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1 INTRODUCTION 1

1 Introduction

In this notes we consider propositional u-calculus as introduced by Kozen in [9].
The main purpose of these notes is to present the completeness proof of the
Kozen’s axiomatisation of the p-calculus [9]. To achieve this goal we develop
tools which allow us to give relatively simple proofs of results for the logic like:

e syntactic characterisation of satisfiability and validity,

e small model theorem,

o decidability,

e equivalence of the p-calculus over binary trees and Rabin automata,

e a notion of disjunctive formula and the proof that every formula is equiv-
alent to a disjunctive formula,

o linear satisfiability checking algorithm for disjunctive formulas.

These notes are intended to supplement a 6 hours course given in February
1995 at BRICS centre. Because of the time limit some of the topics naturally
connected to the subject have been omitted. In these notes we have deliberately
tried to minimise the use of automata theory. This is why the remarks about
the correspondence between the p-calculus and automata theory are grouped
in one small subsection, which is not intended to give the full overview of the
correspondence. This choice also means that we will not consider the model
checking problem; although some tools we develop are very similar to so called
local model checking [16], we feel that one cannot give the full overview of
the subject without mentioning automata theory and alternating automata in
particular.

The contents of these notes are based on three papers [14, 8, 20].

1.1 Synopsis

We start by giving some preliminary definitions. First we present the syntax
and the semantics of the p-calculus. Then we introduce the notions of posi-
tive and guarded formulas. We also define a new modality operator which can
replace two standard modalities. In these notes we will mostly work with pos-
itive guarded formulas and use the new modality operator. Next we introduce
binding functions which is a tool we use to deal with subformulas of a given
formula. We finish this preliminary section by defining automata on infinite
strings and trees and stating theorems showing equivalence between Rabin and
parity conditions. We will use automata in two of the proofs.

In the next section we present what we call operational semantics of for-
mulas. We give a characterisation of satisfiability of a given formula in a given
state by means of markings of infinite tableauz. This result makes very explicit
the main tools used in the fundamental paper of Streett and Emerson [18].

After that we show some applications of operational semantics. We prove
the small model theorem and the decidability result (i.e. the results from [18]).
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We also define the notion of refutation and state the characterisation of validity
(or rather unsatisfiability) by means of refutations [14]. We finish this section
by presenting a new application of the operational semantics, namely tableau
equivalence. We show that if two formulas have equivalent tableaux then they
are equivalent. This result turns out to be very useful.

The next step is the definition of disjunctive formulas and the proof that
every formula is equivalent to a disjunctive formula.

The following section gives some results concerning disjunctive formulas.
We show that satisfiability testing is linear for this class of formulas and that
there is a very straightforward method of constructing models for satisfiable
disjunctive formulas. We also discuss the connections between disjunctive for-
mulas and automata. We consider u-calculus restricted to binary trees. In this
case there is a straightforward connection between disjunctive formulas and par-
ity automata on trees. In this restricted case it is still true that every formula
is equivalent to a disjunctive formula. Hence we obtain (yet another) proof
of Rabin’s complementation lemma and the proof of the equivalence between
monadic second order logic of two successors and the pu-calculus over binary
trees [15, 5]. At the end of this section we argue that disjunctive formulas give
rise to a new concept of automata. In contrast with usual notions of automata
on infinite strings or trees, the notion of a run of these automata is defined
for arbitrary transition systems. Hence these automata are designed to cope
with arbitrary branching of the structure. Moreover they have exactly the same
expressive power as the p-calculus. A different concept of automata which can
adapt to structures with varying degrees of nodes was proposed in [1] but this
automata are in general stronger than the p-calculus.

After this development we come back to the questions of provability in
Kozen’s axiom system. We first consider some restricted cases. It turns out
that there is a very simple way of proving the negation of every unsatisfiable
disjunctive formula. Then we the recall the definition of an aconjunctive for-
mula from [9] and propose a small generalisation of this concept called weakly
aconjunctive formula. In [9] Kozen showed a method of proving the negation
of every unsatisfiable aconjunctive formula. As we need a generalisation of this
result we introduce the notion of thin refutation to isolate the cases where the
method still works.

Finally we prove our main theorem which states that for every formula ¢
there is a disjunctive formula @ for which the implication ¢ = @ is provable.
This gives us the completeness theorem as an easy corollary. The proof is done
by induction on the structure of ¢ and uses tableau equivalence in case of the
greatest fixpoint operator and conjunction. In case of the least fixpoint we need
to generalise the concept of tableau equivalence to tableau consequence. This
notion is defined using infinite games and can be seen as an extension of the
notion of simulation of transition systems.
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2 Preliminaries

2.1 Syntax and semantics of the p-calculus

Let Prop = {p,q,...}U{L, T} be aset of propositional letters, Var = {X,Y,...}
a set of variables and Act = {a,b,...} a set of actions. The set of formulas of
the p-calculus over this three sets is the smallest set such that:

e propositional letters and variables are formulas,
o if a, 3 are formulas then so are : —a, a A 3, aV 3,

o if a € Act and o is a formula then (a)a and [a]a are formulas. Later
we will introduce one more construct (¢ — I'), where I' is a finite set of
formulas,

o Let a(X) be a formula. We will say that an occurrence of X in a(X)
is positive iff it is proceeded by an even number of negations. If all oc-
currences of X in a(X) are positive then pX.a(X) and vX.a(X) are
formulas. Variable X is bound in pX.a(X) and v X.a(X).

Remark 2.1 We will assume that the modalities ((a), [a]) and the fixpoint
operators (u, v) bind weaker than propositional connectives. Hence pX.(a) X Vp
is a shorthand for pX.({(a)(X Vp)). Later on in these notes we will use (¢ — I)
construct which should simplify formula parsing.

In the following, a, 3, v, @, %, ... will denote formulas, and I', A, Q, 2, ... will
denote finite sets of formulas. We shall use ¢ to denote either u or v. Variables,
propositional letters and their negations will be called literals.

Formulas are interpreted in transition systems of the form M = (S, R, p),
where:

e 5 is a nonempty set of states,

o R:Act — P(5x5)is afunction assigning a binary relation on S to each
action in Act.

e p: Prop — P(9)is a function assigning a set of states to every proposi-
tional letter.

For a given model M and a valuation Val : Var — P(S), the set of states
in which a formula « is true, || o H%l, is defined inductively as follows (we will
omit superscript M when it causes no ambiguity):

12 llva =) T Lllva =0 [T llyy=0

| X lve = Val(X)
=P llva = S5—pp)
laVBillvay = llallvaYllBllva
lanBllvag = llallvag 0l 8 llva
| {@)ellyy = {s:3(s.8) € Rla)As' €l aly,}
| falaly, = {s:Vs'(s,8') € R(a) = s €|l ally,}

| nXa(X) [y = TSNl allvarx) €T}
[ vXa(X) lyy = WTCS:TC|allvamrx)
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where Val[T/ X]is the valuation such that, Val[T/X](X) =T and Val[T/X](Y) =
Val(Y') for every Y # X.

Remark 2.2 The meaning of a formula is the set of states where it is satisfied.
We can consider that a formula a(X) with a free variable X defines a function
from sets of states to sets of states f, : P(5) — P(5) which maps T C P(5)
to || a(X) [|yypr/x)- If X occurs only positively in a(X) then f, is a monotone
function, i.e., fo(T') C fo(T") whenever T" C T’. Monotone functions on com-
plete latices have the least and the greatest fixpoint. The least fixpoint is the
intersection of all pre-fizpoints, i.e., sets T such that f,(7") C T. The greatest
fixpoint is the sum of all post-fizpoints, i.e., sets T' such that 7' C f,(T').

The following proposition states that both pX.a(X ) and vX.a(X) are fix-
points of the corresponding function. Its proof follows directly from the seman-
tics.

Proposition 2.3 For any model M and valuation Val.
| nX.a(X) vy = [l a(uX.a(X)) V5 [ vX.a(X) 75 = | a(rX.a(X) |7,

We shall say that a formula « is satisfied in a state s of a model M with a
valuation Val, in symbols M, s, Val = a, when s € || a H%l Formula « is valid
iff for every model M, state s and valuation Val we have M, s, Val = a. We
will use & = f as an abbreviation of —~a Vv 3. We say that two formulas o and 3
are semantically equivalent iff formula (o = B) A (= «) is valid. For example
Proposition 2.3 states that pX.a(X ) is semantically equivalent to a(pX.a(X)).
We will usually say just equivalent instead of semantically equivalent.

Proposition 2.4 (Dualities) For every formula o and action a, the formula
(a)a is semantically equivalent to =[a]-a. Formula pX.a(X) is semantically
equivalent to ~vX.—~a(-X).

Exercises:
1 Prove Propositions 2.3 and 2.4.

2 Show that M, ty = pX.[a]X iff there is no infinite path tg,ty,t2, ... with
(tistiy1) € R(a) for ¢ = 0,1,2,... What is the meaning of v X .[a]X?

3 Is there a transition system M and a valuation Val such that for every
formula a(X):
M M
| 1 X.a(X) [lya = | vX.alX) [y

2.2 Restrictions and extensions of the syntax

As our tools will be mostly syntactic, the form of the formula itself will be
important to us. We are interested in restrictions on the use of some of the
connectives of the calculus which do not restrict its expressive power. The
main result of this kind will be the proof that every formula is equivalent to
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a disjunctive formula but this will be done only in Section 5. Here we will
introduce the notions of positive and guarded formulas and show that every
formula is equivalent to a positive guarded formula. We also introduce a special
construct of the form (¢ — I') which can replace both (@) and [a¢] modalities.

Definition 2.5 (Positive and guarded formulas) A formula is positive iff
all negations in the formula appear only before literals. Variable X in a formula
a(X) is guarded iff every occurrence of X in o(X) is in the scope of some
modality operator () or [ ]. We say that a formula ¢ is guarded iff for every
subformula 0 X.a(X) of ¢, variable X is guarded in a(X).

Example 2.6 The formula vY. X V (@)Y is guarded while pX.vY. X V (@)Y is
not because X is not guarded.

In the following we will often restrict ourselves to positive guarded formulas.
This is not essential but substantially simplifies many notions. The following
proposition shows that such a restriction is “harmless” at least from the seman-
tical point of view.

Proposition 2.7 (Kozen) Fvery formula is equivalent to some positive guarded
formula.

Proof

Let ¢ be a formula, we first show how to obtain an equivalent guarded formula.
The proof proceeds by induction on the structure of the formula with the only
nontrivial cases being fixpoint constructors. We present here the case for the
least fixpoint. The case for the greatest fixpoint is similar.

Assume that ¢ = pX.a(X) and a(X) is a guarded formula. Suppose X
is unguarded in some subformula of a(X) of the form ¢Y.3(Y, X ). Variable
Y is guarded in oY.8(Y, X) by the assumption. We can use the equivalence
of aY.B(Y, X)) with 8(cY.5(Y, X),X) to obtain a formula with all unguarded
occurrences of X outside the fixpoint operator. This way we obtain a formula
equivalent to a(X) with all unguarded occurrences of X not in the scope of a
fixpoint operator.

Now using the laws of classical propositional logic we can transform this
formula to the conjunctive normal form (considering fixpoint formulas and for-
mulas of the form (a)y and [a]y as propositional constants). This way we obtain
a formula

(XVar(X)AN .. A (X V(X)) AB(X) (1)
where all occurrences of X in aq(X),...,a;(X),5(X) are guarded. Observe
that some of a;(X) may be just L and S(X) may be T. Variable X occurs

only positively in (1) because it did so in our original formula. Formula (1) is
equivalent to

(X V(a(X)V...Va(X)))AB(X)
We will show that pX.(X Va(X))AB(X)is equivalent to pX.a(X)A B(X). It

is obvious that

(nX.a(X)AB(X)) = (XX Va(X)AB(X))
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Let v stand for pX.a(X) A B(X). To prove another implication it is enough
to observe that v is a pre-fixpoint of pX.(X V a(X))V B(X) as the following
calculation shows:

If ¢ is a guarded formula then we use dualities of the y-calculus (see Propo-
sition 2.4) to produce an equivalent positive formula. It is easy to see that it
will be still a guarded formula. 0]

In analysing the role of each connective of the p-calculus we will see that
the conjunction has two functions. To help us distinguish this two functions
we introduce the following concept which is related to a normal form for the
simple modal logic.

Definition 2.8 We extend the syntax of the p-calculus by allowing new con-
struction of the form (@ — I'), where a is an action and I' is a finite (pos-
sibly empty) set of formulas. Such a formula is semantically equivalent to
MN{(a)a:a € '} Ala] VI'. We adopt the convention that the conjunction of the
empty set of formulas is the formula T and the disjunction of the empty set is
L.

Remark 2.9 A formula (a)a is equivalent to (¢ — {«@, T}) and a formula [a]a
is equivalent to (¢ — {a})V(a — 0). It follows that any formula can be written
with this new construction in place of modalities.

Remark 2.10 The notions of positive and guarded formulas can be extended
in a straightforward way to formulas with this new construct.

Exercises:

1 Give a proof of the induction step for the greatest fixpoint case in the
proof of Proposition 2.7.

2 Is there a transition system M and a valuation Val such that for every
guarded formula pX.o(X):

M M
| 1 X.a(X) [[va = | vX.alX) [lva

3 Find a positive guarded formula equivalent to =(a — I') where I is a set
of positive guarded formulas.

2.3 Binding definitions

In this subsection we would like to introduce some tools to deal with subformulas
of a given formula. They are very similar to those used in [9] or [16].

We would like to have a different name (which will be a variable) for every
fix-point subformula of a given formula. We will also introduce a notion of a
binding function which will associate subformulas to names.
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Definition 2.11 (Binding) We call a formula well named iff every variable
s bound at most once in the formula. For a variable X bound in a well named
formula « there exists the unique subterm of a of the form ¢ X.5(X ), from now
on called the binding definition of X in a and denoted D, (X ). We will omit
subscript o when it causes no ambiguity. We call X a v-variable when ¢ = v,
otherwise we call X a p-variable.

The function D, assigning to every bound variable its binding definition in
o will be called the binding function associated with o.

Remark 2.12 Note that every formula is equivalent to a well-named one with
some ad hoc consistent renaming of bound variables. The substitution of a
formula  for all free occurrences of a variable X in «, denoted a[3/X], can
be made modulo some consistent renaming of bound variables of 3, so that the
obtained formula a[3/X] is still well-named.

Definition 2.13 (Dependency order) Given a formula o we define the de-
pendency order over the bound variables of «, denoted <., as the least partial
order relation such that if X occurs in Do(Y) and Do(Y) is a subformula of
D.(X) then X <, Y. We will say that a bound variable Y depends on a bound
variable X in o when X <, Y.

