� then X �� Y � We will say that a bound variable Y depends on a bound
variable X in � when X �� Y �

Remark ���� It is not the case that X �� Y i� D�Y � is a subformula of
D�X�� For example when � � �X��b
 fXg���Y��a
 fY g� then variables X
and Y are incomparable in �� ordering� On the other hand if � is �X��Y��a

fXg�� �Z��a
 fZ � Y g� then X �� Z�

De�nition ���	 Given a formula � with an associated binding function D��
for every subformula � of �� we will de�ne the expansion of � with respect to
D� as�

h���iD� � ��D��Xn��Xn� � � � �D��X���X��

where the sequence �X�� X�� � � � � Xn� is a linear ordering of all bound variables
of � compatible with the dependency partial order� i�e� if Xi �� Xj then i � j�

Proviso� If not otherwise stated all considered formulas are assumed to be
well named� positive and guarded� We also assume that all occurrences of hai
and �a� modalities are replaced by appropriate formulas using �a
 �� construct�

��� Automata on in�nite objects

Let us brie y recall the concepts of �nite automata on in�nite words and trees
�see ��
� for a survey�� We will need automata in some of the proofs� The kind
of automata we would be interested most are automata with so called parity
or Rabin chain condition� This condition is a special case of both Rabin and
Street conditions and yet it is as powerful as any of these� As we will see this
type of condition has very strong connections with the ��calculus�

An in�nite word over a �nite alphabet ! is a function w � N 
 !� We will
sometimes use w�w� � � � notation for such words� The set of all in�nite words



� PRELIMINARIES �

over ! is denoted !�� the set of all �nite words over ! is denoted !�� An in�nite
tree over ! is a function t � fl� rg� 
 !� Here l� r are two letters meaning left
and right respectively� The root of a tree is an empty word denoted 
�

De�nition ���
 �Finite automata� A �nite automaton is a tuple hQ�!� s�� �i�
where Q is a �nite set of states� ! is a �nite set called an alphabet� s� 	 Q is
an initial state� � � Q� !�Q is a transition relation�

Finite automata which run on in�nite objects can be equipped with di�erent
accepting conditions� We will restrict ourselves only to two types of conditions�

De�nition ���� �Acceptance conditions� Let A be an automaton as above�
Parity acceptance condition is given by a function C � Q 
 N assigning a
natural number to every state of the automaton� Rabin acceptance condition is
given by a set of pairs of subsets of Q� f�Ri� Gi� � i � �� � � � � kg�

An �nite automaton with a parity condition will be called parity automaton�
Rabin automata are �nite automata with Rabin conditions�

De�nition ���� �Recognition� A sequence q�� q�� � � � is called a run of A on
a word w�w� � � � 	 !� i� q� � s� and for any i 	 N we have �qi� wi� qi��� 	 ��
Let Inf�q�� q�� � � �� denote the set of states which appear in�nitely often in the
sequence�

A run r � N 
 Q is accepting with respect to a parity condition C i�
minfC�q� � q 	 Inf�r�g is even� The run is accepting with respect to a Rabin
condition f�Ri� Gi� � i � �� � � � � kg i� there exists an index j 	 f�� � � � � kg such
that Rj � Inf�r� � � and Gj � Inf�r� �� ��

A word is accepted by the automaton i� it admits an accepting run� The
language recognised by A is the set of words accepted by A�

Remark ���� Parity automata are special case of Rabin automata� A parity
condition C � Q
 N is equivalent to the Rabin condition f�Ri� Gi� � Ri � fq �
C�q� � �ig� Gi � fq � C�q� � �ig� i 	 Ng� It is also true that for every Rabin
automaton there exists a parity automaton recognising the same language but
this translation is more complicated and involves increasing the number of states
of the automaton�

Example ���� The automata presented in Figure � accept the language con�
sisting of those in�nite words over ! � fa� bg which contain only �nitely many
a�s or only �nitely many b�s� Double circles denote initial states� Transition
relation is de�ned by labeled arcs� The upper automaton is a Rabin automaton
and its acceptance condition is written next to it� The lower automaton is a
parity automaton� its acceptance condition is given just by the state numbers�

An automaton is called deterministic i� for every q 	 Q and a 	 ! there
is at most one q� 	 Q such that �q� a� q�� 	 �� McNaughton ���� showed that
every Rabin automaton over in�nite strings is equivalent to a deterministic one
�Actually he showed this for di�erent acceptance condition� so called Muller
condition�� Both automata in Figure � are deterministic� The following theorem
in a more general form can be found in �����
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Figure �� An automaton for fw 	 fa� bg� � jwja �� or jwjb ��g

Theorem ���� �Mostowski� For every Rabin automaton on in�nite words
there is a deterministic parity automaton recognising the same language�

De�nition ���� Tree automaton is a tuple hQ�!� s�� �i where Q�!� s� are as
before and � � Q�!�Q�Q� A run of a tree automaton on a tree t � fl� rg�
 !
is a function r � fl� rg� 
 Q such that r�
� � s� and for any w 	 fl� rg� we
have �r�w�� t�w�� r�wl�� r�wr�� 	 ��

De�nition ���� A tree automaton with parity or Rabin condition will be
called parity or Rabin tree automaton respectively� A run of such an au�
tomaton is accepting i� for every path P of the tree the sequence of states on
P satis�es corresponding condition�

Example ���� In Figure � we present a tree automaton over ! � fa� bg recog�
nising the set of trees containing at least one a�

The states are marked with circles and the transitions are represented by
boxes� The initial state is � and there are three transitions from it� Transition
��� b� �� �� is represented by the box to the left labeled b� The parity acceptance
condition is given by the state numbers�

Remark ���	 A tree automaton is said to be deterministic i� for every q 	 Q
and a 	 ! there is at most one pair �ql� qr� 	 Q such that �q� a� ql� qr� 	 �� It is
not true that for every Rabin tree automaton there is an equivalent deterministic
Rabin tree automaton�

Theorem ���
 �Mostowski ����� Emerson � Jutla �	�� For every Rabin
tree automaton there is an equivalent parity tree automaton�

As we said in the introduction we are not going to consider the model
checking problem� i�e� the problem of deciding whether a formula is true in a
given state of a given �nite structure� Let us mention just one result which
shows the connection between the ��calculus and parity conditions�
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�

�

a b

b a b

Figure �� Tree automaton

Theorem ���� ����� Model checking problem is equivalent under linear reduc�
tions to the testing emptiness of parity automata on trees� The problem is in
NP and co�NP� On the other hand testing emptiness of Rabin automata is NP�
complete�

Exercises�

� Construct Rabin and parity string automata recognising the complement
of the language considered in Figure ��

� Show that there is no deterministic tree automaton recognising the same
language as the tree automaton considered in Figure ��

� Tableaux� markings and �operational semantics�

In this section we present the characterisation of satis�ability by means of
markings of in�nite tableaux� We call this �operational semantics� of formu�
las because the idea of the characterisation comes from considering ��calculus
formulas as automata�like devises checking the properties of the structure� In
the �rst subsection we give some motivating examples� Then we formalise the
ideas and preset the characterisation result�

According to our proviso we will assume that all the formulas considered
in this section are well named� positive� guarded and use �a 
 �� construct
instead of hai and �a� modalities�

��� Formulas as automata

Here we would like to give some intuitions about the operational semantics for
the ��calculus formulas� We will pursue the idea that formulas are automata�
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like devices checking properties of the model�
Let us consider the task of checking whether a set of formulas � is satis�ed

in a state s of a model M � hS�R� �i with a valuation Val � We will use f���g
to stand for f�g � �� As we will never consider sets of sets of formulas this
notation should not be very confusing� The algorithm for checking satis�ability
may look as follows�

�� To check that f� � ���g is satis�ed in s� check f���g or check f���g�

�� To check f� � ���g� check f�� ���g�

�� To check f
X���X���g� check f��
X���X����g� This step is called re�
generation�

�� If only literals and formulas of the form �a 
 "� appear in � �i�e� the
above rules do not apply� then we must check that all the literals are
satis�ed in s and�

�a� for every �a 
 "� 	 � and � 	 " we must �nd a state t with
�s� t� 	 R�a� and check whether f�g � f

W
� � �a 
 �� 	 ��� �� "g

is satis�ed in t�

�b� for every action a such that a formula of the form �a
 "� belongs
to � and every t such that �s� t� 	 R�a� we must �nd formulas
�a 
 "�� 	 � and �� 	 "� and check that in t the set f��g � f

W
� �

�a
 �� 	 ��� �� "�g is satis�ed�

Observe that the procedure described above is nondeterministic and this
nondeterminism shows in two places� reduction of disjunction and assignment
of states to sets in reduction of modalities� We will call one execution of the
procedure a run� Thus for a given formula and a state there may be many runs�
some of them �nite and some not� We want to �nd a condition on runs such
that existence of a successful run would characterise satis�ability relation�

Let us give some examples� Consider a formula �X�q � �a
 fp�Xg�� Let
M� be a model presented in Figure ��

d dd

d d dd

s� s� s�M�

q p� qq

� � � �

q

M�

q q q
� � �

Figure �� Models M� and M�

It consists of three states s�� s�� s� and two a�transitions� s�
a


 s� and

s�
a


 s�� Let q be true in all the states and let p be true in s�� A checking of
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satis�ability of our formula in this model can be pictured as follows�

s�j�f�X�q � �a
 fp�Xg�g
s�j�fq � �a
 fp �Xg�g
s�j�fq� �a
 fp�Xg�g
s�j�fp �Xg
s�j�fXg
s�j�fq � �a
 fp �Xg�g
s�j�fq� �a
 fp�Xg�g
s�j�fp �Xg
s�j�fpg

We used variable X to denote the whole �xpoint formula �X�q��a
 fp�Xg��

Remark ��� This example also shows that in clause �b the condition that
only special formulas appear in the label of � is necessary� Otherwise we could
apply clause �b at the very beginning and �nish the procedure claiming that it
is a success�

Now consider a model M� which states are natural numbers� transitions
labeled by a lead from a number to its successor� q is true in all the states and
p is always false� In this model our satis�ability checking would look like this�


 j� f�X�q � �a
 fp �Xg�g

 j� fq � �a
 fp �Xg�g

 j� fq� �a
 fp �Xg�g
� j� fp �Xg
� j� fXg
� j� fq � �a
 fp �Xg�g
� j� fq� �a
 fp �Xg�g
���

���
���

This is the only run of the procedure which does not fail in �nitely many
steps� It is easy to show that k �X�q � �a
 fp�Xg� kM�

V al � �� Hence we are
tempted to conclude that if our satis�ability checking process can�t �nish in a
�nite number of steps then the formula is not satis�ed� This statement is not
true� As an example let us take the formula �X�q � �a 
 fp � Xg�� Now the
satis�ability checking process will look almost the same as before but it is easy
to see that k �X�q � �a
 fp �Xg� kM�

V al � N �
Let us analyse the di�erences between this two checking examples� We will

call a transition from X to ��X� regeneration of variable X � In �rst case some
��variable was regenerated in�nitely often during the checking� In the second
case it was ��variable� We will show in the next subsection that satis�ability
checking process is successful i� �roughly speaking� there is no instance of a
��variable regenerated �nitely many times�

The intuition why it is the case comes from the Knaster�Tarski charac�
terisation of �xpoints on a complete lattice by chains of approximations� In
order to describe this approximations for every ordinal � we introduce two new
constructs ��X���X� and ��X���X� with the following semantics �for some
M � hS�R� �i and Val��
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# k ��X���X� kV al � �� k ��X���X� kV al � S�

# k 
���X���X� kV al � k ��X� kV al�k��X���X�kV al�X� �
 means � or ���

# k ��X���X� kV al �
S
� ��� k �

� �

X���X� kV al� for � limit ordinal�

# k ��X���X� kV al �
T
� ��� k �

� �

X���X� kV al� for � limit ordinal�

Remark ��� This constructs are not ��calculus formulas� This is an extension
of the language which we will use only to state the following theorem and to
de�ne the notion of signature in De�nition �����

Using this constructs we can state�

Theorem ��� �Knaster�Tarski� For every model M and valuation Val�

k �X���X� kV al �
�
�

k ��X���X� kV al

k �X���X� kV al �
�
�

k ��X���X� kV al

From the theorem it follows that whenever we are to check �X���X� in
some state s and s j� �X���X� then there is the least ordinal � such that
s j� ��X���X�� So s j� ����

�

X���X�� for some ordinal � � � � � Hence each
regeneration reduces the ordinal ��formula carries� Because the ordinals are
well ordered if we guess the run right then each instance of a ��formula should
be regenerated only �nitely many times�

To see what we mean by an instance of a ��formula consider the structure
M	 presented in Figure �

baM	
� 	 � �a � ab 	 � � �

Figure �� Model M	

Consider a task of checking that the formula f�X��Y��a 
 fXg� � �b 

fY g�g is satis�ed in state 
�


 j� f�X��Y��a
 fXg�� �b
 fY g�g

 j� f�a
 fXg�� �b
 fY g�g

 j� f�a
 fXg�g
� j� X

� j� f�a
 fXg� � �b
 fY g�g
� j� f�b
 fY g�g
� j� Y
� j� f�a
 fXg�� �b
 fY g�g
� j� f�a
 fXg�g
� j� X
���

���
���
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This is unique run which does not fail after �nite number of steps� As there
are in�nitely many regenerations of the ��variable on this unique run we are
inclined to say that the formula is not satis�ed in state 
� On the other hand
it is not di$cult to check that k �X��Y��a
 fXg�� �b
 fY g� kM�

V al � N �
The reason for this is that after each regeneration of ��variable X there is a
regeneration of ��variable Y on which X depends �Y � X�� Very vaguely
one may say that each time the ��variable is regenerated new instance of the
��subformula is created�
Exercises�

� Consider modelM	 and the formula k �X��Y��a
 fXg�� �b
 fY g� kM�

V al�
Calculate the set of states where the formula holds� How the runs of sat�
is�ability checking procedure look like�

��� Formalisation

Let us formalise the above intuitions� We will �rst de�ne a notion of a tableau
for a formula� This is intended to represent all possible reductions of the formula
which can be done during satis�ability checking� Then we will de�ne a notion
of a marking which will correspond to one run of the checking algorithm� We
conclude this section by proving a characterisation of satis�ability of a formula
in a given state by means of consistent markings�

Let us start with tableaux� A tableau for a formula will be constructed
according to reduction rules which will re ect the steps of the checking proce�
dure described above� This rules may be also considered as sound logical rules
although some of them may seem strange from the logical point of view�

Each rule will have the form�

!�� � � � �!n

�

where ��!�� � � � �!n are �nite sets of formulas� The set below the line is called
conclusion� The sets above the line are called assumptions� We will see an
application of a rule as a process of reduction� Given a set of formulas � we
want to derive� we apply the rule and obtain assumptions !�� � � � �!n which we
can reduce further� We continue to write f���g as a shorthand for fag � ��
According to our proviso we assume that all the formulas considered in this
section are well named� positive� guarded and use �a
 �� construct instead of
hai and �a� modalities�

De�nition ��� For a formula � and its binding function D	 we de�ne the
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system of tableau rules S	 parameterised by � or rather its binding function�

�and�
f�� ���g

f� � ���g
�or�

f���g f���g

f� � ���g

���
f��X���g

f�X���X���g
���

f��X���g

f�X���X���g

�reg�
f��X���g

fX��g

whenever X is a bound variable of �
and D	�X� � 
X���X�

�mod�
f�g � f

�
� � �a
 �� 	 f�g�� �� "g for every �a
 "� 	 f�g� � 	 "

f�g

with
W
� interpreted as ��

Remark ��	 The rule �mod� has as many premises as there are formulas in
sets "� s�t�� �a
 "� 	 �� For example

f��� �	g f��� �	g f�� � ��� �	g f��g f��g

f�a
 f��� ��g�� �a
 f�	g�� �b
 f��� ��g�g

is an instance of the rule�

De�nition ��
 A tableau for � is a pair hT� Li� where T is a tree and L is a
labeling function such that�

�� the root of T is labeled by f�g�

�� the sons of every node are created and labeled according to the rules of the
system S	 � with rule �mod� applied only when no other rule is applicable�

Leaves and nodes where �mod� rule was applied will be called modal nodes� The
root of T and sons of modal nodes will be called choice nodes� We say that m
is near n i� there is a path from n to m in a tableau without an application of
�mod� rule in between�

Remark ��� Returning to our example of an instance of the rule �mod� from
Remark ���� If a node n is labeled by the conclusion of this instance then n has
�ve sons labeled by corresponding assumptions� We will call a son obtained by
reducing an action a an a�son� In a sense one can consider that some edges of
a tableau can be labeled with actions� In our example n has three a�sons and
two b�sons� Node n is a modal node� its sons are choice nodes�

An example of a tableau is presented in Figure �� Following computer
science tradition our tableaux will always expand downwards so the root is at
the top�

De�nition ��� �Marking� For a tableau T � hT� Li we de�ne its marking
with respect to a structure M � hS�R� �i and state s to be an assignment M of
sets of states of M to the nodes of T such that�
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��
��

��

Q
Q
Q
Q
Q
Q

E
E
E
E
E
E

��
��

��

�
�
�
�
�

��
XX

f�X��Y�
a� fX � Y� pg�g

f�Y�
a� fX � Y� pg�g

f
a� fX � Y� pg�g

fpg fX � Y g

fX�Y g

f�Y�
a� fX � Y� pg�� Y g

f�Y�
a� fX � Y� pg�� 
a� fX � Y� pg�g

f
a� fX � Y� pg�g

Choice nodes

Modal nodes

loop

Figure �� An example of a tableau�

�� The root of T is marked with fsg�

	� If in a node n some rule other than �or� or �mod� was applied then the
only son of n has the same marking as n�


� If a node n has assigned some set of states M�n� and rule �or� was applied
in n� then one son is assigned some subset of M�n� and the other son its
complement�

�� If rule �mod� was applied in a node m then for every s 	M�m� and every
action a for which there exits a formula �a
 �� in L�m��

�a
 for every a�son n of m and every s 	 M�m� there exists a state
t 	M�n�� s�t� �s� t� 	 R�a��

�b
 for every state s 	 M�m� and every state t such that �s� t� 	 R�a�
there is an a�son n of m with t 	M�n��

De�nition ��� Given a path P of a tableau T � hT� Li� a trace on P will be
a function T r assigning a formula to every node in some initial segment of P
�possibly to the whole P�� satisfying the following conditions�

� If T r�n� is de�ned then T r�n� 	 L�n��

� Let m be a node with T r�m� de�ned and let n 	 P be a son of m� If a
rule applied in m does not reduce formula T r�m� then T r�n� � T r�m��
If T r�m� is reduced in m then T r�n� is one of the results of the reduction�
This should be clear for all the rules except �mod�� In case m is a modal
node and n is labeled by f	g � f

W
� � �a 
 �� 	 ��� �� %g for some

�a 
 %� 	 L�m� and 	 	 %� then T r�n� � 	 if T r�m� � �a 
 %� and
T r�n� �

W
� if T r�m� � �a
 �� for some �a
 �� 	 �� � �� %� Traces

from other formulas end in node m�
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De�nition ����

# We say that there is a regeneration of a variable X on a trace T r on some path
i� for some node m and its son n on the path T r�m� � X and T r�n� � ��X��
where D�X� � 
X���X��

# We call a trace ��trace i� it is an in�nite trace �de�ned for the whole path� on
which the smallest with respect to �	 ordering variable regenerated in�nitely
often is a ��variable� Similarly a trace will be called a ��trace i� it is an in�nite
trace where the smallest variable which regenerates i�o� is a ��variable�

On our example in Figure � there is a �nite trace to the leaf labeled fpg�
There is a trace consisting of the leftmost formulas on the in�nite path of
the tableau� It is a ��trace� There is also a ��trace obtained by choosing
rightmost formulas� Observe that the traces can split and merge� There are
countably many ��traces and uncountably many ��traces on the in�nite path
of the tableau�

Remark ���� Every in�nite trace is either a ��trace or a ��trace because all
the rules except regenerations decrease the size of formulas and formulas are
guarded hence every formula is eventually reduced� Observe that even though
�	 is a partial ordering there is always the least variable required in the above
de�nition�

We can now de�ne what does it mean for a marking to be consistent�

De�nition ���� �Consistent marking� Using the notation from the De�ni�
tion 
��� a marking M of T with respect to M� s is called consistent marking
with respect to M� s�Val i� it satis�es the following conditions�

local consistency for every modal nodem of T and state t ofM� if t 	M�m�
then M� t�Val j� ��� where �� is the set of all the literals occurring in
L�m��

global consistency for every path P � n�� n�� � � � of T such that M�ni� �� �
for every i � 
� �� � � � there should be no ��trace on P�

Theorem ���� Positive guarded formula � is satis�ed in a �nitary branching
structure M� state s and valuation Val i� there is a tableau T for � and a
marking M of T consistent with M� s�Val�

Proof
Let us �x a formula � �which is well named� positive and guarded by our
proviso�� Let D
 be its binding function�

First we introduce the notions of a signature and ��signature similar to
that considered by Streett and Emerson ����� We extend the notion of binding
function from Section ���� by allowing constructs of the form 
�X���X� in the
image of D
 �as before 
 stands for � or ��� The concept of expansion h���iD�

extends immediately�
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De�nition ���� Let us assume that X�� X�� � � � � Xd� �Y�� � � � � Yd� � are all ��
constants ���constants respectively� from the domain of D
 listed in some order
respecting �
 relation �smaller elements have smaller indices�� Let us take a
subformula � of ��

If the formula h���iD� is satis�ed in a state s of a model M with a valuation
Val then we can de�ne a signature of � in s� Sig��� s�� as the least� in lexi�
cographical ordering� sequence of ordinals ���� � � � � �d�� such that M� s�Val j�
h���iD� � where D� is a binding function obtained from D
 by changing de�nitions
of Xi �for i � �� � � � � d�� from D
�Xi� � �Xi��i�Xi� to D

��Xi� � ��iXi��i�Xi��
If the formula h���iD� is not satis�ed in a state s of a model M with

a valuation Val then we can de�ne a ��signature of � in s� �Sig��� s�� as
the least� in lexicographical ordering� sequence of ordinals ���� � � � � �d�� such
that M� s�Val �j� h���iD� � where D� is a binding function obtained from D


by changing de�nitions of Yi �for i � �� � � � � d�� from D
�Yi� � �Yi��i�Yi� to
D��Yi� � ��iYi��i�Yi��

Remark ���	 Of course signature of a formula depends not only on a state
but also on valuation and de�nition list which is not taken into the account in
our notation� This parameters will be always clear from the context�

It can be shown that signatures behave nicely with respect to a formula
reduction namely�

Lemma ���
 For every state s of a model M� valuation Val � and �� ��
�X���X�� �X���X� subformulas of ��

# If M� s�Val j� h�� � ��iD� then Sig�� � �� s� � max�Sig��� s�� Sig��� s���

# IfM� s j� h�����iD� then Sig����� s� � Sig��� s� or Sig����� s� � Sig��� s��

# If M� s j� h��a 
 "��iD� then� �i� for every formula � 	 " there is a state t
such that �s� t� 	 R�a� and Sig��� t� � Sig��a
 "�� s�� �ii� for any state t such
that �s� t� 	 R�a�� Sig�

W
"� t� � Sig��a
 "�� s��

# If M� s j� h��X���X��iD� then Sig��X���X�� s� � Sig���X�� s��

# IfM� s j� h��Xi��i�Xi��iD� and Xi is i�th ��variable in the domain of D
 then
the pre�xes of length i
 � of Sig��Xi��i�Xi�� s� and Sig��i�Xi�� s� are equal�

# If M� s j� h�Z�iD� and D
�Z� � 
Z���Z� then Sig�Z� s� � Sig���Z�� s� if Z
is a ��variable� If Z is i�th ��variable then the second signature is smaller and
the di�erence is at position i�

Similarly for ��signatures but with interchanged roles of � with �� conjunc�
tion with disjunction and dual statement in �a
 "� case�

Proof
We will consider only the last case� Suppose M� s j� h�Xi�iD� � where Xi is
i�th ��variable from the domain of D
� Let D
�Xi� � �Xi��i�Xi�� As our
ordering of ��variables respects �
 relation only ��variables with indices less
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than i can appear free in �Xi��i�Xi�� Let Sig�Xi� s� � ���� � � � � �n� and let D�

be a de�nition list obtained from D
 in the way described in De�nition �����
Let us denote �i�Xi��D��Xi����Xi��� � � � �D��X���X�� by ��Xi��

It should be clear that the signature of �i��Xi��i�Xi�� is the same as
�Xi��i�Xi�� which means that the signatures of Xi and �i�Xi� are the same
on positions smaller than i� From the de�nition of the signature we have
M� s j� ��iXi���X�� Observe that �i must be a successor ordinal hence M� s j�
����i��X���X�� which implies the thesis of the lemma�

Proof of Thm ���� � The proof is based on ����� Let us �rst focus on the
left to right implication� Suppose that � is satis�ed in a state s of a structureM
with a valuation Val � Let T be a tableau for �� We will construct a consistent
marking M of T with respect to M� s�Val�

� The root of T will be marked by s�

� If in a node some unary rule was applied then� as required� the only son
of it will be marked with the same set of states as the father�

� If �or� rule was applied in a node n�

f���g f���g

f� � ���g

then for any s 	M�n� we put s into the marking of the son labeled f���g
if Sig��� s� � Sig��� s� otherwise we put s into the marking of the other
son�

� Suppose rule �mod� was applied in n and let s 	 M�n�� If for some
�a 
 "� 	 L�n�� � 	 " and t with �s� t� 	 R�a� we have Sig��� t� �
Sig��a
 "�� s� then we put t into a marking of an a�son of n containing
�� Form Lemma ���� follows that every t 	 ft � �s� t� 	 R�a�g appears
in a marking of some a�son of n and in every a�son of n one of the states
from the set appears�

It is obvious that the marking de�ned in such a way is locally consistent�
i�e�� for any modal node m and state t 	M�m�� all the literals occurring in the
label of m are satis�ed in t�

To check the other condition of consistency of the marking let P be a path
of T and let every node of P be labeled by a nonempty set� We will show that
there cannot be a ��trace on P � First observation is that because the structure
is �nitely branching� every node of T is marked by a �nite number of states�
This means that if for some node n and formula � 	 L�n� we de�ne its signature
as maxfSig��� s� � s 	 M�n�g then there will be actually state s� 	M�n�� s�t��
Sig��� s�� is this maximum�

Let us assume that there is a ��trace on P and that a ��variable Xi is the
smallest variable with respect to �
 ordering regenerated i�o� on this trace� Let
us look at the signatures of formulas from the point when no variable smaller
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than Xi is regenerated on the trace� From the de�nition of the marking follows
that from that moment signatures of formulas on the trace never increases on
positions �� � � � � i 
 �� If Xi is regenerated in a node n then Xi 	 L�n� and
�i�Xi� occurs in the label of the only son n� of n� From Lemma ���� follows
that for any state s 	 M�n�� signature Sig��i�Xi�� s� is smaller� on position i

than Sig�Xi� s�� Because M�n� is �nite� maximal signature also decreases�
This shows that from some moment maximal signature of formulas on the

trace considered up to position i never increases and decreases every time Xi is
regenerated� This is a contradiction because sequences of ordinals of bounded
length are well ordered�

Proof of Thm ���� � To prove the theorem in the direction from right to
left let us assume that there is a tableau T for � and its marking M consistent
with respect to M� s�Val� Assume conversely that M� s�Val �j� �� We will
show that this assumption leads to a contradiction�

We will show that there must be a ��trace on a path of T such that every
node of it is marked by some nonempty set of states� Suppose that we have
constructed this hypothetical trace up to a node n� formula � 	 L�n� is the last
formula of it and s 	 M�n� is a state such that M� s�Val �j� �� We proceed
according to the rule which was applied in n�

� Suppose the rule is unary� If it was applied to � then the next element
of the trace is the result of reduction of �� otherwise the next element is
formula � itself� In case �and� rule was applied to � � �� � �� choose ��
if �Sig���� s� is smaller than �Sig���� s� or choose �� otherwise� It is clear
that the new last element of the trace is not satis�ed in s�

� If rule �or� was applied in n then choose a son n� of n� s�t� s 	M�n��� The
next element of the trace will be a result of reduction of � which appears
in n� or � itself if it was not reduced by this application of the rule�

� If rule �mod� was applied in n then by de�nition of a consistent marking
� cannot be a literal or a formula of the form �a 
 ��� Hence it has the
form �a
 "� with " �� �� In this case either�

�� There is a formula � 	 " such that for every t with �s� t� 	 R�a� we
have t �j� � and �Sig��� t� � �Sig��a
 "�� s�� In this case we choose
a son n� of n labeled by f�g � f

W
� � �a 
 �� 	 L�n��� �� "g� For

the next state we take t 	M�n�� such that �s� t� 	 R�a��

�� There is state t� s�t�� �s� t� 	 R�a� and t �j�
W
" with �Sig�

W
"� t� �

�Sig��a 
 "�� s�� In this case take a son n� of n where t is in the
marking� Our next formula is

W
" or 	 	 " depending on which one

appears in L�n��

Using similar arguments as in the proof of the left to right implication one can
easily prove that constructed trace must be a ��trace but this contradicts our
assumption about consistency of the marking�
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Remark ���� Observe that Theorem ���� is stated only for �nitely branching
structures and we need this restriction to prove the left to right implication�
This restriction can be removed by slightly modifying the notion of the marking�
We will not do it here as we do not need this stronger result� The fact we need
is that every satis�able formula has a �nitary branching model� We will assume
this fact without a proof�

� Applications of operational semantics

This section is divided into two parts� In �rst we sketch how some known
results can be proved using the operational semantics of formulas� The second
is devoted to the notion of tableau equivalence which turns out to be very
helpful in the further development�

��� Small model theorem	 decidability	 syntactic characterisa�
tions

Our operational semantics is very similar to a model checking algorithm in the
style of Stirling and Walker ���� �in case of �nite models� or ��	� �in the general
case�� The important di�erence lies in the treatment of conjunction� This is
connected to the notion of alternation which we try to omit in this notes� Let
us instead consider decidability problem and the small model theorem �����

Theorem ��� �Small model� If a ��calculus formula � is satis�able then it
is satis�able in a �nite model having not more than O��j	j� states�

Proof
The proof is based on ����� Let T � hT� Li be a tableau for �� Let a pre�model
PM be a tree satisfying the following conditions�

� the root of of T belongs to PM�

� if a choice node belongs to PM then exactly one modal node near it
belongs to PM�

� if a modal node belongs to PM then all its sons belong to PM�

� if a modal node m belongs to PM then � does not appear in m and there
is no literal such that the literal and its negation occur in the label of m�

� there is no path of PM with a ��trace�

It is easy to construct a model M � hS�R� �i from the pre�model� Let S be
the set of modal nodes of PM� �m�n� 	 R�a� i� n is near some a�son of m�
m 	 ��p� i� p 	 L�m�� Let s� be the modal node of PM near the root of T �
Let Val�X� be de�ned by m 	 Val�X� i� X 	 L�m��

It is quite easy to see that there is a consistent marking of T with respect
toM� s��Val� Hence by Theorem ���� we haveM� s��Val j� �� Form the same
theorem it follows that if � is satis�able then there is a pre�model for � �see
Remark ���	�� Thus we have�
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Theorem ��� Formula � is satis�able i� there is a pre�model for ��

Now there is a �nite automaton on trees which recognises �codings of� pre�
models for �� Using Rabin conditions it is possible to construct such an au�
tomaton with O��j	j� states and j�j pairs� Hossley and Racko� proved in �	�
that if Rabin automaton over one letter alphabet has an accepting run then it
has a regular accepting run� From this follows the small model theorem without
the bound on the size of the structure� Emerson using this result proved the
following theorem ����

Theorem ��� �Emerson� Suppose A is a Rabin automaton over a single let�
ter alphabet� If A has an accepting run then there is a graph G with states of
A as nodes which unwinds to an accepting run of A�

From the theorem it follows that there is a pre�model for � which can be pre�
sented as a graph with no more than O��j	j� nodes� It can be converted to a
model of the same size�

In ��� it was shown how to test emptiness of a Rabin automaton in time
O��mn�	n� where m is the number of states and n is the number of pairs of the
automaton� This gives an exponential satis�ability testing procedure for the
��calculus� The lower bound for this problem follows from the lower bound for
PDL proved in ����

Theorem ��� �Decidability� The problem of deciding whether a given for�
mula of the ��calculus is satis�able is EXPTIME complete in the size of the
formula�

In ���� the question was raised whether it is possible to characterise validity
in the same way as satis�ability�

De�nition ��	 �Refutation� A refutation R is a subset of T satisfying the
following conditions�

� the root of T belongs to R�

� if a choice node n belongs to PM then all modal nodes near n belong to
R�

� if a modal node m belongs to R then at most one son of m belongs to R�

� if m has no sons in R then either � occurs in the label of m or some
literal and its negation occur in m�

� there is a ��trace on every in�nite path of R�

It was observed that from Martin�s determinacy theorem ��
� it follows that
if there is no pre�model in T then one can �nd a refutation in T � It is easy
to see that there cannot be a refutation and a pre�model in the same tableau�
This shows
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Theorem ��
 Formula � is valid i� there is a refutation for ���

The similar analysis of complexity� as we did for pre�models� applies also to
refutations� Summarising we have�

Theorem ��� There is an algorithm which� given a mu�calculus sentence ��
constructs a model of the size O��j	j� or a refutation of the size O��j	j�� The
algorithm runs in time O��j	j��

In ���� a �nitary proof system was proposed and it was show how to convert a
refutation of a formula into a proof of the negation of the formula� Unfortu�
nately the method used there does not seam to work for Kozen�s axiomatisation�

��� Tableau equivalence

In this subsection we would like to present one more application of the opera�
tional semantics� We will de�ne the notion of tableaux equivalence and show
that if two formulas have equivalent tableaux then they are equivalent�

To give the de�nition of equivalence we will need to distinguish one more
kind of formulas�

De�nition ��� A terminal formula is a formula of the form �a
 �� for some
action a�

The meaning of a terminal formula �a
 �� is that there are no a�transitions
from a given state� Although we introduce them only here these formulas
were already implicitly considered in the de�nition of the marking �see De�ni�
tion �����

In tableau equivalence we can abstract from the order of application of non�
modal rules� but the structure of the tree designated by modal nodes will be
very important�

De�nition ��� We say that two tableaux T� and T� are equivalent i� there is
a bijection E between choice and modal nodes �see De�nition ���� of T� and T�
such that�

�� E maps the root of T� onto the root of T�� it maps choice nodes to choice
nodes and modal nodes to modal nodes�

�� If n is a descendant of m then E�n� is a descendant of E�m�� Moreover if
for some action a� node n is an a�son of a modal node m then E�n� is an
a�son of E�m��

�� For every modal node m� the sets of literals and terminal formulas occur�
ing in L�m� and in L�E�m�� are equal�

�� There is a ��trace on a path P of T� i� there is a ��trace on a path of T�
designated by the image of P under E �

Theorem ���� If two positive guarded formulas have equivalent tableaux then
they are equivalent� �According to our proviso we assume that formulas use
�a
 "� notation instead of hai� and �a����
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Proof

Let �� � be two formulas and T�� T
 equivalent tableaux for � and � respectively�
Let E � T� 
 T
 denote the bijection showing the equivalence of T� and T
 � We
will show that for any �nitely branching structure M� state s and valuation
Val � we have M� s�Val j� � i� M� s�Val j� ��

Suppose M� s�Val j� �� By Theorem ���� there is a consistent marking M
of T� with respect toM� s�Val� This marking determines a consistent marking
of T
 � First to any modal or choice node n of T
 we assign the set M�E���n���
The labeling of any other internal node is uniquely determined by this assign�
ment� Directly from the de�nition of equivalence it follows that de�ned marking
is consistent with M� s�Val�

Observe that E�� is also a function showing the equivalence of T
 and T�
hence there is a way of obtaining a consistent marking of T� from a consistent
marking of T
�

Remark ���� Of course the inverse of the above theorem is not true� De�
spite this weakness the theorem will be very useful for proving equivalence of
formulas�

Let us discuss the connection between this notion of equivalence and bisim�
ulation� It is possible to de�ne the notion of simulation between tableaux� It is
convenient to use game metaphor here but we hope that the connections with
the usual notion of simulation will be evident� Given two tableaux T�� T
 we
can de�ne the game on this two tableaux by the following rules�

�� The starting position of the game is �r�� r
�� where r� and r
 are the
roots of T� and T
 respectively�

�� If the position of the game is a pair of choice nodes �n�� n
� then player
I chooses some modal node m� near n� and player II responds with a
modal node m
 near n
 with the property that every literal and terminal
formula appearing in m
 appears also in m�� The new position of the
game is �m�� m
��

�� If the game is in a position �m�� m
�� both nodes being modal nodes then
player I chooses a son of one of the nodes and the other player responds
with a son of the other node of the same type �i�e� if both sons must be
obtained by reduction of the same action��

The game may end after �nite number of steps because one of the players
cannot make a move� In this case the other player is the winner� If the game
lasts forever then as the result we obtain a pair of in�nite paths P� of T� and
P
 of T
� Player I wins if there is no ��trace on P� but there is a ��trace on
P
� otherwise player II is the winner�

We will say that T
 can simulate T� i� there is a winning strategy for the
player II in the game described above� One can show that if � has a tableau
that can simulate a tableau for � then for every modelM� state s and valuation
Val � M� s�Val j� � implies M� s�Val j� ��
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We can say that two tableaux are bisimilar i� each one can simulate the
other� It is easy to see that this notion of bisimulation relates more tableaux
than equivalence�

Please note that the game is asymmetric in step � but both tableaux are
treated equally in step �� This is connected to the fact that we have both hai
and �a� modalities in the logic� It is possible to vary the de�nition of step ��
One such variation can be found in De�nition 
���

We will not use this notion of bisimulation in this notes� In the completeness
proof we will need even weaker notion of simulation �see De�nition 
���� Till
that moment the notion of equivalence will be su$cient for us�

	 Disjunctive formulas

Operational semantics of formulas gives us some intuitions about the role of
each connective� If we are to check that ��� holds� we choose �nondeterminis�
tically� one of the disjuncts� If we are to check �X���X� we try the equivalent
formula ���X���X��� When we check ��� we must check that a state satis�es
� and �� While disjunction acts like a nondeterministic choice� conjunction acts
rather like universal branching of an alternating automaton� Such an alternat�
ing behaviour of a conjunction is a source of many di$culties� For example this
is the only reason why our tableaux are labeled by sets of formulas and why the
notion of trace is needed� One may ask whether we can avoid this di$culties�

From automata theory we know that alternating automata are equivalent to
nondeterministic ones ����� This suggests an idea that every formula should be
equivalent to a formula which does not have universal branching behaviour rep�
resented by conjunction� Of course we cannot discard conjunctions completely
from positive formulas as an example of the formula �a 
 fpg� � �b 
 fqg�
shows� Note that conjunction in this formula does not act as universal branch�
ing� It is rather an implicit conjunction from �usual� not alternating� automata
on trees where transition relation forces one son to be labeled by a state q and
the other one by q�� This implicit conjunction is the only form of conjunction
that is present in �xpoint notation for the sets of trees de�ned by Niwi&nski �����
It was proved that this �xpoint language has the same expressive power as SnS�
monadic second order logic of n successors� Hence adding explicit conjunction
to this language will not increase its expressive power�

De�nition 	�� �Special conjunctions and disjunctive formulas� A con�
junction ��� � � ���n is called special i� every �i is either a literal or a formula
of a form �a 
 �� and for any action a there is at most one conjunct of the
form �a
 �� among ��� � � � � �n�

The set of disjunctive formulas� Fd is the smallest set de�ned by the follow�
ing clauses�

�� every literal is a disjunctive formula�

	� if �� � 	 Fd then � � � 	 Fd� if moreover X occurs only positively in �
and not in the context X � � for some �� then �X��� �X�� 	 Fd�
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� �a
 "� 	 Fd if " � Fd�

�� special conjunction of disjunctive formulas is a disjunctive formula�

Remark 	�� Many properties can be �naturally� expressed by disjunctive for�
mulas� For example the properties q holds almost always and q holds in�nitely
often�

�X��a
 fXg�� �Y�q � �a
 fY g� �X��Y��a
 fY g� � �q � �a
 fXg��

Remark 	�� Modulo the order of application of �and� rules� disjunctive for�
mulas have unique tableaux� Moreover on any in�nite path there is one and
only one in�nite trace�

Theorem 	�� For every �well named� positive and guarded� formula � and
every regular tableau T for � �i�e� a tableau which is a regular tree� there is a
disjunctive formula b� with the tableau equivalent to T �

Proof

Let T � hT� Li be a regular tableau for �� As T is a regular tree� it can be
presented as a �nite labeled graph G � hG�LGi� where G is a �nite graph and
LG a labeling function�

We �rst show that it is possible to present T in a form of a tree with back
edges � i�e�� edges leading from some leaves to their ancestors� We will still apply
tree�like terminology to such a structure� for example we will say that one node
is a son of the other meaning that it is so in a tree obtained by forgetting about
back edges�

Lemma 	�	 It is possible to construct a �nite tree with back edges Tl �
hTl� Lli� satisfying the following conditions�

�� Tl unwinds to T �

�� Every node to which a back edge points can be assigned color magenta
or navy in such a way that for any in�nite path from the unwinding of Tl
we have� there is a ��trace on the path i� the highest node of Tl through
which the path goes i�o� is colored magenta�

Proof
It is easy to see that there is a Rabin automaton on in�nite strings recognising
those paths of a tableau for � which have a ��trace on them� Form Theorem ����
it follows that there is an equivalent deterministic automaton A with a chain
condition C�

Given automaton A we construct our tree with back edges� Tl � hTl� Lli�
Labeling function Ll will assign to nodes of Tl not sets of formulas but triples
�set of formulas � state of A� node of G�� All such triples ��� q� k� will satisfy
an additional requirement that LG�k� � ��

� We label the root of Tl by a triple consisting of f�g� a state q reachable
from the start state of the automaton on letter f�g and the initial node
of G�
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� If we have already constructed a node n of Tl labeled ��� q� k� then for
any k� to which there is an edge from k in G we add a son of n labeled by
���� q�� k�� where� �� � LG�k

�� and q� is a state reachable from q on a letter
��� There is one exception to this rule� If a triple we are going to add is
already a label of some ancestor m of n and no state with smaller than
C�q�� value of C function appears on the path from m to n then instead
of creating a son of n we create a back edge from n to m� We color m
magenta if C�q�� is even otherwise we color m navy�

It should be clear that the constructed tree is �nite and its unwinding with
labeling restricted to the �rst components is just T � If we take an in�nite path
P from the unwinding of Tl then the third components of the triples constitute a
path of our initial tableau T and the second components constitute a run of our
automaton on this path which is unique because the automaton is deterministic�
For any path P there is the highest node m of Tl which P visits i�o� Let q be
the state appearing in the label of m� From the construction of Tl we know
that only sates with C value not smaller then C�q� appear on the path i�o� From
the assignment of colors follows that if m is colored magenta then the run is
accepting and there is a ��trace on the path� Otherwise if m is colored navy
the run is rejecting and all in�nite traces on the path are ��traces�

From the tree with back edges Tl we are going to construct a disjunctive
formula which has a tableau equivalent to T � We start from the leaves of Tl
and going to the top assign a formula bn to each node n of Tl in the following
way�

� If there are no edges going from n then in the label of n only literals and
terminal formulas can occur� We let bn to be the conjunction of all the
formulas appearing in the label of n�

� If there are edges going from n then we assume that every son of n has
assigned some disjunctive formula� It will be convenient to assume that
a formula assigned to a son is also assigned to an edge leading from n to
this son� There can be also back edges leading from n to some ancestors
of n and of course those ancestors have no formula assigned yet� To such
a back edge from n to� say m� we assign a variable Xm �an index is a
node to which the edge points�� We �rst de�ne an auxiliary formula �

depending on the rule which was applied in n�

� If one of the rules ���� ���� �reg� or �and� was applied in n then � is
exactly the same as the formula assigned to the only edge leading
from n

� If rule �or� was applied in n then there are two edges leading from n
which have been assigned formulas 	� and 	�� We let � � 	� � 	��

� If applied rule was �mod� then let %a be the set of all the formulas
assigned to the edges leading from n to some node labeled by a
result of reduction of action a� We let � to be a conjunction of all
the literals and terminal formulas appearing in L�n� together with
all the formulas of the form �a
 %a��
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If there are no back edges leading to n then bn is just �� Otherwise let
bn � 
Xn��� where 
 is � or � depending on whether n was colored
magenta or navy respectively�

Observe that cn� has only one tableau� call it bT � It is not di$cult to check
that bT is equivalent to T � Hence formula cn� is semantically equivalent to b��

Finally let us make the following useful observation which we will use in the
completeness proof�

Observation 	�	�� We can assume that bn �� bm whenever m is not near to n�
We can assume that all back edges in Tl go from modal nodes to choice nodes�

Observe that while the assumption on back edges is harmless� it is not
clear how easily satisfy the �rst requirement without a bit of �cheating�� One
solution would be to add countable number of constants denoting the truth�
Having them we could add a di�erent constant of this kind to every leaf of Tl�
As we have countable number of variables one such constant is enough because
we can take formulas f�Xi�� � i 	 Ng�

We would like to stress that assumptions made in Observation ����� are not
essential for the proofs which follow although simplify them a lot�


 Applications of disjunctive formulas

This section is divided into two parts� In the �rst we show how to construct
models for disjunctive formulas and that checking their satis�ability can be
done in linear time� Second part is devoted to some connections with automata
theory�


�� Satis�ability of disjunctive formulas

In Theorem ��� a general technique of model construction for the ��calculus
formulas was described� Till now it remains essentially the only known tech�
nique for model construction� It turns out that in case of disjunctive formulas
model construction is much easier� This is described in the following theorem�

Theorem 
�� A closed disjunctive formula � is satis�able i� the formula �

obtained from � by replacing all occurrences of ��variables by � and all occur�
rences ��variables by � is satis�able�

Proof
It is quite easy to show that if � is satis�able then � is satis�able� This can be
done by induction on the structure of � �see the proof of Theorem ��� for the
similar argument��

Let us assume that � is satis�able� Let T� � hT�� L�i and T
 � hT
� L
i be
tableaux for � and � respectively� Observe that T
 is a �nite tree with no back
edges which is �isomorphic� to �� Indeed if we consider � written as a tree
then there is a direct correspondence between nodes of T
 and �� Tree T� is an
unwinding of a graph obtained from T
 by adding back edges from some nodes
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labeled f�g or f�g� Back edges from nodes labeled f�g lead to nodes labeled
with ��variables� Similarly back edges from f�g�nodes lead to ��variables� We
will assume that there is a function h which for any node of T� gives us the
corresponding node of T
� This situation is presented schematically in Figure �

��
X��

��
Y����
��

��
��

� � � X� Y� X�

� �

��
�� ��
X��

Figure �� Tableaux T
 and T�

Let M be a minimal �w�r�t� inclusion� marking of T
 consistent w�r�t� some
arbitrary model for �� Let T �
 be the subtree of T
 consisting of the nodes

marked with nonempty sets and let T �� � h���T �
�� As no leaf of T �
 can be
labeled by f�g it is easy to see that there is no ��trace on any in�nite path
of T ��� Also in every modal node m of T �� there are the same literals as in the
modal node h�m� of T �
 � This shows that T �� is a pre�model for �� Hence by
Theorem ��� formula � is satis�able�

Corollary 
�� Satis�ability checking of disjunctive formulas can be done in
linear time�

The above theorem can be also used to show how to prove the negation of
an unsatis�able disjunctive formula� We will show this in the next section as
we need to have some proof system �rst�


�� Applications to automata theory

In this section we would like to discuss connections between parity automata
on trees and disjunctive formulas� We will show that disjunctive formulas for
the ��calculus over binary trees closely correspond to parity automata� This
gives yet another proof of Rabin�s complementation lemma� We would also like
to argue that disjunctive formulas can be considered as a natural generalisation
of parity automata on trees to arbitrary transition systems�

Let us consider ��calculus restricted to binary trees� that is suppose that
the models of the ��calculus are transition systems obtained from binary trees�
Given a �nite set of propositional constants fp�� � � � � pkg and a tree t � fl� rg�

! over an alphabet ! � P�fp�� � � � � pkg� we can consider it as a transition
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system hfl� rg�� R� �i where R�l� � f�w�wl� � w 	 fl� rg�g� R�r� � f�w�wr� �
w 	 fl� rg�g� and ��pi� � fw 	 fl� rg� � pi 	 t�w�g�

For this restricted calculus we can take stronger version of rule �mod� which
takes advantage of the information that there is always exactly one left and
exactly one right successor�

�tmod�
f� � � 	 "� �l
 "� 	 �g f� � � 	 "� �r
 "� 	 �g

f�g

Then we can modify the proofs of Theorems ���
 and ��� in a straightforward
way to show that any formula of the ��calculus restricted to binary trees is
equivalent to a disjunctive formula where all special conjuncts have the form
�l 
 f�g� � �r 
 f�g� �

V
�� for some formulas �� � and a set of literals

�� Tableau for such a formula can be presented as a tree with back edges as
described in Lemma ���� This tree can be easily converted to an equivalent
parity automaton� Here equivalent means that the automaton accepts exactly
those trees in which root our initial formula is satis�ed�

It is also quite straightforward to construct a disjunctive formula from a par�
ity automaton� As ��calculus over binary trees is closed under complementation
this translations show that parity automata are closed under complementation�
Put together with Theorem ���� we have got a proof of Rabin�s complementa�
tion lemma�

Theorem 
�� �Rabin� Rabin tree automata are closed under complementa�
tion�

This also gives a proof of the results from ���� ��

Theorem 
�� �Niwinski� Emerson � Jutla� ��calculus over binary trees
is as expressive as Rabin tree automata hence equivalent to the monadic second
order logic of two successors �S	S
�

One may ask what happens in the general situation when we allow arbitrary
transition systems� In this case monadic second order logic �MS�logic for short�
is not decidable hence the equivalence does not hold� This is an easy answer
because the question was not exactly right� It is well known that ��calculus
cannot distinguish between a transition system and its unwinding which can
easily be done in MS�logic�

More re�ned question would be then to ask what happens when we restrict
to models which are unwindings of transition systems� In this case it is still
true that the ��calculus is weaker than MS�logic� In MS�logic one can say that
a node has� say� two a�successors� This fact is not expressible in the ��calculus�

This shows that there is a di�erence between the case when a degree of a
node is know and the general case� This di�erence can be also exhibited on the
automata level� Unwinding of every countable transition system can be encoded
as a binary tree� From the results cited above it follows that for any ��calculus
formula there is an equivalent parity automaton where equivalent now means
that the automaton recognises encodings of exactly those trees which are un�
windings of transition systems from states where the formula holds� Neverthe�
less� for the reasons mentioned above it is not the case that for every automaton
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there exists an equivalent ��calculus formula� We have argued above that dis�
junctive formulas for restricted ��calculus correspond to parity automata� This
allows us to consider disjunctive formulas for unrestricted ��calculus to be a
generalisation of the notion of a parity tree automaton to arbitrary transition
systems�

� Kozen�s axiomatisation

Here we would like to present an axiomatisation of the ��calculus proposed by
Kozen �
�� We will adopt Gentzen�style formalisation because it �ts nicely with
the tableau rules we have� A sequent ��� is a pair of �nite sets of formulas�
The meaning of ��� is that implication

V
��

W
� is valid� or in other words

that for every model M its state s and valuation Val if M� s�Val j�
V
� then

M� s�Val j�
W
�� The meaning of one sided sequent �� is that the conjunction

of formulas from � is not satis�able�
The system consists of the three sets of rules� First come the rules for

propositional modal logic �so called system K��

���
�����

������

�����

������

���
�� �����

� � �����

����� �����

��� � ���

���
����� �����

� � �����

���� ���

��� � ���

�hi�
�� f� � �a�� 	 �g�f� � hai� 	 �g

hai�����

�cut�
���� � !� ���

��!����

Then we add two rules concerning the least �xpoint� First expresses the fact
that the least �xpoint is a pre��xpoint� The second is Park�s least �xpoint rule
which says that the least �xpoint is the least pre��xpoint�

���
�����X���X����

���X���X���

�P �
������

�X���X���

Finally as we add rules expressing dualities of the ��calculus and de�ning
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�a
 "� construct�

����
��hai����

�a������

hai������

�� �a����

���
���X�����X���

�X���X�����

�X�����X�����

���X���X���

� 
 f g�
�a�
�

"� fhai� � � 	 "g����

�a
 "�����

��
�
fhai� � � 	 "g � �a�

�
"��

���a
 "���

Observe that there is a cut rule in the system� We don�t know whether cut
can be eliminated from the system at the expense of adding some �nite set of
�reasonable� rules�

A sequent � �� is called an axiom i� � � � �� � or � 	 � or � 	 �� A
proof of a sequent ��� in the system is a �nite tree constructed with the rules
above which root is labeled by ��� and all the leaves are axioms�

As all our tools were developed for positive guarded formulas we need to
show that if provability is concerned we can restrict to such formulas�

Fact ��� Every formula is provably equivalent to a positive guarded formula�

Proof

Just observe that all the steps used in the proof of Proposition ��	 use provable
equivalences�

A rule will be called admissible i� it is possible to prove the conclusions of
the rule assuming that premises of the rule are additional axioms� The following
rules were proved admissible in �
��

�hi�
f	g � f

�
� � �a
 �� 	 ��� �� %g�

�a
 %����
for some 	 	 %

�fix�
���X���

�
�� � ��X�����

�X���x����

�mon�
���

���������
X occurs only positively in ��X�

Our main goal is to prove the following theorem�

Theorem ��� �Completeness� Kozen�s axiomatisation of the propositional
��calculus is complete� that is for every unsatis�able formula � there exists a
proof of the sequent �� in the system�

In the next section we will consider some special cases when we put some
syntactic restrictions on the form of �� Among others we will prove the theorem
for disjunctive formulas� In the last section we will show that every formula is
provably equivalent to a disjunctive formula�
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 Special cases of the completeness theorem

In this section we will consider classes of formulas for which the provability is
easier than in the general case� We recall a notion of an aconjunctive formula �
�
and propose its slight generalisation called weakly aconjunctive formulas� Our
goal is to obtain a generalisation of the main result from �
� which states that
for every unsatis�able aconjunctive formula the sequent � � is provable� We
introduce the notion of thin refutation which isolates the cases for which the
original proof still goes through� From Theorem ��� we know that every unsatis�
�able formula has a refutation� It turns out that in case of weakly aconjunctive
formulas this refutation is thin�

��� Aconjunctiveness

De�nition ��� �Aconjunctiveness� Let � be a formula� D
 be its binding
function and �
 dependency ordering �see De�nition 	���
�

� We say that a variable X is active in 	� a subformula of �� i� there is a
variable Y appearing in 	 with X �
 Y �

� Let X be a variable with its binding de�nition D
�X� � �X���X�� Variable
X is called aconjunctive i� for all subformulas of � of the form � � � it is not
the case that X is active in � as well as in ��

� Variable X as above is called weakly aconjunctive i� for all subformulas of
� of the form � � � if X is active both in � and � then � � � is a special
conjunction as de�ned in De�nition ���

� Formula � is called �weakly� aconjunctive i� all ��variables in � are �weakly

aconjunctive�

In the following we will be interested only in weakly aconjunctive formulas�
De�nition of aconjunctive formulas was recalled just to give a comparison of
the two notions�

From the next observation follows that all formulas appearing in a tableau
for a weakly aconjunctive formula are weakly aconjunctive�

Proposition ��� Every formula appearing in a tableau for � is a subformula
of ��

The next proposition states some closure properties of the class of weakly
aconjunctive formula� Observe that weakly aconjunctive formulas are not closed
under taking the least �xpoint�

Proposition ��� If ��X� and � are weakly aconjunctive formulas then ����X ��
�X���X� and � � ��X� are also weakly aconjunctive formulas�

Proof
As we consider only well named formulas when conjunction is formed we make
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sure that the bound variables in � and ��X� are di�erent� With this observation
it should be easy to see that �X���X� and � � ��X� are weakly aconjunctive�

Also while performing substitution ����X � we keep bound variables of �
distinct from the bound variables of �� Let � � ����X � and let Y be a ��
variable of �� It may be either a bound variable from � or from �� If it is bound
variable from � then observe that because no bound variable of � is free in �
for every Y �� Z� variable Z is a bound variable of �� Hence Y is aconjunctive
in � i� it was aconjunctive in �� For the similar reason any ��variable of � is
aconjunctive in ��

��� Proving �negations of
 weakly aconjunctive formulas

First let us consider disjunctive formulas�

Theorem ��� For every unsatis�able disjunctive formula � the sequent �� is
provable�

Proof

In Theorem ��� we have shown that � is satis�able i� � obtained form � by
replacing all ��variables by � and all ��variables by � is satis�able�

We prove the theorem by induction on the structure of ��
If � is a special conjunction �� � � � ���n then we have two cases� If �i � �

or �i � ��j for some i� j 	 f�� � � � � ng then � � is easily provable� Otherwise
one of the conjuncts must be of the form �a
 �� and one of the formulas from
� must be unsatis�able� From induction assumption using rule �hi� we obtain
the proof of �� �

If � � � � � then by induction assumption we have proofs of �� and �� so
we can use the left ��� rule�

If � � �X���X� then as this formula is unsatis�able so is ����� By induction
assumption there is a proof of ����� � Using derivable rule�

�����

�X���X��

we have the proof of �X���X�� �
If � � �X���X� then we consider ����� It is of course a disjunctive formula�

By Theorem ��� ���� is satis�able i� �X���X� is satis�able� As the later
formula is not satis�able we have by induction assumption the proof of �����
and we can use derivable rule�

�����

�X���X��

Remark ��	 The proof of the above theorem crucially depends on the fact
that we never run into the situation when � is considered in a conjunction with
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some other formula� Observe that the rule�

�������

�X���X����

is not sound� This means that our proof method breaks down in the general
case�

It should be mentioned that the in�nitary rule�

f�n������ � n 	 Ng

�X���X����

is sound because of the small model property� This rule obviously gives a
complete system� From the small model property it follows that this rule can
be replaced by a ��nitary rule��

�n������

�X���X����
n � �k � where k is the size of the conclusion

In �
� Kozen proved a result similar to Theorem ��� but for aconjunctive
formulas� Below we present a minor generalisation of this result� We will need
it in our completeness proof�

De�nition ��
 A refutation �see De�nition ���� is called thin i� whenever a
formula of the form � � � is reduced in some node of the refutation and some
variable is active in � as well as in � then either � � � is a special conjunction
or one of the conjuncts is immediately discarded by the use of the weakening
rule�

�

f���g

Theorem ��� Let � be a formula� If there exists a thin refutation for � then
the sequent �� is provable�

We will not prove this theorem here� its proof is a minor alternation of
the proof from �
� and it is much more complicated than that of Theorem ����
Instead let us give an example of the method used in the proof�

Consider the sequent

�X�p � �a
 fXg�� �Y��p� �a
 fY g��

Below we present a refutation of this sequent�

f�X�p � �a
 fXg�� �Y��p� �a
 fY g�g

fp � �a
 fXg�� �Y��p� �a
 fY g�g

fp � �a
 fXg���p� �a
 fY g�g

fp��p� �a
 fY g�g f�a
 fXg���p� �a
 fY g�g

fX� Y g

fp � �a
 fXg���p� �a
 fY g�g
���
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As the sequent just above the dots appears already in the refutation we
have a loop which gives us an in�nite path� On this path there is a ��trace
composed of the leftmost formulas of the path�

We convert this refutation into a �nite proof by using rule �fix� in the �rst
regeneration of �X�p � �a 
 fXg�� This allows us to �remember� the node
where regeneration was performed� We can then use this information when we
will be regenerating this formula once again in the same context� �Below we
denote �X����Y��p� �a
 fY g��� �a
 fXg� by � and use variables to stand
for corresponding formulas��

�X�p � �a
 fXg�� �Y��p� �a
 fY g��

p � �a
 f�g�� �Y��p� �a
 fY g��

p � �a
 f�g���p� �a
 fY g��

p��p� �a
 fY g�� �a
 f�g���p� �a
 fY g��

�� Y �

�� �Y��p� �a
 fY g��

�X����Y��p � �a
 fY g��� �a
 fXg�� �Y��p� �a
 fY g��

���Y��p � �a
 fY g��� �Y��p� �a
 fY g��

The last sequent is clearly provable� The last step is obtained using �cut� rule
with the obvious sequent�

The following easy consequence of Proposition ��� shows that Theorem ��	
gives use means to deal with weakly aconjunctive formulas�

Fact ��� Every refutation for a weakly aconjunctive formula is a thin refuta�
tion�

� Provable equivalence

Having Theorem ��� to prove completeness it is enough to show that for any
unsatis�able formula � there is a disjunctive unsatis�able formula b� such that
�� b� is provable� Of course we could just take b� to be � but then the proof of
this fact would be exactly as di$cult as showing completeness� So in general
we will look for more complicated formulas then �� Because we will prove this
fact by induction on � we clearly need to consider also satis�able formulas�

This whole section is devoted to the proof of the following theorem�

Theorem ��� For every positive� guarded formula � there is an equivalent
disjunctive formula b� such that �� b� is provable�

The proof will proceed by induction on the structure of ��




 PROVABLE EQUIVALENCE �	

Case� � is a literal In this case b� is just ��

Case� � � �� � By the induction assumption there are disjunctive formulas
b�� b� equivalent to � and � respectively� We let d� � � to be b� � b� and of course
� � �� b� � b� is provable because �� b� and �� b� are provable�

Case� � � �a
 "� This case is very similar to the above�

Case� � � �X���X� By the induction assumption there is a disjunctive
formula b��X� equivalent to ��X�� Of course �X���X� is equivalent to �X�b��X�
and �X���X� � �X�b��X� is provable� Unfortunately �X�b��X� may not be a
disjunctive formula� This is because X may occur in a context X � � for some
�� Therefore we have to construct b� from the scratch�

By Theorem ��� there is a disjunctive formula b� which has the tableau
equivalent to some regular tableau T for �X�b��X�� By Theorem ���
 the two
formulas are equivalent� We are left to show that �X�b��X�� b� is provable in
Kozen�s system� As every disjunctive formula is a weakly aconjunctive formula�
by Proposition ��� we have that �X�b��X� is an weakly aconjunctive formula�
Unfortunately we cannot directly apply Theorem ��	 to �X�b��X��� b�� � This is
because � b� may not be a weakly aconjunctive formula� Nevertheless we know
that the two formulas have equivalent tableaux and we can use this information�

Lemma ��� Suppose that we have a weakly aconjunctive formula � and a
disjunctive formula � which have equivalent tableaux� In this case the sequent
��� is provable�

Proof

Let T� � hT�� L�i and T� � hT�� L�i be tableaux for � and � respectively� Let
E � T� 
 T� be an equivalence function� We will construct a thin refutation R
for ����� �

To facilitate the construction we will de�ne correspondence function C�
which assigns to every considered node of R �that is not to every node� a node
of T� such that�

��� L�n� � L��C��n�� � f�
V
L��E�C��n���g

The root r of R will be of course labeled by ����� and setting C��r� to be
the root of T� establishes condition ����

Observation ����� Suppose we have already constructed R up to a node n�
C��n� is a choice node and condition ��� is satis�ed� We can construct a �nite
part of R such that for each leaf m of the constructed part we can de�ne C��m�
so that it is a modal node and ��� is satis�ed� Moreover the traces from n to
m are re�ected� This means that the traces form n to m are exactly the traces
from C��n� to C��m� with an exception of the trace from �

V
L��E�C��n��� to

�
V
L��E�C��m��� which corresponds to negated �unique� trace from E�C��n��

to E�C��m���
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Figure 	� The proof of Observation 
����� The labels of the nodes are written
below the nodes�

Proof� The idea of the proof is presented in Figure 	� We know that E�C��n��
is a choice node and as � is a disjunctive formula L��E�C��n��� is one element
set� say f�g� Hence L�n� � L��C��n��� f��g� Let us apply as long as possible
rules other than �hi� and weakening to all the formulas in L�n� except �� in
the same order as they were applied from C��n�� This way we obtain a part of
a tree rooted in n with leaves n�� � � � � nk� For every j � �� � � � � k the label L�nj�
contains �� and some set of formulas �j to which only �hi� may be applicable�
It is easy to see that every nj corresponds to some modal node C��nj� near
C��n� with the property that L��C��nj�� � �j � Let us look at the path from
E�C��n�� to E�C��nj�� in T�� Because � is a disjunctive formula� on this path
�rst only �
�� �reg� and �or� rules may be applied and then we have zero or
more applications of �and� rule� Let us apply dual rules to �� �dual to ��� is
���� �reg� is self�dual�� When it comes to application of �or� rule in T�� apply
�and� rule followed by weakening to leave only the conjunct which appears on
the path to E�C��nj���

This way we arrive at a node mj � If we de�ne C��mj� � C��nj� then its
label can be presented as L��C��mj�� � f�

V
L��E�C��mj���g�

Observation ����� Suppose we have constructed the refutation up to a node
m� Assume that C��m� is a modal node and ��� is satis�ed� We can construct a
�nite part of the refutation and de�ne C�n� for each leaf of the constructed part
so that C��n� is a choice node� condition ��� is satis�ed and traces are re ected�

Proof� Let � �
V
L��E�C��m��� �

V
f��� � � � � �lg and � � L��C��m��� By

��� we have L�m� � f��g � �� Node E�C��m�� is a modal node hence every
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�i is either a literal or formula of the form �a 
 "�� When we negate � we
obtain a disjunction of negations of such formulas� Let us apply �or� rule to
eliminate all these disjunctions� This way we obtain new leavesm�� � � � � ml� For
any i 	 �� � � � � l node mi is labeled by �j � f��ig � We use �i to decide what
rule to apply in mi�

� If �i is a literal or a terminal formula we are done because �i appears in
�� This follows directly from ��� and the de�nition of an equivalence of
tableaux�

� If �i is of a form �a
 "� with " �� � then negated it becomes
W
f�a��� �

� 	 "g � hai
V
f�� � � 	 "g or rather translation of this formula to

�a 
 �� notation� We apply disjunction rules as long as possible� This
way we obtain a part of a tree� Any leaf u of this tree is labeled by � and
one of the disjuncts�

� Suppose this disjunct is �a 
 ��� As " �� � there is an a�son of
E�C��m�� so there is an a�son of C��n�� Hence there is �a
 �� 	 �
with � �� �� We obtain an axiom after one application of �hi��

� If it is �a
 f��g� for some � 	 " then let m� be a son of E�C��m��
labeled by f�g� Node E���m�� is an a�son of C��m�� It has a label
of the form f	g�f

W
� � �a
 �� 	 ��� �� %g for some �a
 %� 	 �

and 	 	 %� We apply �hi� rule to �a
 %� in L�u� and obtain a son
u� of u labeled f	g � f

W
� � �a 
 �� 	 ��� �� %g � f��g� We let

C��u�� � E���m���

� If it is �a 
 f
V
f�� � � 	 "g��g� then we apply �hi� rule to this

formula and obtain a son u� of u labeled

f
�
f�� � � 	 "gg � f

�
� � �a
 �� 	 �g

Let us apply �or� rule to one of
W
�� This way we obtain a part of

a tree with one leaf for every 	 	 �� This leaf is labeled by

f	g � f
�

�� � �a
 ��� 	 ���� �� �g � f
�
f�� � � 	 "gg

Let n� be a son of C��m� labeled by f	g�f
W
�� � �a
 ��� 	 ���� ��

�g� Let f�g be the label of E�n��� To
V
f�� � � 	 "g we apply

�and� rule followed by weakening to obtain a node u�� labeled by the
sequent�

f	g � f
�

�� � �a
 ��� 	 ���� �� �g � f��g

De�ne C��u
��� � n�

The above two observations describe the construction of R completely� All
�nite paths of the constructed tree end with axioms� For every in�nite path P
we have two possibilities� There may be a ��trace on a path of T� designated
by the image of P under C�� If it is so then by trace re ection there is also a
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��trace on P � If there is no ��trace on C��P� then there cannot be a ��trace
on E�C��P�� because of the de�nition of tableau equivalence� Hence there is a
��trace on C��P� which negated in R becomes a ��trace�

This means that every �nite path of R ends in a set containing a literal
and its negation and on every in�nite path there is a ��trace� R is also a thin
refutation because of the way we have constructed it and the fact that � is a
weakly aconjunctive formula� Hence by Theorem ��	 the sequent � � �� � is
provable�

Case� � � �� � By the induction assumption there are disjunctive formulas
b�� b� equivalent to � and � respectively and such that sequents �� b� and �� b�
are provable� Sequent � � � � b� � b� is of course provable� By Theorem ��	
there is a disjunctive formula b� which has a tableau equivalent to some regular
tableau for b� � b�� By Proposition ��� formula b� � b� is aconjunctive� We can
use Lemma 
�� to show that sequent b� � b�� b� is provable�

Case� � � �X���X� This case is more complicated than the case for the
greatest �xpoint� As in that case we have by the induction assumption a dis�
junctive formula b��X� equivalent to ��X�� Unfortunately this time �X�b��X�
may not be a weakly aconjunctive formula hence we cannot use the same ar�
gument as in the last two cases� Let us nevertheless carry on and see where
modi�cations are needed�

By Theorem ��� there is a disjunctive formula b� which has the tableau
equivalent to some regular tableau T for �X�b��X�� By Theorem ���
 the two
formulas are equivalent� We are left to show that �X�b��X� � b� is provable
in Kozen�s system� Because �X�b��X� may not be an aconjunctive formula we
cannot just use Lemma 
�� to �X�b��X� and b�� What we can do is to use Park�s
induction rule �P � if we only prove the sequent b�� b��� b��

This time by Proposition ��� we know that b�� b�� is an aconjunctive formula
but we meet another obstacle preventing us from using Lemma 
��� We don�t
know weather b�� b�� and b� have equivalent tableaux� Indeed it may be the case
that they don�t have equivalent tableaux�

For example consider the formula

� � �X��Y��a
 fX � Y� pg�

This is not completely honest example� as �Y��a 
 fX � Y� pg� is not a
disjunctive formula� but is good enough to show the problems� There are also
�honest� examples for the same phenomenon�

A tableau for the formula looks as follows �several steps are omitted��
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f�X��Y��a
 fX � Y� pg�g

f�a
 fX � Y� pg�g

fpg fX � Y g

f�a
 fX � Y� pg�g
���

Construction from the proof of Theorem ��� gives us a disjunctive formula
b� � �X��a 
 fp�Xg� which has the tableau equivalent to the one presented
above� Let us see how the tableau for �Y��a
 f b� � Y� pg� looks like�

f�Y��a
 f b� � Y� pg�g
f�a
 f b�� Y� pg�g

fpg f b�� Y g

f�X��a
 fp�Xg�� �Y��a
 f b� � Y� pg�g
f�a
 fp�Xg�� �a
 f b� � Y� pg�g
fpg fp� b� � Y g

���

fX� b� � Y g
���

Observe that this tableau has a modal node with three sons and in the
tableau for b� every modal node has at most one son� Hence this two tableaux
cannot be equivalent�

What we need is some weaker notion of correspondence between tableaux
but it should be strong enough for to give us something like Lemma 
��� Below
we propose such a notion which we call tableau consequence� This notion will
be de�ned in terms of games on tableaux� To simplify the de�nition we will
introduce the notion of a wide tableau�

De�nition ��� Wide tableaux are constructed according to the same rules as
tableaux but rule �mod� is replaced by �wmod��

�wmod�

f	g � f
W
� � �a
 �� 	 ��� �� %g for every �a
 %� 	 �� 	 	 %

f
W
� � �a
 �� 	 �g

f�g

Compared to �mod� rule �wmod� has new assumptions� one for each action a
such that there is a formula of the form �a
 %� in �� We will call sons of the
old type hai�sons� The sons of the new type will be called �a��sons� Observe
that for any action a we can have at most one �a��son of a node�

Remark ��� For example�

f��g f��g f�� � ��g f��g f��g f�� � ��g

f�a
 f��� ��g�� �b
 f��� ��g�g
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is an instance of �wmod� rule� There are two hai�sons� two hbi�sons� one �a��son
and one �b��son�

Rule �mod� with the same conclusion would have only four assumptions�
�a� and �b��sons would be missing� In rule �wmod� we make explicit universal
requirements of the conclusion� The meaning of �a 
 f��� ��g� is that there
is a state reachable by action a where �� is satis�ed �represented by hai�son
labeled f��g�� there is a state where �� is satis�ed �represented by hai�son
labeled f��g� and all the states reachable by action a must satisfy ������ this
is represented by �a��son labeled f�� � ��g�

De�nition ��	 Given a pair of wide tableaux �fW�W�� where fW � h eT� eLi and
W � hT� Li� we de�ne a two player game G�fW�W� with the following rules�

� The starting position is a pair of the roots of both tableaux�

� If a position of a play is �en� n�� both nodes being choice nodes of fW and
W respectively� then player I chooses a modal node em near en and player
II replies by choosing a modal node m near n with the property that every
literal and terminal formula from L�m� appears in eL� em��

� If a position is � em�m�� a pair of modal nodes from fW andW respectively�
then player I can choose a son n of m and player II has to respond with
a son en of em of the same kind� That is if n is a hai�son then en must be a
hai�son and if n is a �a��son so must be en�

The game may end in a �nite number of steps because one of the players
cannot make a move� In this case the opposite player wins� When the game
has in�nitely many steps we get as the result two in�nite paths� eP from fW and
P from W � Player I wins if there is no ��trace on eP but there is a ��trace on
P � otherwise player II is the winner�

De�nition ��
 A strategy S for the second player in the game G�fW�W� is a
partial function giving for a position consisting of two choice nodes �en� n� and
a modal node em near en a modal node S� em�n� near n� If � em�m� is a pair of
modal nodes and n is a son of m then the strategy gives us a son S� em�n� of em�
A strategy is called winning for II i� it guarantees that player II wins the game
no matter what the moves of player I are� This also implies that the strategy
is de�ned for appropriate positions�

We will say that a wide tableau W is a consequence of a wide tableau fW i�
player II has a wining strategy in G�fW�W��

The de�nition of the game is based on the following intuition about wide
tableaux� Wide tableau for a formula describes �operationally� semantics of a
formula� In order to satisfy formulas in a choice node n we must provide a state
which satis�es the label of one of the modal nodes near n� The sons of a modal
node describe the transitions from a hypothetical state satisfying its label� hai�
sons describe which a�successors are required and the �a��son describes what
are general conditions all a�successors must satisfy� In this way tableau of a
formula describes all possible models of the formula�
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The game is de�ned so that whenever II has a winning strategy from a
position �en� n� then every model of the label of en� eL�en�� is also a model of the
label of n� L�n�� If en and n are both choice nodes then a model for eL�en� must
satisfy the label of one of the modal nodes near en� Hence for every modal node
near en we must show a modal node near n which label is implied by it� If en� n
are modal nodes then every hai�son of n describes a state the existence of which
is required in order to satisfy L�n�� We must show that the existence of such a
state is also required by eL�en�� The �a��son of n represents general requirements
on states reachable by action a imposed by L�n�� We must show that they are
implied by general requirements in eL�en�

Now the following lemma can be proved using exactly the same method as
in Lemma 
��

Lemma ��� Suppose that we have a weakly aconjunctive formula � and a dis�
junctive formula � such that there is a wide tableau for � which is a consequence
of a wide tableau for �� In this case sequent ��� is provable�

Proof
LetW� andW� be wide tableaux for � and � respectively and let S be a strategy
for player II in the game G�W��W��� Instead of having just one mapping C� we
now de�ne two C� and C�� They assign nodes of a the wide tableaux for � and
� respectively to some of the nodes of the thin refutation being constructed�
Instead of condition ��� we have now two conditions�

���� L�n� � L��C��n��� f�
V
L��C��n��g

���� Position �C��n�� C��n�� is reachable in game G�W��W�� when II plays ac�
cording to S�

The rest of the argument is very similar�

To �nish the completeness proof it is enough to show that there is a wide
tableau for b� which is a consequence of a wide tableau for b�� b��� First we will
need some wide tableaux for �X�b��X� and b�� The following lemma shows how
to obtain these�

Lemma ��� For a given pair of equivalent tableaux T� and T� for formulas ��

and �� respectively� we can construct wide tableaux W� for �� and W� for ��

such that W� is a consequence of W� and W� is a consequence of W��

Proof

As we will need the result only when one of the formulas is a disjunctive formula
we will give the proof only for this special case� The general argument is very
similar�

Suppose � is a disjunctive formula and � is an arbitrary formula� Assume
that we have two equivalent tableaux T� � hT�� L�i and T� � hT�� L�i� Let
E � T� 
 T� be an equivalence function� We will construct wide tableaux
W��W� �with labeling functions Lw

� and Lw
� respectively� and a strategy for

player II in the game G�W��W���
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Observe that if we happen to construct W� and W� up to two choice nodes
�o�� o�� and there is a node F �o�� of tableau T� labeled by the same set as o�
then we can construct a part of W� up to the nearest modal nodes which will
be exactly the same as the corresponding part of T�� This is because the same
rules are used in both cases� If moreover Lw

� �o�� � L��E�F �o���� then we can
construct a part ofW� up to the nearest modal nodes which is exactly the same
as T� from E�F �o���� This means that we can use equivalence E for �nding a
modal node near o� for every modal node near o��

Assume now that we have a position consisting of two modal nodes �o�� o���
Assume we have de�ned F �o�� to be a modal node of T� such that

���� L��F �o��� � Lw
��o�� and L��E�F �o���� � Lw

� �o���

First we will �nd a hai�son of o� for every hai�son of o�� The idea of how it
is done is presented in Figure �� Let o�� be a hai�son of o�� By condition ����

��
n

�� ��
E��
n�o�

�

o� E
F 
o���

L�
n�

L�
F 
o���

F 
o�� o�

Lw� 
o�� � L
F 
o���

L�
n�

o��

Lw
�

o�� L�
E
F 
o���� � Lw

�

o��

Lw
�

o�
�
� Lw

�

o�
�
�

Figure �� Finding a hai�son of o� for a hai�son of o��

there is an a�son n of E�F �o��� labeled by Lw
� �o

�
��� Using equivalence E�� we

obtain an a�son E���n� of F �o��� Once again using ���� we get a hai�son o�� of
o� with the same label as E���n�� De�ning F �o��� � E���n� we get the position
consisting of two choice nodes �o��� o

�
�� which was considered in the previous

paragraph� Hence for every modal node o��� near o�� we can �nd a modal node
o��� near o

�
� and de�ne F �o��� � so that ���� will be satis�ed�

Now let us assume that o�� is the �a��son of o� and let o�� be the �a��son of
o�� The label of o

�
� is f"�� � � � �"ig � f

W
� � �a
 �� 	 Lw

��o��g� The label of
o�� is f

W
%g as � is a disjunctive formula�

For any modal node r� near o�� we will �nd a node r� near o�� so that
condition ���� will be satis�ed� The idea is presented in Figure 
�

Let us assume that from o�� we �rst reduce disjunctions from
W
"�� � � � �

W
"i�

Hence on the path to r� we have a node labeled f��� � � � � �ig where each �k is
a disjunct form "k� Now let n� be a a�son of F��o�� labeled by f��g � f"k �
k � �� � � � � ig� There is a modal node m� near n� such that on the path from
n� to m� for every k � �� � � � � i formula �k is selected from

W
"k and moreover

for any trace from �k to some formula � 	 Lw
��r�� there is the same trace from

�k to � 	 L��m�� and vice versa� Next we take E�m�� and take n� � the a�son
of E�F �o��� on the way to E�m��� It is labeled by some 	 	 %� The �a��son
of o� is labeled by

W
% and there must be a node o��� below it labeled by f	g�

Now take a modal node r� near o��� to which leads exactly the same chain of
reductions as that form n� to E�m��� If we de�ne F �r�� � m� then we are
back in a position when we have a pair of modal nodes �r�� r�� for which ����
holds and we can repeat the procedure�
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Figure 
� Finding r� for r��

This describes the strategy for player II in the game G�W��W��� From the
fact that E is an equivalence it easily follows that this strategy is winning�

As the construction ofW� andW� did not depend on the strategy a similar
argument shows that W� is a consequence of W��

Lemma ��� Let W � cW be a pair of wide tableaux for �X�b��X� and b� respec�
tively constructed from T and bT as in the Lemma 
��� There is a wide tableaufW for b�� b�� of which W is a consequence�

Proof

Let L and bL by labeling functions ofW and cW respectively� Let S be a winning
strategy in the game G�cW�W�� There is a very close match between W and a
wide tableau for b���X�b��X�� as the only tableau rule applicable to f�X�b��X�g
is ���� Let us denote by W also the wide tableau for b���X�b��X���

By assumption b� and b��X� are disjunctive formulas� We will use notation
���X�b��X�� b�� and �� b���X�b��X�� to stand for the obvious replacement� it will
be always the case that no free variable in �X�b��X� or b� is bound by the
context ��

From Proposition ��� we obtain

Observation ����� For every node en of fW � every formula in eL�en� will be
either a disjunctive formula or of the form �� b�� with ��X� being a disjunctive
formula�

Recall that bT was constructed from T using Theorem ���� Hence we can as�
sume that conditions described in Observation ����� are satis�ed� Easy analysis
of the construction from Lemma 
�� gives us the following�

Observation ����� For any two positions � bm�m�� �bn� n� reachable in the game
G�cW�W� when II plays according to S we know that whenever bL� bm� � bL�bn�
then L�m� � L�n�� Moreover if bm� bn are both choice nodes with di�erent labels
then the labels of modal nodes near bm are di�erent from the labels of modal
nodes near bn�
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The above observation will be quite important because it allows us to control
contractions which take place� Instead of using this observation we could allow
tableaux labeled with multisets�

To de�ne a strategy from a position � em�m� we will use some additional
information about the position� This information will come from the three
functions p� em�� nd� em� and cnd� em�� The �rst function assigns a priority� that is
a natural number or �� to every formula in eL� em�� The functions nd� em� andcnd� em� are partial functions which assign nodes of W and cW respectively to
�nite priorities from the image of p� em�� i�e�� from the set fq 	 N � p� em����q� ��
�g�

This situation is presented in Figure �
� We have a position � em�m� in the
main play of the game G�fW�W� and for every natural number in the image of
p� em� we have a sub�play of G�cW�W� in a position given by functions cnd� em� and
nd� em�� To make a move in the main play we consult strategy S for sub�plays�

fW W

nd 
 em�
��

W

cnd 
 em�
��

WcWcW

em m

cnd 
 em�
k� nd 
 em�
k�

� � �

Figure �
� Auxiliary functions

For every considered position � em�m� we will have three conditions�

�i� for any q 	 N in the image of p� em�� L�cnd� em��q�� � eL� em��

�ii� for any 	 	 L�m�� there is q so that 	 	 L�nd� em��q���

�iii� for any q 	 N in the image of p� em�� strategy S is de�ned for the position
�cnd� em��q�� nd� em��q���

The idea of a strategy in G�fW�W� is to consult S in every step and the
above three conditions allow us to do this �see Figure ���� Whenever a position
is a pair of modal nodes � em�m� and I chooses a son of m� this son is designated
by some formula � 	 L�m�� By condition �ii� we know that there is a d 	 N and
a son of nd� em��d� designated by �� By �iii� we can take an a�son of cnd� em��d�
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which is a response of S to choosing this son� By �i� we can �nd an appropriate
son of em� The scheme of the reasoning in case when a position is a pair of choice
nodes is similar� In what follows we will have conditions� I�� I�� I� for pairs
of modal nodes and conditions� I��� I��� I�� for pairs of choice nodes� which are
precise formulation of �i�� �ii�� �iii� for appropriate cases�

We will describe the strategy for player II in a sequence of observations�
First observation shows how we can de�ne auxiliary functions for sons of em�
if only auxiliary functions for em are de�ned� so that the pair � em�m� satis�es
some conditions which are precise formulation of conditions �i�� �ii� and �iii��

Observation ����� Suppose the game is in a position � em�m� with both nodes
being modal nodes� Let us assume that the following conditions hold�

I� For every q 	 N � p� em����q� � bL�cnd� em��q�� �
S
fp� em����q�� � q� � qg�

I� L�m� �
S
q�N L�nd� em��q��� f	��X�b��X�� b�� � 	 	 p��� em����g

I� for any q 	 N in the image of p� em�� strategy S is de�ned for the position
�cnd� em��q�� nd� em��q���

For every son en of em we can de�ne p�en� and cnd�en� so that�

I�� For every q 	 N in the image of p�en�� p�en����q� � bL�cnd�en��q��
Proof� For every formula � 	 eL�en� there is the least priority formula

� 	 eL� em� which reduction gave us �� We let p�en���� � p� em�����
To de�ne cnd�en� we have two cases depending on whether en is a �a��son or a

hai�son of em� In the �rst case� for every q in the image of p�en� we let cnd�en��q�
to be the �a��son of cnd� em��q��

In the second case the label of en is of the form

f	g � f
�

� � �a
 �� 	 eL� em��� �� %g

for some �a 
 %� 	 eL� em� and 	 	 %� Let d � p� em���a 
 %��� For every
priority q �� d we let cnd�en��q� to be the �a��son of cnd� em��q� if such exists� If
p�en��	� � d we let cnd�en��d� to be the hai�son of cnd� em��d� labeled with f	g�

Let us consider a situation when a position of the game consists of a pair of
modal nodes � em�m� and player I chooses a �a��son�

Observation ����� Assume the game is in the position � em�m� as described
in Observation 
�
��� that is� conditions I�� I�� I� hold and auxiliary functions
for all the sons of em are de�ned accordingly� Let n be the �a��son of m and en
be the �a��son of em� For the pair �en� n� we can de�ne nd�en� so that conditions
I��� I��� I�� will be satis�ed where�

I�� L�n� �
S
q�N L�nd�en��q��� f	��X�b��X�� b�� � 	 	 p���en����g�

I�� For any q 	 N in the image of p�en�� cnd�en��q� � S�cnd� em��q�� nd�en��q���




 PROVABLE EQUIVALENCE ��

Proof� Node n is labeled by

f
�

� � �a
 �� 	 L�m�g

For every
W
� 	 L�n� by I� either there is the lowest priority q such that

�a 
 �� 	 L�nd� em��q�� or �a 
 ��� b���X�b��X�� 	 eL� em�� In the second case
clearly

W
�� b���X�b��X�� 	 L�en� and p�en���a 
 ��� b���X�b��X��� � �� Hence

I�� and I�� are satis�ed�
If q 	 N then we let nd�en��q� to be the �a��son of nd� em��q�� This establishes

I�� and I�� if only q is in the image of p�en��
By I� there is �a��son of cnd� em��q�� Let us take the unique % such that �a


%� 	 bL�cnd� em��q��� We know by I� that
W
% 	 eL�en�� If p�en��W%� � q� � q

then �a 
 %� 	 bL�cnd� em��q���� hence the �a��sons of cnd� em��q� and cnd� em��q��
have the same labels� By Observation 
�
�� �a��sons of nd� em��q� and nd� em��q��
have the same labels� This means that �a
 �� 	 L�nd� em��q���� contradiction
with the choice of q�

Observation ����	 Assume the game is in the position � em�m� as in Obser�
vation 
�
��� For any hai�son n of m of we can �nd hai�son en of em and de�ne
nd�en� so that for obtained pair �en� n� conditions I��� I��� I�� are satis�ed�

Proof� Let n be a son of m labeled by

f�g � f
�

� � �a
 �� 	 L�m��� �� 'g

for some �a 
 '� 	 L�m� and � 	 '� We know by I� that either there is the
smallest d such that �a
 '� 	 L�nd� em��d�� or �a
 '�� b���X�b��X�� 	 eL� em��
In the second case take a son of em labeled

f�� b���X�b��X��g � f
�

� � �a
 �� 	 eL� em��� �� '� b���X�b��X��g

and we reason as in the observation above�
The case when d 	 N is presented in Figure ��� We used abbreviations

�m � f
�

� � �a
 �� 	 L�m��� �� 'g

�
nd�em��d� � f

�
� � �a
 �� 	 L�nd� em��d���� �� 'g

�em � f
�

� � �a
 �� 	 eL� em��� �� %g

Let us describe this picture� By I� there is an hai�son n� of nd� em��d� labeled

f�g � f
�

� � �a
 �� 	 L�nd� em��d���� �� 'g

By I� S�cnd� em��q�� n�� is de�ned� Let �a 
 %� 	 eL�cnd� em��d�� and 	 	 % be
such that S�cnd� em��q�� n�� is labeled by f	g� By I� we can choose a hai�son en
of em labeled

f	g � f
�

� � �a
 �� 	 eL� em��� �� %g

For every priority q� 	 N in the image of p�en� we let nd�en��q�� to be the �a��son
of nd� em��q�� if q� �� d and let nd�en��d� � n� if d is in the image� This guarantees
condition I���
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Figure ��� Finding en for n�

We would like to show condition I�� in particular for � 	 L�n�� Let q �
p�en��	�� If q � d then � 	 L�nd�en��d���

It may happen that q � d� This may be because of two reasons� either� ���
p� em���a 
 %�� � q or ��� there is �a 
 f	g� 	 eL� em� such that p� em���a 

f	g�� � q and f	g �� %�

In the �rst case we have that �a 
 %� 	 bL�cnd� em��d�� and �a 
 %� 	bL�cnd� em��q��� By Observation 
�
�� this means that nd� em��d� and nd� em��q�
have the �a��sons with the same labels hence �a 
 '� 	 L�nd� em��q��� contra�
diction with the choice of d�

In the second case we know that there is unique hai�son of nd� em��q� and
by Observation 
�
�� it has the same label as n�� In this case it is just f�g and
the �a��son of nd� em��q� is also labeled by f�g�

This shows that � 	 L�nd�en��q�� for some q in the image of p�en�� The
argument for any other

W
� 	 L�n� is similar as in the previous observation�

Next observation shows how to de�ne auxiliary functions for a modal node
near a choice node�

Observation ����
 Suppose en is a choice and p�en�� nd�en� are de�ned so that
conditions I��� I�� are satis�ed� For any modal node em� near n we can de�ne
p� em��� nd� em�� and cnd� em�� so that I� and I� are satis�ed and for every q 	 N
in the image of p� em��� nd� em���q� � S�cnd� em���q�� nd�en��q���

Proof� For every formula � 	 eL� em�� there is the smallest priority formula
� 	 eL�en� from which there is a trace to �� We let p� em����� � p�en���� with
one exception when p�en���� � � and formula b� was reduced on a trace to ��
In this case p�en���� will be the smallest unused priority q� that is the smallest
number not in the image of p�en�� This exception is needed to establish I��

Let us de�ne cnd� em��� If the fresh priority q� was introduced then forcnd� em���q
�� we take a modal node near the root of cW to which leads the same

sequence of reductions as the one applied to b� on the trace to �� For any other
priority q in the image of p�en� we know by I�� that there is exactly one formula
� 	 eL�en� of this priority and f�g � bL�cnd�en��q��� Take a modal node bm� nearcnd�en��q� to which leads the same chain of reductions as that applied to � on
the path to em�� Let nd� em���q� � bm��

We let nd� em���q� � S�cnd� em���q�� nd�en��q�� for any q for which right hand
side is de�ned� If q� is freshly introduced priority then we let nd� em���q�� �
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S�cnd� em���q
��� r� where r is the root of W � Clearly this way we satisfy I� and

the additional requirement of the observation�
We now check whether condition I� is satis�ed� Any formula 	 	 eL�m��

with priority q has a trace from some formula of priority q in eL�en�� Hence
	 	 bL�cnd� em���q�� by de�nition of cnd� em���q�� For any 	 	 bL�cnd� em���q�� there
is a trace to it from the unique formula in eL�en� with priority q� By de�nition
	 	 eL� em��� It may nevertheless happen that p� em���	� � q�

The last observation considers a situation when we are given a pair of choice
nodes �en� n� so that conditions I��� I��� I�� are satis�ed� It will describe a re�
sponse of player II to choosing a modal node near en by player I�

Observation ����� Let �en� n� be a pair of choice nodes� let p�en�� nd�en�� cnd�en�
be de�ned and let conditions I��� I��� I�� be satis�ed� For any modal node em�

near en we can �nd a modal node m� near n so that for the pair � em�� m��
conditions I�� I�� I� will be satis�ed and traces from �en� n� to � em�� m�� will
be preserved which means that whenever there is a trace from � 	 L�n� to
� 	 L�m�� and X is the smallest variable with respect to ��X�b��X� ordering
which was regenerated on the trace then either�

� p�n���� � p�m����� or

� p�n���� � p�m����� � q and when q 	 N there is a trace from � 	
L�nd�en��q�� to � 	 L�nd� em���q�� or when q � � we have a trace from
�� b���X�b��X�� 	 L�en� to �� b���X�b��X�� 	 L�en��� In both cases X is the
smallest regenerated variable�

Proof� De�nitions of p� em��� nd� em�� and cnd�en� are given by Observa�
tion 
�
��� For convenience we extend the de�nition of nd�en�� For the smallest
priority q� not in the image of p�en� we let nd�en��q�� to be the root of W

We will construct a path from n to the desired m�� For n and every con�
sidered descendant o of it we will de�ne function p�o�� For every � 	 L�n�
condition I�� allows us to de�ne p�n���� as the smallest priority q for which
� 	 L�nd�en��q�� or � if there is no such q� We will assume that for any
considered node o and any 	 	 L�o��

I�� If p�o��	� � � then 	� b���X�b��X�� appears on the path from en to em�

otherwise p�o��	� � q 	 N and 	 appears on the path from nd�en��q� to
nd� em���q�

Suppose we have constructed the path up to a node o and some formula 	
is reduced in o�

� If 	 is not a disjunction then there is only one son o� of o and let 	� be
the result of reducing 	� For every formula � 	 L�o��� � �� 	� we let
p�o����� � p�o����� If 	� �	 L�o� then let p�o���	�� � p�o��	� otherwise
let p�o���	�� � minfp�o��	�� p�o��	��g� One exception to this rule is when
	 � �X�b��X� and p�o��	� � �� In this case the result of reduction is
b��X� and we let p�o��b��X�� to be the smallest unused priority q��




 PROVABLE EQUIVALENCE ��

� If 	 � � � � then o has two sons o�� o� and we have to choose one of
them� If p�o��	� � � then 	� b���X�b��X�� is on the path from en to em�

otherwise 	 appears on the path from nd�en��p�o��	�� to nd� em���p�o��	���
We choose a son of o with the same disjunct as the one appearing on the
appropriate path� For chosen o� we de�ne p�o�� as in case of unary rule�
It should be easy to check that for so de�ned o� and p�o�� condition I��

holds�

Repeating this procedure we arrive at a modal node m� near n� We know
that conditions I� and I� hold� Let us now check condition I�� Suppose
	 	 L�m�� and q � p�m���	�� Because m� is a modal node 	 may be reducible
only by application of �mod� rule� By I�� if q �� then 	� b���X�b��X�� 	 eL� em��
otherwise q 	 N and 	 	 L�nd� em���q��� There is one subtle point here�
We have de�ned nd� em���q� for all priorities in the image of p�en� not paying
attention to the fact that there may be no formula of a given priority in L� em���
Fortunately by Observation 
�
�� we may assume that for any priority q in the
image of p�en� there is a formula of priority q in L� em��

Finally it is easy to see that if in our procedure we choose formulas appro�
priately then trace preservation will be guaranteed�

To describe the strategy for the player II completely it remains to de�ne
auxiliary functions for the root er� of fW � Node er� is labeled by fb�� b��g and we
let p�er���b�� b��� ��� Functions cnd�er�� and nd�er�� are totally unde�ned�

We must show that we have de�ned a winning strategy for player II in the
game G�fW�W�� Assume conversely that there is a way for I to win against our
just described strategy� We will show that I can win against S in the game
G�cW�W��

Let us examine the play in the game G�fW�W� where II plays according to
the strategy we have just de�ned and I wins� For a position � em�m� of the play
we will have a sub�play of the game G�cW�W� for every natural number in the
image of p� em�� For such a number q the corresponding sub�play will be in the
position �cnd�en��q�� nd�en��q���

Game G�fW�W� starts in the roots of both tableaux and as there is only one
formula and it has priority �� we have no sub�plays�

Suppose the play is in a position � em�m� consisting of two modal nodes� Now
player I chooses a son n of m and II responds with the son en of em of the same
type according to Observations 
�
�� and 
�
��� For every priority q 	 N in the
image of p�en� we have by I�� that cnd�en��q� � S�cnd� em��q�� nd�en��q��� so each
sub�play also advances by one step� No new priorities are introduced� Some
sub�plays may be abandoned because corresponding priorities have disappeared�

When the play is in a position �en� n� consisting of two choice nodes then
player I chooses some modal node em near en and II responds with a modal node
m near n according to Observation 
�
�	� For every priority q 	 N in the image
of p� em� we have by Observation 
�
�� that nd� em��q� � S�cnd� em��q�� nd�en��q���
New priority may be introduced at this step and this tigers a new sub�play�

Now suppose that I won� The above observations show that player II can
always respond to a move of player I if II plays according to the strategy� Hence
the play was in�nite and we have as the result two paths� eP of fW and P of W �
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Because I won there is a ��trace T on P and there is no ��trace on eP�
Condition I�� allows us to de�ne for every choice node n of P a priority

p�n��T �n��� By de�nition of the strategy this priority can only decrease so
from some point� say node n�� it must be constant� say equal q� Let n�� n�� � � �
be successive choice nodes on P and en�� en�� � � � corresponding choice nodes ofeP� For any i 	 N we have by I��

T �ni�� b���X�b��X�� 	 eL�eni�� T �ni���� b���X�b��X�� 	 eL�eni��� if q �� ���

and
T �ni� 	 L�nd�eni��q��� T �ni��� 	 L�nd�eni����q�� if q 	 N ���

By trace preservation� in both cases the smallest variable with respect to��X�b��X�
ordering regenerated on the trace is the same as the smallest variable regener�
ated between T �ni� 	 L�ni� and T �ni��� 	 L�ni����

In case q �� this considerations show that there is a ��trace on eP�
In case q 	 N we know by ��� that there is a ��trace on the path P �

of W designated by fnd�eni��q� � i � 
� �� � � �g� On the other hand by I���bL�cnd�eni��q�� � eL� em� and as there is no ��trace on eP the unique trace on the
path bP designated by fcnd�eni��q� � i 	 Ng is not a ��trace� But a pair of pathsbP and P � is the result of the sub�play for priority q� This is a contradiction
because we have assumed that S is winning�

Summarising the case of the proof for � � �X���X�� By induction assump�
tion we have a disjunctive formula b��X� equivalent to ��X� and know that
��X�� b��X� is provable� By Theorem ��� we obtain a disjunctive formula b�
which has a tableau bT equivalent to some regular tableau T for �X�b��X�� By
Theorem ���
� formula b� is equivalent to �� By Lemma 
�� there are wide
tableaux� W for �X�b��X� and cW for b� such thatW is a consequence of cW and
vice versa� By Lemma 
�
 W is a consequence of fW� a wide tableau for b�� b���
Hence� as the consequence relation is transitive� cW is a consequence of fW � Now
by Proposition ��� b�� b�� is a weakly aconjunctive formula and b� is by de�nition
a disjunctive formula� By Lemma 
�	 the sequent b�� b��� b� is provable� Then
�X�b��X�� b� is provable by rule �P � and ���X�b��X� is provable by induction
assumption� hence the sequent �� b� is provable�

This completes the proof of Theorem 
�� and the proof of the completeness
of Kozen�s axiomatisation for the ��calculus�
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