Deciding Nondeterministic Hierarchy of
Deterministic Tree Automata

Damian Niwinski 12

Institute of Informatics
Warsaw University
Warsaw, Poland
Igor Walukiewicz 3
LaBRI

University of Bordeauz I
Bordeauz, France

Abstract

We show an algorithm which, for a given deterministic parity automaton on infi-
nite trees, computes the minimal Mostowski (or Rabin) index of a nondetermin-
istic automaton recognizing the same language. This extends a previous result of
Urbanski on deciding if a given deterministic Rabin automaton is equivalent to a
nondeterministic Biichi automaton. The algorithm runs in the time of verifying the
non-emptiness of nondeterministic parity automata.

Key words: Parity tree automata, Mostowski index, decidability.

1 Introduction

Finite-state automata running in infinite time constitute an automata-theoretic
counterpart of many logics relevant to verification, such as p-calculi, temporal
logics, and the monadic second-order logic. For logics referring to branching
time, automata on infinite trees seem to be optimal choice. A well-known
paradigm translates a formula into an automaton recognizing its tree models,
thus reducing model-checking to the non-emptiness problem for tree automata.
The semantical complexity of temporal formulas is reflected by the struc-
ture of automata, in particular by the acceptance condition. Today the most

L Supported by the European Research Training Network GAMES. The first author was
additionally supported by the Polish KBN grant No. 4 T11C 042 25.
2 Email: niwinski@mimuw.edu.pl
3 Email: igw@labri.fr
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

4 VA4 VyV LINJIAL

common variant is the parity condition, which reveals subtle correspondences
between automata, the pu-calculus, and games [3]. Parity automata can be or-
ganized into a hierarchy according to their Mostowski indices* (see Figure 1 be-
low). Understanding the structure of this hierarchy helps us to understand the
trade—off between expressiveness and efficiency in the model-checking method.

It is known that the hierarchy of Mostowski indices is strict for all kinds
of tree automata: deterministic [18], nondeterministic [10], alternating [1]
(building on [2,7]), as well as the so-called weak alternating automata [9].
However, very little is known about the effectiveness of these hierarchies, that
is, whether we can compute the minimal Mostowski index of a tree language,
starting from any given automaton.

The problem appears somewhat easier if the input automaton is deter-
ministic. Deterministic tree languages form a proper, but effective, subclass
of all recognizable tree languages (we can determinize an automaton in EX-
PTIME [13], whenever possible). Computing the level in the deterministic
hierarchy can be accomplished by reduction to an analogous problem for word
automata [12], see Remark 2.4 below. Note however that the level of a deter-
ministic language in a nondeterministic hierarchy can be arbitrarily smaller
than in the deterministic one® .

Concerning nondeterministic hierarchy, Urbanski [17] showed how to de-
cide if a given deterministic Rabin automaton is equivalent to a Biichi automa-
ton (possibly nondeterministic). In the present paper we extend this result
by showing an algorithm which, for a given deterministic parity automaton,
computes its exact Mostowski index in the nondeterministic hierarchy. To
complete the picture, note that the relation of deterministic languages to al-
ternating hierarchy is effective for easy reasons, because they are all co-Biichi,
hence on the level (0, 1) of the alternating hierarchy.

To show our result, we refine the technique introduced in [12], where we
solved the problem for tree languages VL, where L C 3¢ and ‘V’ is under-
stoodd in the CTL manner (that is, ¢t € VL if the w-words read along all paths
of ¢t are in L). There, computing the nondeterministic index of the tree lan-
guage VL reduced to detecting some special patterns in a deterministic (word)
automaton for L, which we called flowers.

An arbitrary deterministic tree language can be characterized quite sim-
ilarly if we take into consideration both labels and directions of paths (e.g.,
for binary trees, the alphabet of paths becomes ¥ x {l,7}). It turns out that
the nondeterministic index of the tree language depends again on the pres-
ence of some flower-like patterns in the deterministic automaton for the path
language.