Remark 2.14 It is not the case that X <, Y iff D(Y) is a subformula of
D(X). For example when a = pX.(b — {X})VrY.(a — {Y}) then variables X

and Y are incomparable in <, ordering. On the other hand if a is pX.vY.(a —
{ X} vuZ(a—A{ZVvY})then X <, Z.

Definition 2.15 Given a formula a with an associated binding function D,
for every subformula § of a, we will define the expansion of 3 with respect to
D, as:

<I:ﬁ:|>Do¢ = ﬁ[pa(Xn)/Xn] T [Da(Xl)/Xl]

where the sequence (X1, Xg,...,X,,) is a linear ordering of all bound variables
of @ compatible with the dependency partial order, i.e. if X; <, X; then s < j.

Proviso: If not otherwise stated all considered formulas are assumed to be
well named, positive and guarded. We also assume that all occurrences of (a)
and [a] modalities are replaced by appropriate formulas using (¢ — I') construct.

2.4 Automata on infinite objects

Let us briefly recall the concepts of finite automata on infinite words and trees
(see [19] for a survey). We will need automata in some of the proofs. The kind
of automata we would be interested most are automata with so called parity
or Rabin chain condition. This condition is a special case of both Rabin and
Street conditions and yet it is as powerful as any of these. As we will see this
type of condition has very strong connections with the p-calculus.

An infinite word over a finite alphabet ¥ is a function w : N — X. We will
sometimes use wgwy ... notation for such words. The set of all infinite words
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over Y. is denoted X¢; the set of all finite words over ¥ is denoted ¥*. An infinite
tree over Y is a function t : {[,r}* — X. Here [, r are two letters meaning left
and right respectively. The root of a tree is an empty word denoted ¢.

Definition 2.16 (Finite automata) A finite automaton is a tuple (Q), X, sg, 6),
where @) is a finite set of states, ¥ is a finite set called an alphabet, so € Q) s
an initial state, 6 C () X X X ) is a transition relation.

Finite automata which run on infinite objects can be equipped with different
accepting conditions. We will restrict ourselves only to two types of conditions.

Definition 2.17 (Acceptance conditions) Let A be an automaton as above.
Parity acceptance condition 1is given by a function C : Q — N assigning a
natural number to every state of the automaton. Rabin acceptance condition is
given by a set of pairs of subsets of Q, {(R;,G;):i=1,...,k}.

An finite automaton with a parity condition will be called parity automaton.
Rabin automata are finite automata with Rabin conditions.

Definition 2.18 (Recognition) A sequence qo,q,. .. is called a run of A on
a word wyws ... € XY iff qo = so and for any i € N we have (g;,w;, giy1) € 0.
Let Inflqo, q1,...) denote the set of states which appear infinitely often in the
sequence.

A runr : N — Q is accepting with respect to a parity condition C iff
min{C(q) : ¢ € Inflr)} is even. The run is accepting with respect to a Rabin
condition {(R;,G;) i = 1,...,k} iff there exists an index j € {1,...,k} such
that R; 0 Inflr) = 0 and G; N0 Inflr) # 0.

A word is accepted by the automaton iff it admits an accepting run. The
language recognised by A is the set of words accepted by A.

Remark 2.19 Parity automata are special case of Rabin automata. A parity
condition C : Q — N is equivalent to the Rabin condition {(R;,G;): R; = {q¢:
Clq) < 2i},G; = {q :C(q) = 2i},i € N}. Tt is also true that for every Rabin
automaton there exists a parity automaton recognising the same language but
this translation is more complicated and involves increasing the number of states
of the automaton.

Example 2.20 The automata presented in Figure 1 accept the language con-
sisting of those infinite words over ¥ = {a, b} which contain only finitely many
a’s or only finitely many b’s. Double circles denote initial states. Transition
relation is defined by labeled arcs. The upper automaton is a Rabin automaton
and its acceptance condition is written next to it. The lower automaton is a
parity automaton, its acceptance condition is given just by the state numbers.

An automaton is called deterministic iff for every ¢ € ) and a € ¥ there
is at most one ¢’ € @ such that (¢q,a,¢’) € 6. McNaughton [11] showed that
every Rabin automaton over infinite strings is equivalent to a deterministic one
(Actually he showed this for different acceptance condition, so called Muller
condition). Both automatain Figure 1 are deterministic. The following theorem
in a more general form can be found in [12].
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a b (03{13),({1},{0})

Figure 1: An automaton for {w € {a,b}" : Jw|, < 0o or |w|, < oo}

Theorem 2.21 (Mostowski) For every Rabin automaton on infinite words
there is a deterministic parity automaton recognising the same language.

Definition 2.22 Tree automaton is a tuple (Q, X, sg, §) where (), X, s are as
before and 6§ C Q x X x@Q X). A run of a tree automaton on a treet : {[,7}* — %
is a function = : {{,r}* — @ such that r(¢) = sp and for any w € {l,r}* we
have (r(w), t(w),r(wl), r(wr)) € 6.

Definition 2.23 A tree automaton with parity or Rabin condition will be
called parity or Rabin tree automaton respectively. A run of such an au-
tomaton is accepting iff for every path P of the tree the sequence of states on
P satisfies corresponding condition.

Example 2.24 In Figure 2 we present a tree automaton over ¥ = {a, b} recog-
nising the set of trees containing at least one a.

The states are marked with circles and the transitions are represented by
boxes. The initial state is 1 and there are three transitions from it. Transition
(1,b,1,2)is represented by the box to the left labeled b. The parity acceptance
condition is given by the state numbers.

Remark 2.25 A tree automaton is said to be deterministic iff for every ¢ € @)
and a € X there is at most one pair (¢, ¢,) € @ such that (¢,a,q,q,) € 6. It is
not true that for every Rabin tree automaton there is an equivalent deterministic
Rabin tree automaton.

Theorem 2.26 (Mostowski [12], Emerson & Jutla [5]) For every Rabin
tree automaton there is an equivalent parity tree automaton.

As we said in the introduction we are not going to consider the model
checking problem, i.e. the problem of deciding whether a formula is true in a
given state of a given finite structure. Let us mention just one result which
shows the connection between the p-calculus and parity conditions.
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Figure 2: Tree automaton

Theorem 2.27 ([2]) Model checking problem is equivalent under linear reduc-
tions to the testing emptiness of parity automata on trees. The problem is in
NP and co-NP. On the other hand testing emptiness of Rabin automata is NP-
complete.

Exercises:

1 Construct Rabin and parity string automata recognising the complement
of the language considered in Figure 1.

2 Show that there is no deterministic tree automaton recognising the same
language as the tree automaton considered in Figure 2.

3 Tableaux, markings and “operational semantics”

In this section we present the characterisation of satisfiability by means of
markings of infinite tableaux. We call this “operational semantics” of formu-
las because the idea of the characterisation comes from considering p-calculus
formulas as automata-like devises checking the properties of the structure. In
the first subsection we give some motivating examples. Then we formalise the
ideas and preset the characterisation result.

According to our proviso we will assume that all the formulas considered
in this section are well named, positive, guarded and use (¢ — I') construct
instead of (a) and [a] modalities.

3.1 Formulas as automata

Here we would like to give some intuitions about the operational semantics for
the p-calculus formulas. We will pursue the idea that formulas are automata-
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like devices checking properties of the model.

Let us consider the task of checking whether a set of formulas I' is satisfied
in a state s of a model M = (S5, R, p) with a valuation Val. We will use {a,I'}
to stand for {a} UT'. As we will never consider sets of sets of formulas this
notation should not be very confusing. The algorithm for checking satisfiability
may look as follows:

1. To check that {a Vv §,I'} is satisfied in s, check {a,I'} or check {53, 1'}.
2. To check {a A 3,1}, check {a, 3,T}.
3. To check {oX.a(X),I'}, check {a(cX.a(X)),I'}. This step is called re-

generation.

4. If only literals and formulas of the form (¢ — @) appear in I' (i.e. the
above rules do not apply) then we must check that all the literals are
satisfied in s and:

(a) for every (¢ — ®) € I' and a € ¢ we must find a state ¢ with
(s,t) € R(a) and check whether {a} U{V/O :(a — 0) € T,0 # &}

is satisfied in t,

(b) for every action @ such that a formula of the form (¢ — ®) belongs
to I' and every t such that (s,t) € R(a) we must find formulas
(a — @) € T and o € " and check that in ¢ the set {¢'} U{V O :
(a — 0) eI, 0 # &'} is satisfied.

Observe that the procedure described above is nondeterministic and this
nondeterminism shows in two places: reduction of disjunction and assignment
of states to sets in reduction of modalities. We will call one execution of the
procedure a run. Thus for a given formula and a state there may be many runs,
some of them finite and some not. We want to find a condition on runs such
that existence of a successful run would characterise satisfiability relation.

Let us give some examples. Consider a formula uX.g A (a — {pV X}). Let
My be a model presented in Figure 3.

My W%
q q p,q

Moo 0L 2 3
q q q

Figure 3: Models My and Mo

It consists of three states sg,s1,s2 and two a-transitions: sy — s; and
$1 — s9. Let ¢ be true in all the states and let p be true in sy. A checking of
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satisfiability of our formula in this model can be pictured as follows:

soF{puX.gn(a—{pVv X})}
soF{g A (a — {pV X})}
soF{g, (@ — {pV X})}
siE{p Vv X}

siE{X}

siE{g A (a — {pV X})}
siE{g, (@ — {pV X})}
sef={p Vv X}

sol={p}

We used variable X to denote the whole fixpoint formula pX.gA(a — {pVv X }).

Remark 3.1 This example also shows that in clause 4b the condition that
only special formulas appear in the label of T" is necessary. Otherwise we could
apply clause 4b at the very beginning and finish the procedure claiming that it
is a success.

Now consider a model My which states are natural numbers, transitions
labeled by @ lead from a number to its successor, ¢ is true in all the states and
p is always false. In this model our satisfiability checking would look like this:

0 F {pXgA(a—{pVvX})}
0 F {gn(a—{pVvX})}

0 F {¢(a—{pvX})}

1 E {pvX}

1 X}

L E {gn(a—=A{pvX})}

1

= {¢(a—={pVX})}

This is the only run of the procedure which does not fail in finitely many
steps. It is easy to show that || uX.g A (a — {pV X}) |12 = 0. Hence we are
tempted to conclude that if our satisfiability checking process can’t finish in a
finite number of steps then the formula is not satisfied. This statement is not
true. As an example let us take the formula vX.¢ A (¢ — {pV X}). Now the
satisfiability checking process will look almost the same as before but it is easy
to see that || vX.q A (a — {pV X}) [ = V.

Let us analyse the differences between this two checking examples. We will
call a transition from X to a(X) regeneration of variable X. In first case some
p-variable was regenerated infinitely often during the checking. In the second
case it was v-variable. We will show in the next subsection that satisfiability
checking process is successful iff (roughly speaking) there is no instance of a
p-variable regenerated finitely many times.

The intuition why it is the case comes from the Knaster-Tarski charac-
terisation of fixpoints on a complete lattice by chains of approximations. In
order to describe this approximations for every ordinal 7 we introduce two new
constructs p” X.a(X) and v" X.a(X) with the following semantics (for some
M = (5, R,p) and Val):
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— 1 XalX) [l = 0, (12X a(X) [lyy = S,
— o™ Xoa(X) [lya = | a(X) v argor x.a(x)),,,/x] (0 means por v),
— | Xa(X) Iy = Urrcr | 7 Xoa(X) ||y, for 7 limit ordinal,

— 1" XalX) lyur = Norer | V7 Xoa(X) ||y, for 7 limit ordinal.

Remark 3.2 This constructs are not p-calculus formulas. This is an extension
of the language which we will use only to state the following theorem and to
define the notion of signature in Definition 3.14.

Using this constructs we can state:

Theorem 3.3 (Knaster-Tarski) For every model M and valuation Val:

I nXa(X) vy = Ul XalX) v

lvXa(X) llva = (77 XalX) llya

From the theorem it follows that whenever we are to check pX.a(X) in
some state s and s |= pX.a(X) then there is the least ordinal 7 such that
s W X.a(X). Sos = a(u” X.a(X)) for some ordinal 7/ < 7. Hence each
regeneration reduces the ordinal p-formula carries. Because the ordinals are
well ordered if we guess the run right then each instance of a p-formula should
be regenerated only finitely many times.

To see what we mean by an instance of a u-formula consider the structure
M3 presented in Figure 4

M39a1b2a3b4a5

Figure 4: Model M5

Consider a task of checking that the formula {u¢X.rY.(a — {X})V (b —
{Y'})} is satisfied in state 0:

= {vXuY.(e—={X}HV(—{Y})}
= {la={XH Vv —{Y})}

= {le—={X})}

= X

= {(a={X}PH Vv —{Y})}
{(b—{Y})}

= v

= {la={XH Vv —{Y})}

= %a — {X}H}

WNINDN == —O oD
[l
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This is unique run which does not fail after finite number of steps. As there
are infinitely many regenerations of the u-variable on this unique run we are
inclined to say that the formula is not satisfied in state 0. On the other hand
it is not difficult to check that || vX.uY.(a — {X})V (b— {¥Y}) ¥ = N.
The reason for this is that after each regeneration of p-variable X there is a
regeneration of v-variable Y on which X depends (Y < X). Very vaguely
one may say that each time the v-variable is regenerated new instance of the
p-subformula is created.

Exercises:

1 Consider model M3 and the formula || uX.vY.(a — {X})V (b — {Y}) [|3/.
Calculate the set of states where the formula holds. How the runs of sat-
isfiability checking procedure look like?

3.2 Formalisation

Let us formalise the above intuitions. We will first define a notion of a tableau
for a formula. This is intended to represent all possible reductions of the formula
which can be done during satisfiability checking. Then we will define a notion
of a marking which will correspond to one run of the checking algorithm. We
conclude this section by proving a characterisation of satisfiability of a formula
in a given state by means of consistent markings.

Let us start with tableaux. A tableau for a formula will be constructed
according to reduction rules which will reflect the steps of the checking proce-
dure described above. This rules may be also considered as sound logical rules
although some of them may seem strange from the logical point of view.

Each rule will have the form:

where I', ¥4, ..., %, are finite sets of formulas. The set below the line is called
conclusion. The sets above the line are called assumptions. We will see an
application of a rule as a process of reduction. Given a set of formulas I' we
want to derive, we apply the rule and obtain assumptions ¥4,..., Y, which we
can reduce further. We continue to write {a,I'} as a shorthand for {a} U I
According to our proviso we assume that all the formulas considered in this
section are well named, positive, guarded and use (@ — I') construct instead of
(a) and [a] modalities.

Definition 3.4 For a formula 7 and its binding function D, we define the
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system of tableau rules §7 parameterised by v or rather its binding function:

{a.8,T} {a, I} {51}
YRy ) avE
{a(x).1) | _fa(x).1)
(1) {iX.a(X), T} (v) (vX.a(X),T}
{a(X),T'} whenever X is a bound variable of 5
(reg) (X, T} and D (X) = o X.a(X)

{a}U{V@:(ae@)E{F},@#@} for every (¢ — ®) € {T},a € ®

(mod) T

with \/ 0 interpreted as L.

Remark 3.5 The rule (mod) has as many premises as there are formulas in
sets @, s.t., (a — ®) € I'. For example

{ar, a3t {ag a3} {arVag,asz} {61} {82}
{la = {a1,a2}), (e — {az}), (b — {51, B2})}

is an instance of the rule.

Definition 3.6 A tableau for v is a pair (T, L), where T is a tree and L is a
labeling function such that:

1. the root of T' is labeled by {7},

2. the sons of every node are created and labeled according to the rules of the
system S, with rule (mod) applied only when no other rule is applicable.

Leaves and nodes where (mod) rule was applied will be called modal nodes. The
root of 7 and sons of modal nodes will be called choice nodes. We say that m
is near n iff there is a path from n to m in a tableau without an application of
(mod) rule in between.

Remark 3.7 Returning to our example of an instance of the rule (mod) from
Remark 3.5. If a node n is labeled by the conclusion of this instance then n has
five sons labeled by corresponding assumptions. We will call a son obtained by
reducing an action a an a-son. In a sense one can consider that some edges of
a tableau can be labeled with actions. In our example n has three a-sons and
two b-sons. Node n is a modal node, its sons are choice nodes.

An example of a tableau is presented in Figure 5. Following computer
science tradition our tableaux will always expand downwards so the root is at
the top.

Definition 3.8 (Marking) For a tableau 7 = (T, L) we define its marking
with respect to a structure M = (S, R, p) and state s to be an assignment M of
sets of states of M to the nodes of T such that:
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{pXvY(a—{XAY, p})}

Choice nodes WY (a—={X AY,pH}
\\ {(a — {X AY,p})} =TT k
/ py o {XAY} loop
(XY}

Modal nodes —
WY (a = {XAY p}),Y}

{I/Y.(a —{X A Y,p}), (a —{X A Y,p})}
{la—={XA 5:,17})}

Figure 5: An example of a tableau.

1. The root of T is marked with {s}.

2. If in a node n some rule other than (or) or (mod) was applied then the
only son of n has the same marking as n.

3. If a node n has assigned some set of states M (n) and rule (or) was applied
in n, then one son is assigned some subset of M(n) and the other son its
complement.

4. If rule (mod) was applied in a node m then for every s € M(m) and every
action a for which there exits a formula (a — 1') in L(m):

(a) for every a-son n of m and every s € M(m) there exists a state
te M(n), s.t. (s,t) € R(a),

(b) for every state s € M(m) and every state t such that (s,t) € R(a)
there is an a-son n of m with t € M(n).

Definition 3.9 Given a path P of a tableau 7 = (7', L), a trace on P will be
a function 7r assigning a formula to every node in some initial segment of P
(possibly to the whole P), satisfying the following conditions:

o If 7r(n) is defined then 7r(n) € L(n).

e Let m be a node with 77(m) defined and let n € P be a son of m. If a
rule applied in m does not reduce formula 7r(m) then 7r(n) = 7Tr(m).
If 7r(m) is reduced in m then 7r(n) is one of the results of the reduction.
This should be clear for all the rules except (mod). In case m is a modal
node and n is labeled by {#p} U{V O : (¢ — ©) € I',0 # ¥} for some
(¢ — W) € L(m) and ¢ € ¥, then Tr(n) =¥ if Tr(m) = (¢ — ¥) and
Tr(n)=VOif Tr(m)=(a — 0) for some (¢ — 0) € I', © # V. Traces

from other formulas end in node m.
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Definition 3.10

— We say that there is a regeneration of a variable X on a trace 7r on some path
iff for some node m and its son n on the path 7r(m) = X and 7r(n) = a(X),
where D(X) = o X.a(X).

— We call a trace p-trace iff it is an infinite trace (defined for the whole path) on
which the smallest with respect to <, ordering variable regenerated infinitely
often is a p-variable. Similarly a trace will be called a v-trace iff it is an infinite
trace where the smallest variable which regenerates i.o. is a v-variable.

On our example in Figure 5 there is a finite trace to the leaf labeled {p}.
There is a trace consisting of the leftmost formulas on the infinite path of
the tableau. It is a p-trace. There is also a v-trace obtained by choosing
rightmost formulas. Observe that the traces can split and merge. There are
countably many v-traces and uncountably many p-traces on the infinite path
of the tableau.

Remark 3.11 Every infinite trace is either a p-trace or a v-trace because all
the rules except regenerations decrease the size of formulas and formulas are
guarded hence every formula is eventually reduced. Observe that even though
<, is a partial ordering there is always the least variable required in the above
definition.

We can now define what does it mean for a marking to be consistent.

Definition 3.12 (Consistent marking) Using the notation from the Defini-
tion 3.8, a marking M of T with respect to M, s is called consistent marking
with respect to M, s, Val iff it satisfies the following conditions:

local consistency for every modal node m of T and state t of M, ift € M(m)
then M, t, Val |= T', where 1" is the set of all the literals occurring in
L(m),

global consistency for every path P = ng,ny,... of T such that M(n;) # 0
for every 1 = 0,1, ... there should be no p-trace on P.

Theorem 3.13 Positive guarded formula ¢ is satisfied in a finitary branching
structure M, state s and valuation Val iff there is a tableau 7 for ¢ and a
marking M of 7 consistent with M, s, Val.

Proof
Let us fix a formula ¢ (which is well named, positive and guarded by our
proviso). Let D, be its binding function.

First we introduce the notions of a signature and v-signature similar to
that considered by Streett and Emerson [18]. We extend the notion of binding
function from Section 2.3, by allowing constructs of the form ¢” X.a(X ) in the
image of D, (as before o stands for u or v). The concept of expansion (a)p,
extends immediately.
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Definition 3.14 Let us assume that X1, Xo,..., Xgu (Y1,..., Y ) are all p-
constants (v-constants respectively) from the domain of D, listed in some order
respecting <., relation (smaller elements have smaller indices). Let us take a
subformula 8 of .

If the formula {3])p,, is satisfied in a state s of a model M with a valuation
Val then we can define a signature of 8 in s, Sig(53,s), as the least, in lexi-
cographical ordering, sequence of ordinals (71, ..., 74 ) such that M, s, Val |=
(B)pr, where D' is a binding function obtained from D, by changing definitions
of X; (for i =1,...,d") from D,(X;) = pX;.0;(X;) to D'(X;) = p" X.oq( X)),

If the formula (#)p, is not satisfied in a state s of a model M with
a valuation Val then we can define a v-signature of 3 in s, ¥ Sig(j3,s), as
the least, in lexicographical ordering, sequence of ordinals (7,...,74u) such
that M, s, Val £ (B)p/, where D’ is a binding function obtained from D,
by changing definitions of Y; (for ¢ = 1,...,d") from D, (Y;) = vY;.ou(Y;) to
D'(Y;) = vY.ai(Y5).

Remark 3.15 Of course signature of a formula depends not only on a state
but also on valuation and definition list which is not taken into the account in
our notation. This parameters will be always clear from the context.

It can be shown that signatures behave nicely with respect to a formula
reduction namely:

Lemma 3.16 For every state s of a model M, valuation Val, and a, 3,
pX.a(X), vX.a(X) subformulas of ¢:

— If M, s, Val |= (o A B)p, then Sig(a A 3,s) = max(Sig(a, s), Sig(3,s)).
— If M, s = {aVB)p, then Sig(aV3,s) = Sig(a,s) or Sig(aV 3, s) = Sig(3, s).

— If M, s = ((a — ®))p, then: (i) for every formula ¢ € ® there is a state
such that (s,t) € R(a) and Sig(p,t) < Sig((a — ), s), (ii) for any state ¢ such
that (s,t) € R(a), Sig(\V ©,t) < Sig((a — @), s).

— If M, s = (vX.a(X))p, then Sig(vX.a(X),s) = Sig(a(X),s).

— M, s |= (uXi.ai(X;))p, and X; is i-th p-variable in the domain of D, then
the prefixes of length ¢ — 1 of Sig(pX;.0;(X;),s) and Sig(a;(X;),s) are equal.

— I M,s|= (Z)p, and D,(Z) = 0Z.a(Z) then Sig(Z,s) = Sig(a(Z),s) if Z
is a v-variable. If Z is ¢-th u-variable then the second signature is smaller and
the difference is at position 7.

Similarly for v-signatures but with interchanged roles of p with v, conjunc-
tion with disjunction and dual statement in (¢ — ®) case.

Proof

We will consider only the last case. Suppose M,s |= (X;)p,, where X; is
i-th p-variable from the domain of D,. Let D, (X;) = pX;.0u(X;). As our
ordering of p-variables respects <, relation only p-variables with indices less
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than 7 can appear free in pX;.0;(X;). Let Sig(X;,s) = (m,...,7,) and let D’
be a definition list obtained from D, in the way described in Definition 3.14.
Let us denote o ( X;)[D'(X;-1)/Xi-1] ... [D/(X1)/X1] by B(X;).

It should be clear that the signature of a;(pX;.0;(X;)) is the same as
pXi.o;(X;), which means that the signatures of X; and «a;(X;) are the same
on positions smaller than ¢. From the definition of the signature we have
M, s = p"iX;.5(X). Observe that 7; must be a successor ordinal hence M, s |=
B(p7 71 X.5(X)) which implies the thesis of the lemma. U

Proof of Thm 3.13 = The proof is based on [18]. Let us first focus on the
left to right implication. Suppose that ¢ is satisfied in a state s of a structure M
with a valuation Val. Let 7 be a tableau for ¢. We will construct a consistent
marking M of 7 with respect to M, s, Val.

e The root of 7 will be marked by s.

e If in a node some unary rule was applied then, as required, the only son
of it will be marked with the same set of states as the father.

o If (or) rule was applied in a node n:
{o, I} {6,173
{avp,T}

then for any s € M(n) we put s into the marking of the son labeled {a, I'}
if Sig(a,s) < Sig(3,s) otherwise we put s into the marking of the other
son.

e Suppose rule (mod) was applied in n and let s € M(n). If for some
(a — ®) € L(n), ¢ € ® and t with (s,t) € R(a) we have Sig(¢p,t) <
Sig((a — @), s) then we put ¢ into a marking of an a-son of n containing
¢. Form Lemma 3.16 follows that every t € {t : (s,t) € R(a)} appears
in a marking of some a-son of n and in every a-son of n one of the states
from the set appears.

It is obvious that the marking defined in such a way is locally consistent,
i.e., for any modal node m and state t € M(m), all the literals occurring in the
label of m are satisfied in ¢.

To check the other condition of consistency of the marking let P be a path
of 7 and let every node of P be labeled by a nonempty set. We will show that
there cannot be a u-trace on P. First observation is that because the structure
is finitely branching, every node of 7 is marked by a finite number of states.
This means that if for some node n and formula a € L(n) we define its signature
as max{Sig(a,s) : s € M(n)} then there will be actually state s’ € M(n), s.t.,
Sig(a, s") is this maximum.

Let us assume that there is a u-trace on P and that a p-variable X; is the
smallest variable with respect to <, ordering regenerated i.o. on this trace. Let
us look at the signatures of formulas from the point when no variable smaller
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than X; is regenerated on the trace. From the definition of the marking follows
that from that moment signatures of formulas on the trace never increases on
positions 1,...,7 — 1. If X; is regenerated in a node n then X; € L(n) and
a;(X;) occurs in the label of the only son n’ of n. From Lemma 3.16 follows
that for any state s € M(n), signature Sig(a;(X;),s) is smaller, on position ¢
than Sig(X;,s). Because M(n) is finite, maximal signature also decreases.

This shows that from some moment maximal signature of formulas on the
trace considered up to position ¢ never increases and decreases every time X is
regenerated. This is a contradiction because sequences of ordinals of bounded
length are well ordered.

Proof of Thm 3.13 < To prove the theorem in the direction from right to
left let us assume that there is a tableau 7 for ¢ and its marking M consistent
with respect to M, s, Val. Assume conversely that M, s, Val £ ©. We will
show that this assumption leads to a contradiction.

We will show that there must be a p-trace on a path of 7 such that every
node of it is marked by some nonempty set of states. Suppose that we have
constructed this hypothetical trace up to a node n, formula @ € L(n) is the last
formula of it and s € M(n) is a state such that M, s, Val [ a. We proceed
according to the rule which was applied in n.

e Suppose the rule is unary. If it was applied to « then the next element
of the trace is the result of reduction of «, otherwise the next element is
formula « itself. In case (and) rule was applied to @ = 71 A 72 choose 71
if ¥ Sig(y1, s) is smaller than ¥ Sig(7y,, s) or choose v, otherwise. It is clear
that the new last element of the trace is not satisfied in s.

o If rule (or) was applied in n then choose a son n’ of n, s.t. s € M(n'). The
next element of the trace will be a result of reduction of a which appears
in n’ or « itself if it was not reduced by this application of the rule.

o If rule (mod) was applied in n then by definition of a consistent marking
a cannot be a literal or a formula of the form (¢ — ). Hence it has the
form (a — ®) with ® # (. In this case either:

1. There is a formula ¢ € ® such that for every ¢ with (s,¢) € R(a) we
have t [£ ¢ and ¥ Sig(p,t) < VSig((a — @), s). In this case we choose
a son n' of n labeled by {¢} U{V O :(a — 0O) € L(n),0 # &}. For
the next state we take ¢t € M(n') such that (s,t) € R(a).

2. There is state ¢, s.t., (s,t) € R(a) and ¢ £\ ® with ¥.Sig(\ @,1) <
YSig((a@ — ®),s). In this case take a son n’ of n where ¢ is in the
marking. Our next formula is \/ ® or ¢ € ¢ depending on which one
appears in L(n).

Using similar arguments as in the proof of the left to right implication one can
easily prove that constructed trace must be a p-trace but this contradicts our
assumption about consistency of the marking.

O
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Remark 3.17 Observe that Theorem 3.13 is stated only for finitely branching
structures and we need this restriction to prove the left to right implication.
This restriction can be removed by slightly modifying the notion of the marking.
We will not do it here as we do not need this stronger result. The fact we need
is that every satisfiable formula has a finitary branching model. We will assume
this fact without a proof.