1 Here we credit A. W. Mostowski, who first considered [8] tree automata with such ac-
cepting condition. The Mostowski indices refine the Rabin indices [14].See [16] for relations
between various kinds of automata.

5 Tt follows easily from the fact that all recognizable word languages can be recognized by
Biichi automata, while the deterministic hierarchy is infinite [18].

2

4 VA4 VyV LINJIAL

Searching for flowers in a deterministic word automaton can be carried
on in polynomial time, however the construction also requires detection of
unproductive states of the input tree automaton. This amounts to solving
the non-emptiness problem, the question whose exact complexity is currently
unknown (estimated by UP N co-UP [5]).

2 Basic notions

Automata on infinite words.

A finite nondeterministic parity automaton on infinite words is presented
by A = (X, Q, qr, Tr, rank), where ¥ is a finite alphabet, @ is a finite set of
states with an initial state qr, Tr C @Q X X X @ is a set of transitions, and
rank : @ — w is the ranking function. A transition (g, a, p) is usually written
q = p.

A run of an automaton A on an infinite word u € ¥“ can be presented
as an infinite word p € @“ such that p(0) = ¢;, and p(m) = p(m + 1),
whenever u(m) = a, for every m < w. As usual, the run p is accepting
if lim sup,,_,, rank(p(n)) is even; in other words, the highest rank repeating
infinitely often is even. The language L(A) recognized by A consists of those
words in X“ for which there exists an accepting run.

Automata on infinite trees.

A full binary tree valued (labeled) in a finite alphabet ¥ is a mappings
t:{l,r}* = 3, we denote the set of all such trees by Tx.

A nondeterministic parity tree automaton A = (X, Q, qr, Tr, rank) is like
an automaton on words except for that 7r C @Q x X x Q X Q. A run of A
on a tree t € T is itself a Q—valued tree p : {l,r}* — @ such that p(e) = ¢,
and, for each w € dom(p), {p(w), a, p(wl), p(wr)) € Tr, whenever t(w) = a.
A path in p is accepting if the highest rank occurring infinitely often along it
is even. More formally, for a path P = pop; ... € {l,7}¥ , this means that
limsup,,_, ., rank(p(pop1 -..pn)) is even. A run is accepting if so are all its
paths. The tree language T'(A) recognized by A consists of those trees in T
which admit an accepting run.

Deterministic automata.
An automaton on words, or on trees, is deterministic if Tr is a partial
function from @ X ¥ to @, or to @ X @, respectively. It is well-known that a
parity word automaton can be always converted into a deterministic one but
a tree automaton in general cannot. We call a tree language deterministic if
it is recognized by a deterministic parity automaton.
It will be profitable to identify a deterministic tree automaton A as above
with a (deterministic) automaton on infinite words A4, = (Xx{l,r}, Q, qr, Try,, rank),

3

4 VA4 VyV LINJIAL

where
Try={0% a1, 03 ¢ (¢.0,q1,) € T}
A labeled path in a treet : {l,7}* — ¥ is an infinite sequence (o¢py), (01p1), (02p2) - - -,
such that o; € &, p; € {l,r}, and t(po ... p;_1) = 0; (so in particular t(e) = o).
It should be clear that A recognizes a tree t if A,, recognizes all labeled paths
of t. Conversely, any deterministic word automaton over ¥ X {/,r} induces a
(deterministic) tree automaton over 3 in the obvious manner. In the sequel
we will usually not distinguish notationally between A and A,,, but it will be
clear from the context if we view it as an automaton on words or on trees.