4 Applications of operational semantics

This section is divided into two parts. In first we sketch how some known
results can be proved using the operational semantics of formulas. The second
is devoted to the notion of tableau equivalence which turns out to be very
helpful in the further development.

4.1 Small model theorem, decidability, syntactic characterisa-
tions

Our operational semantics is very similar to a model checking algorithm in the
style of Stirling and Walker [16] (in case of finite models) or [17] (in the general
case). The important difference lies in the treatment of conjunction. This is
connected to the notion of alternation which we try to omit in this notes. Let
us instead consider decidability problem and the small model theorem [18].

Theorem 4.1 (Small model) If a p-calculus formula v is satisfiable then it
s satisfiable in a finite model having not more than O(QM) states.

Proof
The proof is based on [18]. Let 7 = (T', L) be a tableau for v. Let a pre-model
PM be a tree satisfying the following conditions:

e the root of of 7 belongs to PM,

o if a choice node belongs to PM then exactly one modal node near it

belongs to PM,
¢ if a modal node belongs to PM then all its sons belong to PM,

¢ if a modal node m belongs to PM then L does not appear in m and there
is no literal such that the literal and its negation occur in the label of m,

o there is no path of PM with a p-trace.

It is easy to construct a model M = (5, R, p) from the pre-model. Let S be
the set of modal nodes of PM, (m,n) € R(a) iff n is near some a-son of m,
m € p(p) iff p € L(m). Let so be the modal node of P.M near the root of 7.
Let Val(X) be defined by m € Val(X) iff X € L(m).

It is quite easy to see that there is a consistent marking of 7 with respect
to M, sg, Val. Hence by Theorem 3.13 we have M, sg, Val |= 7. Form the same
theorem it follows that if v is satisfiable then there is a pre-model for v (see
Remark 3.17). Thus we have:
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Theorem 4.2 Formula 7 is satisfiable iff there is a pre-model for 7.

Now there is a finite automaton on trees which recognises (codings of) pre-
models for v. Using Rabin conditions it is possible to construct such an au-
tomaton with O(2M) states and |y| pairs. Hossley and Rackoff proved in [7]
that if Rabin automaton over one letter alphabet has an accepting run then it
has a regular accepting run. From this follows the small model theorem without
the bound on the size of the structure. Emerson using this result proved the
following theorem [3]:

Theorem 4.3 (Emerson) Suppose A is a Rabin automaton over a single let-
ter alphabet. If A has an accepting run then there is a graph G with states of
A as nodes which unwinds to an accepting run of A.

From the theorem it follows that there is a pre-model for v which can be pre-
sented as a graph with no more than O(21!) nodes. Tt can be converted to a
model of the same size.

O

In [4] it was shown how to test emptiness of a Rabin automaton in time
O((mn)>") where m is the number of states and n is the number of pairs of the
automaton. This gives an exponential satisfiability testing procedure for the
p-calculus. The lower bound for this problem follows from the lower bound for
PDL proved in [6].

Theorem 4.4 (Decidability) The problem of deciding whether a given for-
mula of the p-calculus is satisfiable is EXPTIME complete in the size of the
formula.

In [14] the question was raised whether it is possible to characterise validity
in the same way as satisfiability.

Definition 4.5 (Refutation) A refutation R is a subset of T satisfying the
following conditions:

o the root of T belongs to R,

o if a choice node n belongs to PM then all modal nodes near n belong to

R,
o if a modal node m belongs to R then at most one son of m belongs to R,

o if m has no sons in R then either L occurs in the label of m or some
literal and its negation occur in m,

o there is a p-trace on every infinite path of R.

It was observed that from Martin’s determinacy theorem [10] it follows that
if there is no pre-model in 7 then one can find a refutation in 7. It is easy

to see that there cannot be a refutation and a pre-model in the same tableau.
This shows
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Theorem 4.6 Formula v is valid iff there is a refutation for —v.

The similar analysis of complexity, as we did for pre-models, applies also to
refutations. Summarising we have:

Theorem 4.7 There is an algorithm which, given a mu-calculus sentence 7,
constructs a model of the size O(2M) or a refutation of the size O(2M1). The

algorithm runs in time O(21).

In [21] a finitary proof system was proposed and it was show how to convert a
refutation of a formula into a proof of the negation of the formula. Unfortu-
nately the method used there does not seam to work for Kozen’s axiomatisation.

4.2 Tableau equivalence

In this subsection we would like to present one more application of the opera-
tional semantics. We will define the notion of tableaux equivalence and show
that if two formulas have equivalent tableaux then they are equivalent.

To give the definition of equivalence we will need to distinguish one more
kind of formulas:

Definition 4.8 A terminal formula is a formula of the form (a — @) for some
action a.

The meaning of a terminal formula (@ — @) is that there are no a-transitions
from a given state. Although we introduce them only here these formulas
were already implicitly considered in the definition of the marking (see Defini-
tion 3.8).

In tableau equivalence we can abstract from the order of application of non-
modal rules, but the structure of the tree designated by modal nodes will be
very important.

Definition 4.9 We say that two tableaux 7y and 75 are equivalent iff there is
a bijection &£ between choice and modal nodes (see Definition 3.6) of 7; and 7,
such that:

1. &£ maps the root of 73 onto the root of 75, it maps choice nodes to choice
nodes and modal nodes to modal nodes.

2. If n is a descendant of m then &£(n) is a descendant of £(m). Moreover if
for some action a, node n is an a-son of a modal node m then £(n) is an

a-son of £(m).

3. For every modal node m, the sets of literals and terminal formulas occur-
ing in L(m) and in L(E(m)) are equal.

4. There is a p-trace on a path P of 7y iff there is a p-trace on a path of 7
designated by the image of P under &.

Theorem 4.10 If two positive guarded formulas have equivalent tableaux then
they are equivalent. (According to our proviso we assume that formulas use
(a — ®) notation instead of (a)y and [a]p.)
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Proof

Let a, 3 be two formulas and 7, 75 equivalent tableaux for a and 3 respectively.
Let £ : 7, — 75 denote the bijection showing the equivalence of 7, and 73. We
will show that for any finitely branching structure M, state s and valuation
Val, we have M, s, Val |= o iff M, s, Val |= 5.

Suppose M, s, Val |= a. By Theorem 3.13 there is a consistent marking M
of 7, with respect to M, s, Val. This marking determines a consistent marking
of 75. First to any modal or choice node n of 73 we assign the set M(E~1(n)).
The labeling of any other internal node is uniquely determined by this assign-
ment. Directly from the definition of equivalence it follows that defined marking
is consistent with M, s, Val.

Observe that £71 is also a function showing the equivalence of 75 and 7,
hence there is a way of obtaining a consistent marking of 7, from a consistent
marking of 7.

]

Remark 4.11 Of course the inverse of the above theorem is not true. De-
spite this weakness the theorem will be very useful for proving equivalence of
formulas.

Let us discuss the connection between this notion of equivalence and bisim-
ulation. It is possible to define the notion of simulation between tableaux. It is
convenient to use game metaphor here but we hope that the connections with
the usual notion of simulation will be evident. Given two tableaux 7,, 73 we
can define the game on this two tableaux by the following rules:

1. The starting position of the game is (r,,rg), where r, and rg are the
roots of 7, and 7 respectively.

2. If the position of the game is a pair of choice nodes (n,,ng) then player
I chooses some modal node m, near n, and player II responds with a
modal node mg near ng with the property that every literal and terminal
formula appearing in mg appears also in m,. The new position of the
game is (mq, mg).

3. If the game is in a position (m,, mg), both nodes being modal nodes then
player I chooses a son of one of the nodes and the other player responds
with a son of the other node of the same type (i.e. if both sons must be
obtained by reduction of the same action).

The game may end after finite number of steps because one of the players
cannot make a move. In this case the other player is the winner. If the game
lasts forever then as the result we obtain a pair of infinite paths P, of 7, and
Pg of 7. Player I wins if there is no u-trace on P, but there is a p-trace on
Pg, otherwise player II is the winner.

We will say that 7 can simulate 7, iff there is a winning strategy for the
player IT in the game described above. One can show that if 8 has a tableau
that can simulate a tableau for a then for every model M, state s and valuation

Val, M, s, Val |= « implies M, s, Val |= 5.
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We can say that two tableaux are bisimilar iff each one can simulate the
other. It is easy to see that this notion of bisimulation relates more tableaux
than equivalence.

Please note that the game is asymmetric in step 2 but both tableaux are
treated equally in step 3. This is connected to the fact that we have both (a)
and [a] modalities in the logic. It is possible to vary the definition of step 3.
One such variation can be found in Definition 9.5.

We will not use this notion of bisimulation in this notes. In the completeness
proof we will need even weaker notion of simulation (see Definition 9.5). Till
that moment the notion of equivalence will be sufficient for us.

5 Disjunctive formulas

Operational semantics of formulas gives us some intuitions about the role of
each connective. If we are to check that a vV § holds, we choose (nondeterminis-
tically) one of the disjuncts. If we are to check puX.a(X) we try the equivalent
formula a(pX.a(X)). When we check aw A 3 we must check that a state satisfies
a and . While disjunction acts like a nondeterministic choice, conjunction acts
rather like universal branching of an alternating automaton. Such an alternat-
ing behaviour of a conjunction is a source of many difficulties. For example this
is the only reason why our tableaux are labeled by sets of formulas and why the
notion of trace is needed. One may ask whether we can avoid this difficulties?

From automata theory we know that alternating automata are equivalent to
nondeterministic ones [13]. This suggests an idea that every formula should be
equivalent to a formula which does not have universal branching behaviour rep-
resented by conjunction. Of course we cannot discard conjunctions completely
from positive formulas as an example of the formula (¢ — {p}) A (b — {q})
shows. Note that conjunction in this formula does not act as universal branch-
ing. It is rather an implicit conjunction from (usual, not alternating) automata
on trees where transition relation forces one son to be labeled by a state ¢ and
the other one by ¢’. This implicit conjunction is the only form of conjunction
that is present in fixpoint notation for the sets of trees defined by Niwiriski [15].
It was proved that this fixpoint language has the same expressive power as Sn.S,
monadic second order logic of n successors. Hence adding explicit conjunction
to this language will not increase its expressive power.

Definition 5.1 (Special conjunctions and disjunctive formulas) A con-
Junction ay A. .. ANay, is called special iff every a; is either a literal or a formula
of a form (a — I') and for any action a there is at most one conjunct of the
form (a — T') among aq,...,a,.

The set of disjunctive formulas, Fy; is the smallest set defined by the follow-
ing clauses:

1. every literal is a disjunctive formula,

2. ifa, B € Fy then a Vv g € Fy; if moreover X occurs only positively in o
and not in the context X A+ for some v, then uX.a,vX.a € Fy,
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3. (a—> <I)) e Fy if‘I) - fd,
4. special conjunction of disjunctive formulas is a disjunctive formula.

Remark 5.2 Many properties can be “naturally” expressed by disjunctive for-
mulas. For example the properties ¢ holds almost always and ¢ holds infinitely
often:

pX.(a = {X}HVvYgn(a—{Y}) vX.pY(a—A{Y}) V(gA(a—{X}))

Remark 5.3 Modulo the order of application of (and) rules, disjunctive for-
mulas have unique tableaux. Moreover on any infinite path there is one and
only one infinite trace.

Theorem 5.4 For every (well named, positive and guarded) formula ¢ and
every regular tableau 7 for ¢ (i.e. a tableau which is a regular tree) there is a
disjunctive formula $ with the tableau equivalent to 7.

Proof

Let 7 = (T, L) be a regular tableau for ¢. As 7 is a regular tree, it can be
presented as a finite labeled graph G = (G, Lg), where G is a finite graph and
Lg alabeling function.

We first show that it is possible to present 7 in a form of a tree with back
edges, i.e., edges leading from some leaves to their ancestors. We will still apply
tree-like terminology to such a structure, for example we will say that one node
is a son of the other meaning that it is so in a tree obtained by forgetting about

back edges.

Lemma 5.5 It is possible to construct a finite tree with back edges 7; =
(T3, L), satisfying the following conditions:

1. 7; unwinds to 7.

2. Every node to which a back edge points can be assigned color magenta
or navy in such a way that for any infinite path from the unwinding of 7;
we have: there is a u-trace on the path iff the highest node of 7; through
which the path goes i.o. is colored magenta.

Proof

It is easy to see that there is a Rabin automaton on infinite strings recognising
those paths of a tableau for ¢ which have a p-trace on them. Form Theorem 2.21
it follows that there is an equivalent deterministic automaton A with a chain
condition C.

Given automaton A we construct our tree with back edges, 7; = (1}, L;).
Labeling function I; will assign to nodes of 7; not sets of formulas but triples
(set of formulas, state of A, node of G). All such triples (2, ¢, k) will satisfy
an additional requirement that Lg(k) = .

e We label the root of 7; by a triple consisting of {¢}, a state ¢ reachable
from the start state of the automaton on letter {¢} and the initial node

of G.
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o If we have already constructed a node n of 7; labeled (2, ¢, k) then for
any k' to which there is an edge from & in G we add a son of n labeled by
(Y, q', k") where, ' = Lg(k") and ¢ is a state reachable from ¢ on a letter
V. There is one exception to this rule. If a triple we are going to add is
already a label of some ancestor m of n and no state with smaller than
C(q') value of C function appears on the path from m to n then instead
of creating a son of n we create a back edge from n to m. We color m
magenta if C(¢') is even otherwise we color m navy.

It should be clear that the constructed tree is finite and its unwinding with
labeling restricted to the first components is just 7. If we take an infinite path
P from the unwinding of 7; then the third components of the triples constitute a
path of our initial tableau 7 and the second components constitute a run of our
automaton on this path which is unique because the automaton is deterministic.
For any path P there is the highest node m of 7; which P visits i.0. Let ¢ be
the state appearing in the label of m. From the construction of 7; we know
that only sates with C value not smaller then C(gq) appear on the path i.o. From
the assignment of colors follows that if m is colored magenta then the run is
accepting and there is a p-trace on the path. Otherwise if m is colored navy
the run is rejecting and all infinite traces on the path are v-traces. U

From the tree with back edges 7; we are going to construct a disjunctive
formula which has a tableau equivalent to 7. We start from the leaves of 7;
and going to the top assign a formula 7 to each node n of 7; in the following
way:

o If there are no edges going from n then in the label of n only literals and
terminal formulas can occur. We let 7 to be the conjunction of all the
formulas appearing in the label of n.

o If there are edges going from n then we assume that every son of n has
assigned some disjunctive formula. It will be convenient to assume that
a formula assigned to a son is also assigned to an edge leading from n to
this son. There can be also back edges leading from n to some ancestors
of n and of course those ancestors have no formula assigned yet. To such
a back edge from n to, say m, we assign a variable X,, (an index is a
node to which the edge points). We first define an auxiliary formula v
depending on the rule which was applied in n.

— If one of the rules (u),(v),(reg) or (and) was applied in n then ~ is
exactly the same as the formula assigned to the only edge leading
from n

— If rule (or) was applied in n then there are two edges leading from n
which have been assigned formulas 1 and 5. We let v = 11 V 1)s.

— If applied rule was (mod) then let ¥, be the set of all the formulas
assigned to the edges leading from n to some node labeled by a
result of reduction of action a. We let v to be a conjunction of all
the literals and terminal formulas appearing in L(n) together with
all the formulas of the form (¢ — ¥,).
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If there are no back edges leading to n then 7 is just 7. Otherwise let
n = oX,.v, where ¢ is p or v depending on whether n was colored
magenta or navy respectively.

Observe that ng has only one tableau, call it 7. Tt is not difficult to check
that 7 is equivalent to 7. Hence formula ng is semantically equivalent to ¢.

Finally let us make the following useful observation which we will use in the
completeness proof.

Observation 5.5.1 We can assume that 7 # m whenever m is not near to n.
We can assume that all back edges in 7; go from modal nodes to choice nodes.

Observe that while the assumption on back edges is harmless, it is not
clear how easily satisfy the first requirement without a bit of “cheating”. One
solution would be to add countable number of constants denoting the truth.
Having them we could add a different constant of this kind to every leaf of 7.
As we have countable number of variables one such constant is enough because
we can take formulas {uX,;. T : ¢ € N'}.

We would like to stress that assumptions made in Observation 5.5.1 are not
essential for the proofs which follow although simplify them a lot. [

6 Applications of disjunctive formulas

This section is divided into two parts. In the first we show how to construct
models for disjunctive formulas and that checking their satisfiability can be
done in linear time. Second part is devoted to some connections with automata
theory.

6.1 Satisfiability of disjunctive formulas

In Theorem 4.1 a general technique of model construction for the p-calculus
formulas was described. Till now it remains essentially the only known tech-
nique for model construction. It turns out that in case of disjunctive formulas
model construction is much easier. This is described in the following theorem.

Theorem 6.1 A closed disjunctive formula « is satisfiable iff the formula 3
obtained from a by replacing all occurrences of p-variables by L and all occur-
rences v-variables by T is satisfiable.

Proof

It is quite easy to show that if « is satisfiable then § is satisfiable. This can be
done by induction on the structure of a (see the proof of Theorem 8.4 for the
similar argument).

Let us assume that § is satisfiable. Let 7, = (T, L) and 75 = (1, Lg) be
tableaux for a and [ respectively. Observe that T is a finite tree with no back
edges which is “isomorphic” to 3. Indeed if we consider [ written as a tree
then there is a direct correspondence between nodes of 75 and 3. Tree T, is an
unwinding of a graph obtained from T3 by adding back edges from some nodes
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labeled {L} or {T}. Back edges from nodes labeled { L} lead to nodes labeled
with p-variables. Similarly back edges from {T }-nodes lead to v-variables. We
will assume that there is a function h which for any node of 7, gives us the
corresponding node of 75. This situation is presented schematically in Figure 6

Figure 6: Tableaux 73 and 7,

Let M be a minimal (w.r.t. inclusion) marking of 75 consistent w.r.t. some
arbitrary model for 5. Let Té be the subtree of T3 consisting of the nodes
marked with nonempty sets and let T}, = h="(T}). As no leaf of T} can be
labeled by {Ll} it is easy to see that there is no u-trace on any infinite path
of T!. Also in every modal node m of T, there are the same literals as in the
modal node h(m) of Tj. This shows that T/, is a pre-model for a. Hence by
Theorem 4.2 formula « is satisfiable. 0

Corollary 6.2 Satisfiability checking of disjunctive formulas can be done in
linear time.

The above theorem can be also used to show how to prove the negation of
an unsatisfiable disjunctive formula. We will show this in the next section as
we need to have some proof system first.

6.2 Applications to automata theory

In this section we would like to discuss connections between parity automata
on trees and disjunctive formulas. We will show that disjunctive formulas for
the p-calculus over binary trees closely correspond to parity automata. This
gives yet another proof of Rabin’s complementation lemma. We would also like
to argue that disjunctive formulas can be considered as a natural generalisation
of parity automata on trees to arbitrary transition systems.

Let us consider p-calculus restricted to binary trees, that is suppose that
the models of the u-calculus are transition systems obtained from binary trees.
Given a finite set of propositional constants {py,...,pr} and a tree ¢t : {{,r}* —
Y over an alphabet ¥ = P({p1,...,pr}) we can consider it as a transition
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system ({l,r}*, R, p) where R(l) = {(w,wl) : w € {{,r}*}, R(r) = {(w,wr) :
we{l,r}*}, and p(p) ={w e {l,r}* : p; € t{w)}.

For this restricted calculus we can take stronger version of rule (mod) which
takes advantage of the information that there is always exactly one left and
exactly one right successor.

{p:rped,(I—=)el'} {p:pcd (r—o)el}
{r}

Then we can modify the proofs of Theorems 4.10 and 5.4 in a straightforward
way to show that any formula of the p-calculus restricted to binary trees is

(tmod)

equivalent to a disjunctive formula where all special conjuncts have the form
(I = {a})A(r — {B}) AN AT, for some formulas o, § and a set of literals
I'. Tableau for such a formula can be presented as a tree with back edges as
described in Lemma 5.5. This tree can be easily converted to an equivalent
parity automaton. Here equivalent means that the automaton accepts exactly
those trees in which root our initial formula is satisfied.

It is also quite straightforward to construct a disjunctive formula from a par-
ity automaton. As p-calculus over binary trees is closed under complementation
this translations show that parity automata are closed under complementation.
Put together with Theorem 2.26 we have got a proof of Rabin’s complementa-
tion lemma:

Theorem 6.3 (Rabin) Rabin tree automata are closed under complementa-
tion.

This also gives a proof of the results from [15, 5]

Theorem 6.4 (Niwinski, Emerson & Jutla) p-calculus over binary trees
15 as expressive as Rabin tree automata hence equivalent to the monadic second
order logic of two successors (525).

One may ask what happens in the general situation when we allow arbitrary
transition systems. In this case monadic second order logic (MS-logic for short)
is not decidable hence the equivalence does not hold. This is an easy answer
because the question was not exactly right. It is well known that p-calculus
cannot distinguish between a transition system and its unwinding which can
easily be done in MS-logic.

More refined question would be then to ask what happens when we restrict
to models which are unwindings of transition systems. In this case it is still
true that the u-calculus is weaker than MS-logic. In MS-logic one can say that
a node has, say, two a-successors. This fact is not expressible in the p-calculus.

This shows that there is a difference between the case when a degree of a
node is know and the general case. This difference can be also exhibited on the
automata level. Unwinding of every countable transition system can be encoded
as a binary tree. From the results cited above it follows that for any p-calculus
formula there is an equivalent parity automaton where equivalent now means
that the automaton recognises encodings of exactly those trees which are un-
windings of transition systems from states where the formula holds. Neverthe-
less, for the reasons mentioned above it is not the case that for every automaton
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there exists an equivalent p-calculus formula. We have argued above that dis-
junctive formulas for restricted p-calculus correspond to parity automata. This
allows us to consider disjunctive formulas for unrestricted p-calculus to be a
generalisation of the notion of a parity tree automaton to arbitrary transition
systems.

7 Kozen’s axiomatisation

Here we would like to present an axiomatisation of the p-calculus proposed by
Kozen [9]. We will adopt Gentzen-style formalisation because it fits nicely with
the tableau rules we have. A sequent I' A is a pair of finite sets of formulas.
The meaning of I'F A is that implication AT' = \/ A is valid, or in other words
that for every model M its state s and valuation Val if M, s, Val = AT then
M, s, Val = \J A. The meaning of one sided sequent I't- is that the conjunction
of formulas from I' is not satisfiable.

The system consists of the three sets of rules. First come the rules for
propositional modal logic (so called system K):

I'ta, A a,'FA
(=) —a,TFA IF—a, A
) a, B, TFA IFa,A THB,A

aAB,TFA TFanA B, A
W) a,TFA B.TFA I'ka,3,A

aVv i3, IFA TFaVv g, A

(o) a{f:[alf e 3{y:(a)y € A}
(a)a,'FA

F'FAy X,9FQ

(cut) ILYFA, O

Then we add two rules concerning the least fixpoint. First expresses the fact
that the least fixpoint is a pre-fixpoint. The second is Park’s least fixpoint rule
which says that the least fixpoint is the least pre-fixpoint:

I'fa(pX.a(X)),A
) T Xoa(x), A

alp)b ¢
(P) pX.a(X)Fe

Finally as we add rules expressing dualities of the p-calculus and defining
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(a — ®) construct:

I't-(a)-a, A (a)-a,TFA
(D [a]a, TFA I'klala, A
I'tpX.—a(-X),A pX.ma(-X),'FA
2 vX.a(X),TFA TFoX.a(X),A

[a] \/<I>,{<a>a ra €9} T'FA FI—/\{<a>a ta € O} A[d] \/<I),A
(-=1D (a—®),TFA Tt(a— @),A

Observe that there is a cut rule in the system. We don’t know whether cut
can be eliminated from the system at the expense of adding some finite set of
“reasonable” rules.

A sequent T'F A is called an aziom iff TNA#Qor LeT or T € A A
proof of a sequent I'F A in the system is a finite tree constructed with the rules
above which root is labeled by ' A and all the leaves are axioms.

As all our tools were developed for positive gunarded formulas we need to
show that if provability is concerned we can restrict to such formulas.

Fact 7.1 Every formula is provably equivalent to a positive guarded formula.

Proof
Just observe that all the steps used in the proof of Proposition 2.7 use provable
equivalences. [

A rule will be called admissible iff it is possible to prove the conclusions of
the rule assuming that premises of the rule are additional axioms. The following
rules were proved admissible in [9]:

{pYU{\/O:(a—0)€T,0 £ U}

() (@ = 0).TF for some 1 € ¥
fia) a(pX ~(AT)Aa(X)), T+
pX.a(z), '
a8 .. .
(mon) o5 X occurs only positively in ¢(X)

Our main goal is to prove the following theorem.

Theorem 7.2 (Completeness) Kozen’s aziomatisation of the propositional
p-calculus is complete, that is for every unsatisfiable formula ¢ there exists a
proof of the sequent ot in the system.

In the next section we will consider some special cases when we put some
syntactic restrictions on the form of . Among others we will prove the theorem
for disjunctive formulas. In the last section we will show that every formula is
provably equivalent to a disjunctive formula.
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8 Special cases of the completeness theorem

In this section we will consider classes of formulas for which the provability is
easier than in the general case. We recall a notion of an aconjunctive formula [9]
and propose its slight generalisation called weakly aconjunctive formulas. Our
goal is to obtain a generalisation of the main result from [9] which states that
for every unsatisfiable aconjunctive formula the sequent ¢ - is provable. We
introduce the notion of thin refutation which isolates the cases for which the
original proof still goes through. From Theorem 4.6 we know that every unsatis-
fiable formula has a refutation. It turns out that in case of weakly aconjunctive
formulas this refutation is thin.

8.1 Aconjunctiveness

Definition 8.1 (Aconjunctiveness) Let ¢ be a formula, D, be its binding
function and <, dependency ordering (see Definition 2.11).

— We say that a variable X is active in 1, a subformula of ¢, iff there is a
variable Y appearing in ¥ with X <, Y.

— Let X be a variable with its binding definition D, (X) = pX.v(X). Variable
X is called aconjunctive iff for all subformulas of v of the form a A 3 it is not
the case that X is active in « as well as in 3.

— Variable X as above is called weakly aconjunctive iff for all subformulas of
v of the form a A 3 if X is active both in o and 3 then a A [ is a special
conjunction as defined in Definition 5.1

— Formula ¢ is called (weakly) aconjunctive iff all p-variables in ¢ are (weakly)
aconjunctive.

In the following we will be interested only in weakly aconjunctive formulas.
Definition of aconjunctive formulas was recalled just to give a comparison of
the two notions.

From the next observation follows that all formulas appearing in a tableau
for a weakly aconjunctive formula are weakly aconjunctive.

Proposition 8.2 Every formula appearing in a tableau for ¢ is a subformula
of .

The next proposition states some closure properties of the class of weakly
aconjunctive formula. Observe that weakly aconjunctive formulas are not closed
under taking the least fixpoint.

Proposition 8.3 If v(X ) and ¢ are weakly aconjunctive formulas then y[6/X],
vX.y(X)and § Ay(X) are also weakly aconjunctive formulas.

Proof
As we consider only well named formulas when conjunction is formed we make
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sure that the bound variables in § and y(X) are different. With this observation
it should be easy to see that v X.v(X ) and § A y(X) are weakly aconjunctive.
Also while performing substitution y[6/X] we keep bound variables of é
distinct from the bound variables of y. Let a@ = 4[6/X] and let Y be a u-
variable of a. It may be either a bound variable from ¢ or from . If it is bound
variable from < then observe that because no bound variable of v is free in ¢
for every Y <, Z, variable Z is a bound variable of v. Hence Y is aconjunctive
in a iff it was aconjunctive in y. For the similar reason any p-variable of ¢ is
aconjunctive in a. U

8.2 Proving (negations of) weakly aconjunctive formulas

First let us consider disjunctive formulas.

Theorem 8.4 For every unsatisfiable disjunctive formula « the sequent aFis
provable.

Proof
In Theorem 6.1 we have shown that « is satisfiable iff 5 obtained form a by
replacing all u-variables by L and all v-variables by T is satisfiable.

We prove the theorem by induction on the structure of a.

If a is a special conjunction aq A...A a, then we have two cases. If a; = L
or a; = —a; for some 4,5 € {1,...,n} then akis easily provable. Otherwise
one of the conjuncts must be of the form (¢ — I') and one of the formulas from
I' must be unsatisfiable. From induction assumption using rule (()) we obtain
the proof of al.

If @ = v Vv é then by induction assumption we have proofs of v+ and 6t so
we can use the left (V) rule.

If a = pX.v(X)then as this formula is unsatisfiable sois y(L). By induction
assumption there is a proof of y(L)F. Using derivable rule:

y(L)F
pXy(X)E

we have the proof of pX.y(X)F.