Hierarchy of Mostowski indices

The Mostowski index of a parity automaton A is the pair (min (rank(Q)),
max (rank(Q))). We let (v,x) C (//, ') if either // < 1 and k < k' or + = 0,
J/ =1, and kK +2 < k'. It is easy to see that, if (¢,k) C (/,«') then any
automaton of index (¢, k) can be transformed into an equivalent automaton of
index (', k') by modification of ranks. Therefore, for any type of automata,
the Mostowski indices induce a hierarchy of (tree) languages depicted on the
Figure 1. (Without loss of generality we may assume that min(rank(Q)) €
{0,1}; otherwise scale down the rank by rank(q) := rank(q) — 2.)

(1,2k 4 2) (0,2k 4 1)

(1,4) (0,3)
(1, 3)>< (0,2)
(1, 2)>< (0,1)
(1, 1)>< (0,0)

Fig. 1. Hierarchy of Mostowski indices.

4

4 VA4 VyV LINJIAL

It is known that the hierarchy of Figure 1 is strict for deterministic au-
tomata on words and trees ® [18], and for nondeterministic automata on trees [10]
(also for alternating automata which we do not consider here). We recall the
examples from [10,11], because they are related to our proof.

For n € N, let M,, be the set of trees ¢ over alphabet {0,1,...,n}, such
that for any path u € {l,7}* of ¢, limsup,_, . t(u;) is even. Let N, be defined
similarly, with ‘even’ replaced by ‘odd’. We call a tree language L, t-n-feasible
if there is a nondeterministic parity automaton of index (¢, n) recognizing L.
Otherwise L is t-n-unfeasible.

Theorem 2.1 ([10,11]) For n € N: (i) M, is 0-n-feasible but 1-(n + 1)-
unfeasible; (ii) Ny is 1-(n + 1)-feasible but 0-n-unfeasible.

Flowers
For an integer k, a k-loop in a deterministic word automaton A is a path
V1,...,0; = v; in the automaton graph (with j > 1), such that max {rank(v;) :

i=1,...,7} = k. Given integers m < n, a state g € @ is a m-n-flower in A if
for every kK = m, ..., n, there is, in the graph of A, a k-loop containing q. We
have introduced this concept in [12], together with a rank lifting operation on
automata, 1% (for 4 € N), which does not change states and transitions of an
automaton, but may, for some states, shift ranks smaller that 7 (maximally to
i+ 1). We need not the details of this operation here, so we only summarize
the results to be used.

Lemma 2.2 ([12]) For a deterministic word automaton A, let B = A 1911
... 1. Then L(B) = L(A) and moreover if a state q has the priority m < i in
B then q is a m-i-flower in B.

We will use the following consequence of this lemma.

Lemma 2.3 Ifn is greater than all ranks of the states of A then the mazimal
rank in any strongly connected component (SCC) of A 1941 ... 1" is n or
n—+ 1.

Proof. By the property of 1%, it can be maximally n+ 1. Now if a state ¢ has
rank(q) =1 < n in A 11! ... 1" then by the previous lemma it lies on some
n-loop, which is of course contained in the SCC. O

Remark 2.4 In [12] we have also showed how to determine the determin-
istic Mostowski index of a word automaton, by analyzing the flowers in the
T-modified automaton. Together with the aforementioned correspondence be-
tween deterministic tree automata and word automata for labeled paths, this
implies a procedure to determine the level of a deterministic tree language in
the deterministic hierarchy. As we have also showed [13] how to transform a

6 Strictly speaking, Wagner [18] did not considered trees, but the result follows easily from
the word case; it also follows from [10] because the examples there are deterministic.

5

4 VA4 VyV LINJIAL

nondeterministic tree automaton into a deterministic one whenever it is pos-
sible (within the EXPTIME bound), the case of deterministic hierarchy can
be considered settled.

3 Forbidden flower patterns

Now for each Mostowski index (¢,n), we will define a flower-like pattern
P(1,m), that is a family of subgraphs, which may occur in a deterministic
word automaton over ¥ x {l,r}. Recall that, by the previous section, such an
automaton corresponds to a tree automaton over ¥. Considering the indices
(1,n) and (0,n — 1) as dual, the idea is to show that if A contains a P(i,n)
pattern then 7'(A) cannot be recognized by a nondeterministic tree automaton
with the index dual to (¢, n). The patterns will be constructed in regular way
starting from P(0,2) and P(1,3), but the basic cases are somewhat different.