If @« = vX.v(X) then we consider y(T). It is of course a disjunctive formula.
By Theorem 6.1 v(T) is satisfiable iff v X.y(X) is satisfiable. As the later
formula is not satisfiable we have by induction assumption the proof of v(T)F
and we can use derivable rule:

7Tk
v X y(X)kF

O

Remark 8.5 The proof of the above theorem crucially depends on the fact
that we never run into the situation when p is considered in a conjunction with
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some other formula. Observe that the rule:
a(Ll), I't+
pX.a(X),TH
is not sound. This means that our proof method breaks down in the general

case.
It should be mentioned that the infinitary rule:

{7*(L),TF :ne N}
pXA(X), 'k

is sound because of the small model property. This rule obviously gives a
complete system. From the small model property it follows that this rule can
be replaced by a “finitary rule”:
(L), I'F
pX.y(X), Ik

In [9] Kozen proved a result similar to Theorem 8.4 but for aconjunctive
formulas. Below we present a minor generalisation of this result. We will need
it in our completeness proof.

n > 2%, where k is the size of the conclusion

Definition 8.6 A refutation (see Definition 4.5) is called thin iff whenever a
formula of the form a A 3 is reduced in some node of the refutation and some
variable is active in « as well as in 3 then either a A § is a special conjunction
or one of the conjuncts is immediately discarded by the use of the weakening
rule:

r
{a, I}

Theorem 8.7 Let ¢ be a formula. If there exists a thin refutation for ¢ then

the sequent @ is provable.

We will not prove this theorem here, its proof is a minor alternation of
the proof from [9] and it is much more complicated than that of Theorem 8.4.
Instead let us give an example of the method used in the proof.

Consider the sequent

pX.pV(a—{X}),vYmpA(a— {Y}E

Below we present a refutation of this sequent.

{pXpVvie = {X}),vYmpA(a —{Y})}
{pvie = {X}),vYopn(e —{Y})}
{pvie—{X}),-p,(a={V})}

{p,p, (e = {Y})}  {(e = {X}),~p,(a— {V})}
XLy}
{pvie—{X}),p,(a={V})}
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As the sequent just above the dots appears already in the refutation we
have a loop which gives us an infinite path. On this path there is a p-trace
composed of the leftmost formulas of the path.

We convert this refutation into a finite proof by using rule ( fiz) in the first
regeneration of uX.pV (a — {X}). This allows us to “remember” the node
where regeneration was performed. We can then use this information when we
will be regenerating this formula once again in the same context. (Below we
denote uX.=(vY.~pA(a — {Y}))A(a — {X}) by v and use variables to stand
for corresponding formulas.)

pX.pV(a— {X}),vYiopA (a — {Y}F
pVi(a—{3}),vYiopA(a — {Y})F
pV(a—{3}),~p,(a— {YPF

p,ps (@ — {Y})F (e —{1}),~p, (e = {YDF
.Y
7, vYp Ao — {Y})F
pX (Y mp A fa — {Y ) A (a = {X}),vYop A (a — {Y]F
~(Ymp A (a — {Y]),vY.mp A (a — {Y})F

The last sequent is clearly provable. The last step is obtained using (cut) rule
with the obvious sequent.

The following easy consequence of Proposition 8.2 shows that Theorem 8.7
gives use means to deal with weakly aconjunctive formulas.

Fact 8.8 Every refutation for a weakly aconjunctive formula is a thin refuta-
tion.

9 Provable equivalence

Having Theorem 8.4 to prove completeness it is enough to show that for any

unsatisfiable formula ¢ there is a disjunctive unsatisfiable formula & such that

@k @ is provable. Of course we could just take @ to be L but then the proof of

this fact would be exactly as difficult as showing completeness. So in general

we will look for more complicated formulas then 1. Because we will prove this

fact by induction on ¢ we clearly need to consider also satisfiable formulas.
This whole section is devoted to the proof of the following theorem:

Theorem 9.1 For every positive, guarded formula ¢ there is an equivalent
disjunctive formula $ such that ¢F @ is provable.

The proof will proceed by induction on the structure of ¢.
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Case: ¢ is a literal In this case @ is just ¢.

Case: o = aV [ By the induction assumption there are disjunctive formulas
,ﬁ equivalent to o and 3 respectively. We let aV ﬁ to be av ﬁ and of course
aV pgrav ﬁ is provable because aFa and ﬁl—ﬁ are provable.

Case: ¢ = (a — ®) This case is very similar to the above.

Case: ¢ = vX.a(X) By the induction assumption there is a disjunctive
formula a(X) equivalent to a(X ). Of course v.X.a( X)) is equivalent to v.X.a(X)
and vX.a(X)tF vX.a(X) is provable. Unfortunately vX.a(X ) may not be a
disjunctive formula. This is because X may occur in a context X A« for some
~. Therefore we have to construct @ from the scratch.

By Theorem 5.4 there is a disjunctive formula @ which has the tableau
equivalent to some regular tableau 7 for vX.a(X ). By Theorem 4.10 the two
formulas are equivalent. We are left to show that vX.a(X)F @ is provable in
Kozen’s system. As every disjunctive formula is a weakly aconjunctive formula,
by Proposition 8.3 we have that v X.a(X) is an weakly aconjunctive formula.
Unfortunately we cannot directly apply Theorem 8.7 to v.X.a(X ), ~@t. This is
because - may not be a weakly aconjunctive formula. Nevertheless we know
that the two formulas have equivalent tableaux and we can use this information.

Lemma 9.2 Suppose that we have a weakly aconjunctive formula o and a
disjunctive formula é which have equivalent tableaux. In this case the sequent
al ¢ is provable.

Proof
Let 7, = (T, L) and 75 = (Ts, Ls) be tableaux for a and ¢ respectively. Let
& 71, — 75 be an equivalence function. We will construct a thin refutation R
for a, -6 F.

To facilitate the construction we will define correspondence function C,
which assigns to every considered node of R (that is not to every node) a node

of 7, such that:

() L(n) = La(Ca(n)) U{= A Ls(E(Ca(n)))}

The root r of R will be of course labeled by o, =6 F and setting C,(7) to be
the root of 7, establishes condition ().

Observation 9.2.1 Suppose we have already constructed R up to a node n,
Ca(n) is a choice node and condition (%) is satisfied. We can construct a finite
part of R such that for each leaf m of the constructed part we can define C,(m)
so that it is a modal node and (%) is satisfied. Moreover the traces from n to
m are reflected. This means that the traces form n to m are exactly the traces
from C,(n) to Co(m) with an exception of the trace from -~ A Ls(E(Ca(n))) to
= A Ls(E(Co(m))) which corresponds to negated (unique) trace from E(C,(n))
to E(Ca(m)).
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Fl Fk

Figure 7: The proof of Observation 9.2.1. The labels of the nodes are written
below the nodes.

Proof: The idea of the proof is presented in Figure 7. We know that £(C,(n))
is a choice node and as ¢ is a disjunctive formula Ls(E(Co(n))) is one element
set, say {7}. Hence L(n) = L,(Cs(n))U{—7}. Let us apply as long as possible
rules other than (()) and weakening to all the formulas in L(n) except —v in
the same order as they were applied from C,(n). This way we obtain a part of
a tree rooted in n with leaves nq,...,ng. Forevery j =1,...,k the label L(n;)
contains =y and some set of formulas I'; to which only (({)) may be applicable.
It is easy to see that every n; corresponds to some modal node C,(n;) near
Co(n) with the property that L,(Cs(n;)) = I';. Let us look at the path from
E(Cua(n)) to E(Ca(n;)) in Ts. Because ¢ is a disjunctive formula, on this path
first only (o), (reg) and (or) rules may be applied and then we have zero or
more applications of (and) rule. Let us apply dual rules to =7 (dual to (u) is
(v), (reg) is self-dual). When it comes to application of (or) rule in Zs, apply
(and) rule followed by weakening to leave only the conjunct which appears on
the path to £(Ca(n;)).

This way we arrive at a node m;. If we define C,(m;) = C,(n;) then its

label can be presented as Lo (Co(m;)) U{= A Ls(E(Ca(m;)))}. O

Observation 9.2.2 Suppose we have constructed the refutation up to a node
m. Assume that C,(m) is a modal node and (*) is satisfied. We can construct a
finite part of the refutation and define C(n) for each leaf of the constructed part
so that C,(n) is a choice node, condition () is satisfied and traces are reflected.

Proof: Let v = A Ls(E(Ca(m))) = A{m,....7} and I' = L,(Co(m)). By
(%) we have L(m) = {-7y}UT. Node £(Cy(m)) is a modal node hence every
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7 is either a literal or formula of the form (¢ — ®). When we negate v we
obtain a disjunction of negations of such formulas. Let us apply (or) rule to
eliminate all these disjunctions. This way we obtain new leaves m, ..., m;. For
any ¢ € 1,...,l node m; is labeled by I'; U {=v;} . We use ; to decide what
rule to apply in m;.

o If 7; is a literal or a terminal formula we are done because ~; appears in
I'. This follows directly from () and the definition of an equivalence of
tableaux.

o If v; is of a form (« — ®) with ® # () then negated it becomes \/{[a]-¢p :
p € ¢}V {(a) AN{~¢ : ¢ € &} or rather translation of this formula to
(a — O) notation. We apply disjunction rules as long as possible. This
way we obtain a part of a tree. Any leaf u of this tree is labeled by I' and
one of the disjuncts.

— Suppose this disjunct is (¢ — @). As ® # () there is an a-son of
E(Co(m)) so there is an a-son of C,(n). Hence there is (¢ — ©) € I’
with © # (. We obtain an axiom after one application of (()).

— Ifitis (a — {—p}) for some ¢ € ¢ then let ms be a son of E(Cy(m))
labeled by {¢}. Node £7!(ms) is an a-son of C,(m). It has a label
of the form {}U{V O : (¢« — ©) € I',0 # ¥} for some (a — V) € I'
and ¢ € U. We apply (()) rule to (¢ — ¥) in L(u) and obtain a son
u' of u labeled {$} U{VO :(a — 0©) e T,0 # ¥} U{~p}. We let
Colu') = E71(ms).

— Ifitis (a = {A{~¢: ¢ € &}, T}) then we apply (()) rule to this
formula and obtain a son ' of u labeled

{/\{ﬁgo:goeq)}}u{\/@:(a—>®)ef}

Let us apply (or) rule to one of \/ ©. This way we obtain a part of
a tree with one leaf for every ¥ € 0. This leaf is labeled by

{¢}U{\/®’:(a—>®')EF,@'#@}U{/\{—'@:@E@}}

Let n, be a son of C,(m) labeled by {#/}U{V O’ : (a — O') € T,0" #
0O}. Let {¢} be the label of £(n,). To A{-¢ : ¢ € &} we apply
(and) rule followed by weakening to obtain a node u” labeled by the
sequent:

{0} Uu{\/O':(a— 0)el,0 #0}uU{-yp}
Define C,(u") = n,

0]

The above two observations describe the construction of R completely. All
finite paths of the constructed tree end with axioms. For every infinite path P
we have two possibilities. There may be a p-trace on a path of 7, designated
by the image of P under C,. If it is so then by trace reflection there is also a
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p-trace on P. If there is no p-trace on Co(P) then there cannot be a p-trace
on &(C,(P)) because of the definition of tableau equivalence. Hence there is a
v-trace on Cs(P) which negated in R becomes a p-trace.

This means that every finite path of R ends in a set containing a literal
and its negation and on every infinite path there is a p-trace. R is also a thin
refutation because of the way we have constructed it and the fact that a is a
weakly aconjunctive formula. Hence by Theorem 8.7 the sequent a A —d Fis
provable.

O

Case: ¢ = a A By the induction assumption there are disjunctive formulas

,ﬁ equivalent to a and 3 respectively and such that sequents aba and ﬁl—ﬁ
are provable. Sequent a A fF a A ﬁ is of course provable. By Theorem 8.7
there is a disjunctive formula @ which has a tableau equivalent to some regular
tableau for @ A B By Proposition 8.3 formula & A B is aconjunctive. We can
use Lemma 9.2 to show that sequent & A BI—@ is provable.

Case: ¢ = puX.o(X) This case is more complicated than the case for the
greatest fixpoint. As in that case we have by the induction assumption a dis-
junctive formula a(X) equivalent to a(X ). Unfortunately this time pX.a(X)
may not be a weakly aconjunctive formula hence we cannot use the same ar-
gument as in the last two cases. Let us nevertheless carry on and see where
modifications are needed.

By Theorem 5.4 there is a disjunctive formula @ which has the tableau
equivalent to some regular tableau 7 for pX.a(X ). By Theorem 4.10 the two
formulas are equivalent. We are left to show that pX.a(X)F ¢ is provable
in Kozen’s system. Because pX.a(X) may not be an aconjunctive formula we
cannot just use Lemma 9.2 to pX.a(X ) and ¢. What we can do is to use Park’s
induction rule (P) if we only prove the sequent a(p)t .

This time by Proposition 8.3 we know that a() is an aconjunctive formula
but we meet another obstacle preventing us from using Lemma 9.2. We don’t
know weather a(@) and @ have equivalent tableaux. Indeed it may be the case
that they don’t have equivalent tableaux.

For example consider the formula

o =puXrvY.(a—{XAY,p})

This is not completely honest example, as vY.(a — {X AY,p}) is not a
disjunctive formula, but is good enough to show the problems. There are also
“honest” examples for the same phenomenon.

A tableau for the formula looks as follows (several steps are omitted):



9 PROVABLE EQUIVALENCE 41

{pXvY.(a — {X AY,p})}
{la={XAY.p})}
{p} (X AY}
{la={XAY.p})}

Construction from the proof of Theorem 5.4 gives us a disjunctive formula
» = pX.(a — {p, X}) which has the tableau equivalent to the one presented
above. Let us see how the tableau for vY.(a — {@ A Y, p}) looks like.

{wY.la = {pAY,p})}
{la ={p Y, p})}
{r} {pAY}
{uX.(a = {p, X}),vYi(a = {p A Y, p})}

{(a = {p.X}), (a—={$AY,p})}
iy {2 AYy {X,¢AY]

Observe that this tableau has a modal node with three sons and in the
tableau for @ every modal node has at most one son. Hence this two tableaux
cannot be equivalent.

What we need is some weaker notion of correspondence between tableaux
but it should be strong enough for to give us something like Lemma 9.2. Below
we propose such a notion which we call tableau consequence. This notion will
be defined in terms of games on tableaux. To simplify the definition we will
introduce the notion of a wide tableau.