We will use letters a, b, c,... for states. Let a~»b be a short notation for
a path a = vy,...,v; = b in the automaton graph. (We always assume that

j > 1, i.e., the path goes through at least one edge.) We will write a &b if
moreover this is a k-path, i.e., max {rank(v;) : i =1,...,j} = k. So a path
ataisa k-loop.

We say that two paths @ = vq,...,v; =band a = w,...,w, split at a if

there exist two transitions a 23 v, and a % w,, such that ¢ = o', but p # p'.

3.1 The (1,2) case

A P(1,2) pattern consists of a point a and two loops a 3% a and 0 3% ¢

(they need not split):
(8D

Note that, at the figures, we present patterns with the smallest possible
ranks, keeping in mind that shifting them by the same even number produces
a pattern of the same class.

3.2 The (0,1) case

A P(0,1) pattern consists of two loops a %23% ¢ and @ 3% @ which split at a:

0 @Ogal

(Of course the picture represents only one of the two symmetric cases.)

3.3 The (0,2) case
A P(0,2) pattern consist of three loops a 03 a, a 3 a, and a 3 a, where

the first two split at a (notice that the third one need not split with any of

them).
2
-y
o' O

3.4 The (1,2,3) case

A P(1,3) pattern is a bit more complicated:

2 O 3
/N
O O

It can be presented by points a, b, ¢, d (where a and b need not be different),

together with a loop a 3% ¢ and the paths a~b, b~ ¢, b ~ d, ¢ ~ a, and

d ~ a, such that the composition b ~» ¢ ~» a~b forms a 2 + 2a-loop, the

composition b ~ d ~ a~b forms a 3 + 2a-loop, and these two loops split at
b.

3.5 The (1,n) case, n >4

A P(1,4) pattern is obtained from a P(1,3) pattern as above, by adding a
4 + 2« loop in a:

AN
O

More generally, for n > 4, a P(1,n) pattern is obtained from a P(1,n—1)
7

4 VA4 VyV LINJIAL

pattern (with a shifting parameter 2«) by adding a loop a 3% a.

3.6 The (0,n) case, n >3

Similarly to the previous case, a P(0,3) pattern is obtained from a P(0,2)
pattern by adding a 3 + 2« loop in a:

More generally, for n > 3, a P(0,n) pattern is obtained from a P(0,n —1)

pattern (with a shifting parameter 2«) by adding a loop a "3 a.

A state ¢ of automaton A is productive if A accepts some tree from ¢, that
is T(A,) # 0, where A, is A with the initial state replaced by ¢. A pattern is
productive if so are all states occurring in it (that is, the states distinguished
by the construction, as well as the states on the paths). Let (¢, n) denote the
index dual to (¢, n).

We are ready to state the following.

Theorem 3.1 If a deterministic tree automaton A contains a productive (1, n)
pattern (v € {0,1}) then T(A) cannot be recognized by a nondeterministic tree
automaton of index (¢, n).

Proof (Idea) We follow a general method of the proofs of hierarchy results
previously explored in [10] and in [12] which in turn followed the original idea
of Rabin [15], who first showed that (in our notation) M; cannot accepted by
an automaton of index (1, 2).

Given a hypothetical automaton of m states, one develops the forbidden
pattern into a tree in order to “fool” the automaton. Productiveness is used to
complete the non existing subtrees. The argument is recursive starting from
the levels (0,3) and (1,4), but the basic levels require some special construc-
tions. O

4 On the positive side

A more difficult direction is to show that if an automaton .4 does not contain
a forbidden pattern then T'(A) can indeed be recognized by a nondeterministic
automaton of the required index (which is in general smaller than the index

of A).

4 VA4 VyV LINJIAL

Theorem 4.1 If a deterministic tree automaton A does not contain any pro-
ductive (¢t,n) pattern (v € {0,1}) then T(A) is recognized by a nondetermin-
istic tree automaton of indez (1, n).

The proof splits into several cases depending on (¢, 7). A typical argument
will consist in decomposing an automaton A (viewed as automaton on words)
into strongly connected components, and applying inductive arguments to the
sub-automata induced this way.

In what follows we make a proviso that the automaton A has only produc-
tive states; therefore all patterns in consideration are also productive. Recall
that we call a tree language (¢, n)-feasible if it can be recognized by a nonde-
terministic automaton of index (¢, n).

4.1 The (0,1) case
Lemma 4.2 If there is no P(1,2) pattern in A then T(A) is (0, 1)-feasible.

Proof. It follows from the Flower Lemma of [12] that A is a (deterministic)
(0, 1)-automaton, hence A itself suffices. O

4.2 The (1,2) case
Lemma 4.3 If A does not have P(0,1) pattern then T(A) is (1, 2)-feasible.

Although this case was already settled in [13], we sketch another proof
here, which will serve as the basis of inductive argument.

Proof (Sketch) Let A = A 191! ... 4" where n is an odd number greater
than the biggest rank in A.

Given a tree t in T'(A), there is a unique run of A on t. This defines parts
of the tree accepted by different strongly connected components (SCCs) of A.
We can have an automaton without acceptance conditions that calculates in
each node the state of the unique run of A on ¢. The automaton we want to
construct will be a product of this automaton and (1,2) automata, one for
each SCC of A. The role of the latter automata will be to check if all paths of
the run of A that stay forever in a given SCC are accepting. The composition
of these automata will give us (1,2) automaton recognizing 7'(.A).

Consider first an SCC, C' say, with maximal rank n. We know that n is
odd and that in C there is no P(0,1) pattern. This means that there is no
state in C' of rank < n with arrows on [and r directions leading to C. If there
were such a state then in one direction we would have a loop on n — 1 and on
the other a loop on n.

Hence, the part of the run of A on ¢ staying in C is a tree were the only
splits (states with [and r arrows pointing to elements of C) are in nodes with
states of rank n. If the run is accepting then in this part there can be only
finitely many occurrences of states of rank n as n is odd. A (1,2) automaton

9

4 VA4 VyV LINJIAL

can recognize whether in such part all the paths are accepting. It can wait
till there are no more splits and then use (1,2) condition to recognize that
the remaining path is accepting. (Recall that any automaton on words can be
simulated by a nondeterministic Biichi, i.e., (1, 2)-automaton [16].)

The other case is when a maximal rank in a SCC component C' of A is
n+ 1. It is even as n is odd. Consider the SCCs of the graph C — {q :
@k(q) = n + 1}. By the above argument each such SCC can be simulated
by a (1,2) automaton”. Hence to recognize whether all the paths staying in
C are accepting we take all these automata, put them together in the same
way as SCCs of C are put together and change the rank of n + 1 to 2.

O

4.8 The (1,3) case

Lemma 4.4 If A does not have a P(0,2) pattern then T(A) is a (1,3)-
feasible.

Proof. Again, let A=A 1041 .. 4" where n is an even number greater than
the biggest priority in 4. As in the previous proof, for each SCC C of A
we construct a (1, 3)-automaton checking whether every path of the run of A
staying in C is accepting.