Definition 9.3 Wide tableauz are constructed according to the same rules as
tableaux but rule (mod) is replaced by (wmod):

{Pp}Uu{VO :(a—=0)el',0 £V} forevery(a—V)el peV¥

wine {VO:(a—0)eT}
(wmod) i)

Compared to (mod) rule (wmod) has new assumptions, one for each action a
such that there is a formula of the form (¢ — ¥) in I'. We will call sons of the
old type (a)-sons. The sons of the new type will be called [a]-sons. Observe
that for any action a we can have at most one [a]-son of a node.

Remark 9.4 For example:

{ar} a2} {aaVas} {51} {62} {B1V B2}
{(a - {a17a2})7 (b - {ﬁ17ﬁ2})}
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is an instance of (wmod) rule. There are two (a)-sons, two (b)-sons, one [a]-son
and one [b]-son.

Rule (mod) with the same conclusion would have only four assumptions,
[a] and [b]-sons would be missing. In rule (wmod) we make explicit universal
requirements of the conclusion. The meaning of (¢ — {aq, as}) is that there
is a state reachable by action a where ay is satisfied (represented by (a)-son
labeled {aq}), there is a state where ay is satisfied (represented by (a)-son
labeled {a3}) and all the states reachable by action a must satisfy aq V ay, this
is represented by [a]-son labeled {ay V as}.

Definition 9.5 Given a pair of wide tableauz(w, W), where W = (T, L) and
W = (T, L), we define a two player game G(W, W) with the following rules.

e The starting position is a pair of the roots of both tableaux.

e If a position of a play is (7, n), both nodes being choice nodes of W and
W respectively, then player I chooses a modal node m near 7 and player
IT replies by choosing a modal node m near n with the property that every
literal and terminal formula from L(m) appears in L(7n).

e If a position is (7, m), a pair of modal nodes from W and W respectively,
then player I can choose a son n of m and player II has to respond with
a son 7 of m of the same kind. That is if n is a (a)-son then 7 must be a
{(a)-son and if n is a [a]-son so must be 7.

The game may end in a finite number of steps because one of the players
cannot make a move. In this case the opposite player wins. When the game
has infinitely many steps we get as the result two infinite paths: P from W and
P from W. Player I wins if there is no u-trace on P but there is a p-trace on
P, otherwise player II is the winner.

Definition 9.6 A strategy S for the second player in the game Q(W, W)is a
partial function giving for a position consisting of two choice nodes (7, n) and
a modal node m near 7 a modal node §(m,n) near n. If (2, m) is a pair of
modal nodes and n is a son of m then the strategy gives us a son S(m, n) of m.
A strategy is called winning for ITiff it guarantees that player II wins the game
no matter what the moves of player I are. This also implies that the strategy
is defined for appropriate positions.

We will say that a wide tableau W is a consequence of a wide tableau W iff
player II has a wining strategy in Q(W, W).

The definition of the game is based on the following intuition about wide
tableaux. Wide tableau for a formula describes “operationally” semantics of a
formula. In order to satisfy formulas in a choice node n we must provide a state
which satisfies the label of one of the modal nodes near n. The sons of a modal
node describe the transitions from a hypothetical state satisfying its label. (a)-
sons describe which a-successors are required and the [a]-son describes what
are general conditions all a-successors must satisfy. In this way tableau of a
formula describes all possible models of the formula.
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The game is defined so that whenever IT has a winning strategy from a
position (7, n) then every model of the label of 7, E(ﬁ), is also a model of the
label of n, L(n). If 7 and n are both choice nodes then a model for L(7%) must
satisfy the label of one of the modal nodes near n. Hence for every modal node
near 7 we must show a modal node near n which label is implied by it. If n, n
are modal nodes then every (a)-son of n describes a state the existence of which
is required in order to satisfy L(n). We must show that the existence of such a
state is also required by z(ﬁ) The [a]-son of n represents general requirements
on states reachable by action a imposed by L(n). We must show that they are
implied by general requirements in z(ﬁ)

Now the following lemma can be proved using exactly the same method as
in Lemma 9.2

Lemma 9.7 Suppose that we have a weakly aconjunctive formula o and a dis-
junctive formula ¢ such that there is a wide tableau for ¢ which is a consequence
of a wide tableau for a. In this case sequent aF 6 is provable.

Proof

Let W, and Ws be wide tableaux for e and 6 respectively and let § be a strategy
for player Il in the game G(W,,, Ws). Instead of having just one mapping C,, we
now define two C, and Cs. They assign nodes of a the wide tableaux for a and
0 respectively to some of the nodes of the thin refutation being constructed.
Instead of condition (%) we have now two conditions:

(1) L(n) = La(Ca(n)) U {= A Ls(Cs(n))}

(*2) Position (Ca(n),Cs(n)) is reachable in game G(W,,, Ws) when II plays ac-
cording to §.

The rest of the argument is very similar. ]

To finish the completeness proof it is enough to show that there is a wide
tableau for @ which is a consequence of a wide tableau for a(@). First we will
need some wide tableaux for pX.a(X) and @. The following lemma shows how
to obtain these.

Lemma 9.8 For a given pair of equivalent tableaux 77 and 73 for formulas ¢
and ¢, respectively, we can construct wide tableaux Wy for ¢1 and W, for g
such that W, is a consequence of W; and W is a consequence of Ws.

Proof
As we will need the result only when one of the formulas is a disjunctive formula
we will give the proof only for this special case. The general argument is very
similar.

Suppose 6 is a disjunctive formula and « is an arbitrary formula. Assume
that we have two equivalent tableaux 7, = (T, L,) and 75 = (Ts, Ls). Let
E . T, — Ts be an equivalence function. We will construct wide tableaux
Wo, Ws (with labeling functions LY and LY respectively) and a strategy for
player IT in the game G(W,, Ws).
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Observe that if we happen to construct W, and Ws up to two choice nodes
(04, 06) and there is a node F'(o,) of tableau 7, labeled by the same set as o,
then we can construct a part of W, up to the nearest modal nodes which will
be exactly the same as the corresponding part of 7,. This is because the same
rules are used in both cases. If moreover LY (0s) = Ls(E(F(0y))) then we can
construct a part of Ws up to the nearest modal nodes which is exactly the same
as 75 from E(F(0y)). This means that we can use equivalence & for finding a
modal node near os for every modal node near o,.

Assume now that we have a position consisting of two modal nodes (o,, 0s).
Assume we have defined F'(o0,) to be a modal node of 7, such that

(#4) La(F(00)) = L5(0s) and Ls(E(F(04))) = L (05)-

First we will find a (a)-son of o, for every (a)-son of 0s. The idea of how it
is done is presented in Figure 8. Let o} be a (a)-son of os. By condition (k)

05 E(F(0q)) F(oq) Oq
L) JLaEF ) = Do)/ La(F(ow)  / L¥(0n) = L(F(0w))
J = = . =
1 (0}) L2 () La(n) La(n)

Figure 8: Finding a (a)-son of o, for a (a)-son of os.

there is an a-son n of £(F(0,)) labeled by L¥(0%). Using equivalence £71 we
obtain an a-son £71(n) of F(0,). Once again using (+*) we get a (a)-son o/, of
0, with the same label as £7!(n). Defining F(o},) = £7'(n) we get the position
consisting of two choice nodes (ol,,0}) which was considered in the previous
paragraph. Hence for every modal node o” near o/, we can find a modal node
of near of and define F(0f) so that (+*) will be satisfied.

Now let us assume that o, is the [a]-son of o, and let of be the [a]-son of
os. The label of o/, is {®n,..., 0} ={VO:(a — O) € L¥(0,)}. The label of
of is {\V ¥} as 4 is a disjunctive formula.

For any modal node r, near o/, we will find a node rs near of so that
condition (##) will be satisfied. The idea is presented in Figure 9.

Let us assume that from o/, we first reduce disjunctions from \/ ®4,...,V ®;.
Hence on the path to r, we have a node labeled {¢1,...,¢;} where each ¢y is
a disjunct form ®;. Now let n, be a a-son of F,(o0,) labeled by {¢1} U {®y :
k =2,...,i}. There is a modal node m, near n, such that on the path from
Ny to my for every k = 2,...,¢ formula ¢y is selected from \ ®; and moreover
for any trace from ¢, to some formula é € L¥(r,) there is the same trace from
¢ to § € Ly(m,) and vice versa. Next we take £(m,) and take ns, the a-son
of £(F(o0y)) on the way to E(my). It is labeled by some ¢ € ¥. The [a]-son
of 05 is labeled by \/ ¥ and there must be a node of below it labeled by {#}.
Now take a modal node ry near of to which leads exactly the same chain of
reductions as that form ns to (m,). If we define F(r,) = m, then we are
back in a position when we have a pair of modal nodes (r,,rs) for which (%)
holds and we can repeat the procedure.
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Ou F(oq) E(F(0q)) 05
[a] a a [a]
o N ns (v} o A%
¥1
tonik g, o (v}
Pi
To My E(my) rs

Figure 9: Finding rs for 7.

This describes the strategy for player Il in the game G(W,, Ws). From the
fact that £ is an equivalence it easily follows that this strategy is winning.

As the construction of W, and Ws did not depend on the strategy a similar
argument shows that W, is a consequence of Ws. O

Lemma 9.9 Let W, W be a pair of wide tableaux for pX.a(X) and @ respec-
tively constructed from 7 and 7 as in the Lemma 9.8. There is a wide tableau
W for a(p) of which W is a consequence.

Proof

Let L and L by labeling functions of W and w respectively. Let § be a winning
strategy in the game Q(W, W). There is a very close match between W and a
wide tableau for a(uX.a(X)) as the only tableau rule applicable to {uX.a(X)}
is (p). Let us denote by W also the wide tableau for a(pX.a(X)).

By assumption ¢ and a(X) are disjunctive formulas. We will use notation
BluX.a(X)/¢] and Blp/pX.a(X)] to stand for the obvious replacement, it will
be always the case that no free variable in puX.a(X) or ¢ is bound by the
context 3.

From Proposition 8.2 we obtain

Observation 9.9.1 For every node # of W, every formula in f(ﬁ) will be
either a disjunctive formula or of the form §(¢) with S(X) being a disjunctive
formula.

Recall that 7 was constructed from 7 using Theorem 5.4. Hence we can as-
sume that conditions described in Observation 5.5.1 are satisfied. Fasy analysis
of the construction from Lemma 9.8 gives us the following.

Observation 9.9.2 For any two positions (m,m), (7, n) reachable in the game
Q(W, W) when II plays according to S we know that whenever L(7) = L(7)
then L(m) = L(n). Moreover if m,n are both choice nodes with different labels
then the labels of modal nodes near m are different from the labels of modal
nodes near 7.
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The above observation will be quite important because it allows us to control
contractions which take place. Instead of using this observation we could allow
tableaux labeled with multisets.

To define a strategy from a position (m,m) we will use some additional
information about the position. This information will come from the three
functions p(m), nd(m) and @(ﬁz) The first function assigns a priority, that is
a natural number or oo, to every formula in L(#). The functions nd(m) and
@(ﬁz) are partial functions which assign nodes of W and w respectively to
finite priorities from the image of p(i), i.e., from the set {g € N : p()~(q) #
D).

This situation is presented in Figure 10. We have a position (/m,m) in the
main play of the game Q(W, W) and for every natural number in the image of
p(7) we have a sub-play of G(W, W) in a position given by functions @(ﬁz) and
nd(m). To make a move in the main play we consult strategy & for sub-plays.

w w
nd () (1) nd () (1) nd (i) (k) nd () (k)
w w W w

Figure 10: Auxiliary functions

For every considered position (m,m) we will have three conditions:
(i) for any ¢ € A in the image of p(in), L(nd(m)(q)) C L(in),
(it) for any o € L(m), there is ¢ so that ¢ € L(nd(m)(q)).

(i21) for any ¢ € N in the image of p(m), strategy S is defined for the position
(nd(m)(q), nd(m)(q)).

The idea of a strategy in Q(W,W) is to consult § in every step and the
above three conditions allow us to do this (see Figure 11). Whenever a position
is a pair of modal nodes (7, m) and I chooses a son of m, this son is designated
by some formula £ € L(m). By condition (ii) we know that thereis a d € A and
a son of nd(m)(d) designated by £. By (ii7) we can take an a-son of @(ﬁz)(d)
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which is a response of § to choosing this son. By (¢) we can find an appropriate
son of m. The scheme of the reasoning in case when a position is a pair of choice
nodes is similar. In what follows we will have conditions: I1, 12, I3 for pairs
of modal nodes and conditions: I1’,12’, I3’ for pairs of choice nodes, which are
precise formulation of (), (4¢), (¢4¢) for appropriate cases.

We will describe the strategy for player II in a sequence of observations.
First observation shows how we can define auxiliary functions for sons of m,
if only auxiliary functions for m are defined, so that the pair (7, m) satisfies
some conditions which are precise formulation of conditions (¢), (¢) and (#i7).

Observation 9.9.3 Suppose the game is in a position (7, m) with both nodes
being modal nodes. Let us assume that the following conditions hold:

I1 For every g € N, p(i) ™ (g) C L(nd()(q)) € U{p()"1(¢') : ¢’ < q},

12 L(m) € Uyen L{nd(m)(q)) U{¢[pX.a(X)/@] : v € p~H(m)(0)}

I3 for any ¢ € N in the image of p(m), strategy S is defined for the position
(nd(m)(q), nd(1m)(q))-

For every son 7 of i we can define p(7) and nd(7) so that:

Il For every ¢ € N in the image of p(n): p(n)~'(q) = E(@(ﬁ)(q))

Proof: For every formula a € f(ﬁ) there is the least priority formula
3 € L(7) which reduction gave us a. We let p(7i)(a) = p(i)(3).

To define nd(ii) we have two cases depending on whether 7 is a [a]-son or a
{a)-son of m. In the first case, for every ¢ in the image of p(77) we let @(ﬁ)(q)
to be the [a]-son of nd(m)(q).

In the second case the label of 7 is of the form

WIU{\/0:(a— 0)¢c L(),0 # ¥}

for some (a — V) € Qﬁ”o and ¢» € V. Let d = p(m)((a — ¥)). For every
priority ¢ # d we let nd(7)(q) to be the [a]-son of nd(m)(q) if such exists. If
p(n)(¢) = d we let nd(7)(d) to be the (a)-son of nd(m)(d) labeled with {7}.
O

Let us consider a situation when a position of the game consists of a pair of
modal nodes (7, m) and player I chooses a [a]-son.

Observation 9.9.4 Assume the game is in the position (m,m) as described
in Observation 9.9.3, that is, conditions I'l, I2, I3 hold and auxiliary functions
for all the sons of m are defined accordingly. Let n be the [a]-son of m and 7
be the [a]-son of m. For the pair (7,n) we can define nd(7%) so that conditions
117, 12", 13" will be satisfied where:

12 L(n) C Uyen L(nd(7)(q)) U {$[nX.a(X)/] : ¥ € p~H(71)(o0)},

I3' For any ¢ € N in the image of p(7), nd(7)(q) = S(nd(m)(q), nd(7)(q)).
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Proof: Node n is labeled by
{\/ O:(a— 0)e L(m)}

For every VO € L(n) by 12 either there is the lowest priority ¢ such that
(a — ©) € L(nd(n)(q)) or (a — ©)[@/uX.a(X)] € L(7). In the second case
clearly V O[p/pX.a(X)] € L(n) and p(n)((a — O)[p/pnX.a(X)]) = co. Hence
I2" and I3 are satisfied.

If ¢ € NV then we let nd(72)(g¢) to be the [a]-son of nd(m)(g). This establishes

2" and I3’ if only ¢ is in the image of p(7).

By I3 there is [a]-son of nd(i)(¢). Let us take the unique W such that (¢ —
U) € L(nd(m)(q)). ‘We know by I1 that V¥ ¢ L(# n). Wp(r)(VV¥) =4q¢ <q
then (a — W) € L(nd()(¢')), hence the [a]-sons of nd(i)(q) and nd( )q')
have the same labels. By Observation 9.9.2 [a]-sons of nd(m)(¢) and nd(m)(q’)
have the same labels. This means that (¢« — ©) € L(nd(m)(q’)), contradiction
with the choice of ¢. [

Observation 9.9.5 Assume the game is in the position (7, m) as in Obser-
vation 9.9.3. For any (a)-son n of m of we can find (a)-son 7 of m and define
nd(7) so that for obtained pair (%, n) conditions [1’, 12/, I3 are satisfied.

Proof: Let n be a son of m labeled by

{5}U{\/®:(a—>®)€L(m),G)7EE}

for some (¢ — =) € L(m) and £ € Z. We know by I2 that either there is the
smallest d such that (¢« — Z) € L(nd(m)(d)) or (a — Z)[g/pX.a(X)] € L(m).

In the second case take a son of m labeled

{€le/uX.a(X)PU L\ 0 (a — ©) € L(m),0 # Z[3/uX.a(X)]}

and we reason as in the observation above.
The case when d € NV is presented in Figure 11. We used abbreviations

I, = {\/O:(a—0)€L(m),0+E}
Lo = {VO:(a—0) GL(nd(ﬁz)(d)),G;AE}
I~ = {\/O:(a—0)e L(7),0# ¥}

Let us describe this picture. By 2 there is an (a)-son n’ of nd(m)(d) labeled
{3 U{\0:(a— 0) € Lnd(n)(d)).6 # =}

By I3 S(nd(in)(q), ') is defined. Let (a — ¥) € L(nd(/)(d)) and ¢ € ¥ be
such that S(nd(m)(q),n’) is labeled by {¥}. By I1 we can choose a (a)-son 7
of m labeled

{v}U{\/O:(a—0)€ L(7).0 £ ¥}
For every priority ¢’ € A in the image of p(77) we let nd(7)(¢’) to be the [a]-son
of nd(m)(¢') if ¢ # d and let nd(%)(d) = n’ if d is in the image. This guarantees

condition 73'.
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m nd()(d) nd(m)(d) i
N

n 7l S(nd(m)(q), '\ 7
{5} Ul {5} U Fnd(ﬁ@)(d) {1/)} {1/)} U Fﬁ@

Figure 11: Finding 7 for n.

We would like to show condition I2" in particular for £ € L(n). Let ¢ =
p(n)(¢). If ¢ = d then £ € L(nd(R)(d)).

It may happen that ¢ < d. This may be because of two reasons, either: (1)
p(m)((a — ¥)) = ¢ or (2) there is (a — {¥}) € L(i) such that p(im)((a —
{01)) = g and {1} £ V. o

In the first case we have that (¢ — W) € L(nd(m)(d)) and (a« — ¥) €
i(@(ﬁz)(q)) By Observation 9.9.2 this means that nd(m)(d) and nd(m)(q)
have the [a]-sons with the same labels hence (¢ — Z) € L(nd(m)(q)), contra-
diction with the choice of d.

In the second case we know that there is unique (a)-son of nd(m)(q) and
by Observation 9.9.2 it has the same label as n’. In this case it is just {¢} and
the [a]-son of nd(m)(q) is also labeled by {£}.

This shows that £ € L(nd(n)(¢)) for some ¢ in the image of p(n). The
argument for any other \/ © € L(n) is similar as in the previous observation.
U

Next observation shows how to define auxiliary functions for a modal node
near a choice node.

Observation 9.9.6 Suppose 7 is a choice and p(n), nd(7) are defined so that
conditions [1’, I3’ are satisfied. For any modal node my near n we can define
p(71), nd(iy) and nd(inq) so that I1 and I3 are satisfied and for every ¢ € V/
in the image of p(mq), nd(m1)(q) = S(nd(m1)(q), nd(n)(q)).

Proof: For every formula 6 € E(ﬁzl) there is the smallest priority formula
v € L(7n) from which there is a trace to 6. We let p(iy)(8) = p(7)(y) with
one exception when p(7)(7y) = oo and formula @ was reduced on a trace to .
In this case p(72)(6) will be the smallest unused priority ¢’ that is the smallest
number not in the image of p(7%). This exception is needed to establish /2.

Let us define 7;3(7%1) If the fresh priority ¢’ was introduced then for
nAd(ﬁzl)(q’) we take a modal node near the root of W to which leads the same
sequence of reductions as the one applied to % on the trace to 6. For any other
priority ¢ in the image of p(%2) we know by I'l’ that there is exactly one formula
a € L(7) of this priority and {a} = L(nd(#)(q)). Take a modal node iy near
@(ﬁ)(q) to which leads the same chain of reductions as that applied to a on
the path to mq. Let nd(mq)(q) = m;.

We let nd(mq)(q) = S(@(ﬁzl)(q), nd(n)(q)) for any ¢ for which right hand
side is defined. If ¢’ is freshly introduced priority then we let nd(mq)(q¢’) =
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S(nd(i1)(q'), 7) where 7 is the root of W. Clearly this way we satisfy /3 and
the additional requirement of the observation.

We now check whether condition I1 is satisfied. Any formula 1 € L(my)
with priority ¢ has a trace from some formula of priority ¢ in L( ). Hence
W € L(nd(i1)(q)) by definition of nd(m1)(q ). For any ¢ € L(nd(in1)(q)) there
is a trace to it from the unique formula in L( ) with priority ¢. By definition
¢ € L(7nq). It may nevertheless happen that p(iq)(¢) < ¢. O

The last observation considers a situation when we are given a pair of choice
nodes (7,n) so that conditions I1’, 12" I3’ are satisfied. It will describe a re-
sponse of player IT to choosing a modal node near n by player I

Observation 9.9.7 Let (77, n) be a pair of choice nodes, let p(7), nd(7), @(ﬁ)
be defined and let conditions 11/, I2', I3’ be satisfied. For any modal node m;
near 7 we can find a modal node my near n so that for the pair (mq,m1)
conditions I1,12,13 will be satisfied and traces from (72, n) to (/mq,my) will
be preserved which means that whenever there is a trace from a € L(n) to
B € L(my) and X is the smallest variable with respect to <.x.4(x) ordering
which was regenerated on the trace then either:

o p(n)(a) > p(m1)(3) or

e p(n)(a) = p(m1)(B) = q and when ¢ € N there is a trace from «a €

L(nd(%)(q)) to B € L(nd(m1)(q)) or when ¢ = co we have a trace from

alp/puX.a(X)] € L(n) to Blp/pnX.a(X)] € L(71). In both cases X is the
smallest regenerated variable.

Proof: Definitions of p(m4), nd(my) and nAd(ﬁ) are given by Observa-
tion 9.9.6. For convenience we extend the definition of nd(7). For the smallest
priority ¢’ not in the image of p(7) we let nd(7)(¢") to be the root of W

We will construct a path from n to the desired my. For n and every con-
sidered descendant o of it we will define function p(o). For every 5 € L(n)
condition 12" allows us to define p(n)(3) as the smallest priority ¢ for which
B € L(nd(n)(q)) or oo if there is no such ¢. We will assume that for any
considered node o and any ¥ € L(o):

I4" 1f p(o)(v) = oo then ¥[@/pX.a(X)] appears on the path from 7 to my
otherwise p(0)(¢) = ¢ € N and ¢ appears on the path from nd(7)(¢) to

nd()(q)

Suppose we have constructed the path up to a node o and some formula
is reduced in o.

o If ¢ is not a disjunction then there is only one son o’ of o and let ¢’ be
the result of reducing . For every formula g € L(o'), f # o' we let
P )(B) = po)(B). 1t ' & L(0) then let p(o')(1) = p(o)(¥) otherwise
let p(o")(¢") = min{p(0)(¢), p(0)(¢"')}. One exception to this rule is when
P = pX.a(X) and p(o)(1p) = oco. In this case the result of reduction is
a(X) and we let p(o)(a(X)) to be the smallest unused priority ¢'.
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o If v = a VvV [ then o has two sons 01,0, and we have to choose one of
them. If p(o)(®0) = oo then ¥[p/puX.a(X)] is on the path from 7 to
otherwise 1 appears on the path from nd(7)(p(0)(1)) to nd(m1)(p(0)(¥)).
We choose a son of o with the same disjunct as the one appearing on the
appropriate path. For chosen o' we define p(o’) as in case of unary rule.
It should be easy to check that for so defined o' and p(o’) condition T4’
holds.

Repeating this procedure we arrive at a modal node m; near n. We know
that conditions Il and I3 hold. Let us now check condition I2. Suppose
¥ € L(my) and ¢ = p(mq)(?). Because my is a modal node % may be reducible
only by application of (mod) rule. By I4'if ¢ = oo then [3/uX.a(X)] € L(iny)
otherwise ¢ € N and ¢ € L(nd(my)(q)). There is one subtle point here.
We have defined nd(7mq)(g) for all priorities in the image of p(7) not paying
attention to the fact that there may be no formula of a given priority in L(m4).
Fortunately by Observation 9.9.2 we may assume that for any priority ¢ in the
image of p(7) there is a formula of priority ¢ in L(7)

Finally it is easy to see that if in our procedure we choose formulas appro-
priately then trace preservation will be guaranteed. []

To describe the strategy for the player II completely it remains to define
auxiliary functions for the root 7 of W. Node 7y is labeled by {a($)} and we
let p(7o)(a(®)) = co. Functions @(%) and nd(7y) are totally undefined.

We must show that we have defined a winning strategy for player IT in the
game G(W,W). Assume conversely that there is a way for I to win against our
Just _described strategy. We will show that I can win against & in the game
GOW,W). -

Let us examine the play in the game G(W, W) where II plays according to
the strategy we have just defined and I wins. For a position (/m,m) of the play
we will have a sub-play of the game Q(W, W) for every natural number in the
image of pﬁ%) For such a number ¢ the corresponding sub-play will be in the
position (nd(7)(q), nd(7)(q)).

Game Q(W, W) starts in the roots of both tableaux and as there is only one
formula and it has priority oo, we have no sub-plays.

Suppose the play is in a position (7, m) consisting of two modal nodes. Now
player I chooses a son n of m and II responds with the son 1 of m of the same
type according to Observations 9.9.4 and 9.9.5. For every priority ¢ € N in the
image of p(7) we have by I3’ that nd( )Nq) = S(nd( )(q), nd(7)(gq)), so each
sub-play also advances by one step. No new priorities are introduced. Some
sub-plays may be abandoned because corresponding priorities have disappeared.

When the play is in a position (7,n) consisting of two choice nodes then
player I chooses some modal node m near 7 and II responds with a modal node
m near n according to Observation 9.9.7. For every priority ¢ € A/ in the image
of p(72) we have by Observation 9.9.6 that nd(i)(q) = S(nd(im)(q), nd(%)(q)).
New priority may be introduced at this step and this tigers a new sub-play.

Now suppose that I won. The above observations show that player II can
always respond to a move of player I'if IT plays according to the strategy. Hence
the play was infinite and we have as the result two paths: P of W and P of W.
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Because I won there is a p-trace T on P and there is no u-trace on P.

Condition 12" allows us to define for every choice node n of P a priority
p(n)(T(n)). By definition of the strategy this priority can only decrease so
from some point, say node ng, it must be constant, say equal ¢. Let ng, nq,...
be successive choice nodes on P and 7g, 71, ... corresponding choice nodes of
P. For any i € V' we have by 12’

T(n)[p/pX.a(X)] € z(ﬁz)v T(nit1)[g/pX.a(X)] € z(ﬁﬂ_l) if g=00 (2)

and
T(n;) € Lind(i)(q)), T(nis1) € Lind(ii1)(g) ifq €N (3)

By trace preservation, in both cases the smallest variable with respect to SMX.&(X)
ordering regenerated on the trace is the same as the smallest variable regener-
ated between T'(n;) € L(n;) and T(nit1) € L(ni41).

In case ¢ = oo this considerations show that there is a u-trace on P.

In case ¢ € N we know by (3) that there is a u-trace on the path P’
of W designated by {nd(%;)(¢q) : © = 0,1,...}. On the other hand by I/,
L(nd(#;)(q)) € L(m) and as there is no p-trace on P the unique trace on the
path P designated by {@(ﬁz)(q) ;1€ N'}is not a pu-trace. But a pair of paths
P and P’ is the result of the sub-play for priority ¢. This is a contradiction
because we have assumed that § is winning.

O

Summarising the case of the proof for ¢ = pX.a(X). By induction assump-
tion we have a disjunctive formula a(X) equivalent to a(X) and know that
a(X)Fa(X) is provable. By Theorem 5.4 we obtain a disjunctive formula @
which has a tableau 7 equivalent to some regular tablean 7 for pX.a(X). By
Theorem 4.10, formula @ is equivalent to . By Lemma 9.8 there are wide
tableaux: W for pX.a(X) and W for @ such that W is a consequence of W and
vice versa. By Lemma 9.9 W is a consequence of W, a wide tableau for a(g).
Hence, as the consequence relation is transitive, Wis a consequence of W. Now
by Proposition 8.3 a(@) is a weakly aconjunctive formula and @ is by definition
a disjunctive formula. By Lemma 9.7 the sequent a(®)F ¢ is provable. Then
pX.a(X )k @ is provable by rule (P) and ¢t puX.a(X ) is provable by induction
agsumption, hence the sequent ¢t is provable.

This completes the proof of Theorem 9.1 and the proof of the completeness
of Kozen’s axiomatisation for the p-calculus.
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