Take an SCC C with maximal n. As n is even we know that in C \ {¢ :
@k(q) = n} there is no P(0,1) pattern. Hence, by the result of Lemma 4.3,
for each SCC of C'\ {q : @k(q) = n} we have an (1,2) automaton verifying
a part of the run staying in this SCC. Then for the whole C' we compose
these automata exactly in the same way as SCCs of C are composed and then
change all ranks n to 2. -

Take an SCC C with maximal n + 1. The part C \ {q : rank(q) = n +
1} is equivalent to a (1,2) automaton by the above paragraph. Hence C' is
equivalent to (1,2, 3) automaton when we change rank n + 1 to 3. O

4.4 The (0,2) case
Lemma 4.5 If there is no P(1,3) pattern in A then T(A) is (0, 2)-feasible.

Proof. Let A = A 1941 ... 1" where n is an odd number greater than the
biggest priority in A. As before it is enough to show for each SCC of A how
to recognize its language by a (0, 1,2) automaton.

Consider an SCC C' with maximal rank n. Recall that n is odd. The first
step is to consider C' — {q : rank(q) = n} and the SCCs in it. Suppose that
in one such SCC D there is a vertex = with a split, i.e, the arrows on both
directions [and r. As rank(xz) < n—1 we have a (n—1)-loop through = (there
must be vertex of rank (n — 1) in D) in one of these directions and an n-loop

" Here and further we freely consider SCCs as tree automata. Strictly speaking, they
require completion by some dummy states.

10

4 VA4 VyV LINJIAL

in C in the other (as all the nodes are from C). If in D there is a node of y
with @k(y) < n—1 then we have a rank(y)-loop (rank(y) + 1-loop if rank(y)
is even) through y and then a path from y to = and paths from z to y with
priorities n — 1 and n. In short, we get a P(1,3) pattern.

Hence, in every SCC D of C' — {q : @k(q) = n} either there is no vertex
with arrows into both directions staying in D or all the vertices in D have
rank (n — 1).

The (0,2) automaton recognizing paths staying in C' works as follows. It
uses 1, 2 for the part where the computation of A enters forever in a component
D with no split (hence it never sees n from C again). For the rest of C it uses
1 for n and 0 for n — 1 to follow the computation between n and components
D with only n — 1. Such a computation can traverse also finite intervals of
SCCs with no split and we use 1 there too. Observe that these intervals begin
and finish in a node of rank n.

For an SCC C with maximal n + 1 we have by the above that each SCC
of C — {q : rank(q) = n} can be handled by a (0,2) automaton. Hence, we
combine these automata in the same way as in C' and change ranks (n + 1),
which is even, to 2. O

4.5 The (0,7) case, i > 2

Lemma 4.6 Leti > 2. If A does not have P(1,i+ 1) pattern then T(A) is
(0,7)-feasible.

Proof (Sketch). The case of ¢ = 2 is settled in Lemma 4.5. We consider
inductive step for i odd; the other case is similar. Let A = A 141 ... 4"
where n is an even number greater than the biggest priority in A.

Take an SCC C with maximal n. As n is even we know that in C' \ {¢ :

@k(q) = n} there is no P(1,7) pattern. Hence, by the induction hypothesis,
this part is equivalent to a (0,7 — 1) automaton. Then C' is also equivalent to
a (0,7 — 1) automaton, as we can just change change n to 2.

Take an SCC C with maximal rank n+1. The part C\{q : @k(q) =n+1}
is equivalent to a (0,7 — 1) automaton by the above paragraph. Hence C is
equivalent to (0,%) automaton when we change rank n + 1 to i. O

4.6 The (1,i) case, i > 2

Lemma 4.7 Let i > 2. If A does not have P(0,7) pattern then T(A) is
(1,7 + 1)-feasible.

Proof (Sketch). The case of i = 2 is settled in Lemma 4.4. We consider

inductive step for 7 odd, the other case is similar. Let A=A 104 g
where n is an odd number greater than the biggest priority in A.
As before consider the SCCs of A one by one.

11

4 VA4 VyV LINJIAL

Take an SCC, call it C, with the biggest rank n. When we remove states
of rank n from C then in the rest we cannot have P(0,7 — 1) pattern. The
induction hypothesis implies that this part can be simulated by a (1,7) au-
tomaton. Hence the whole C is recognizable by a (1,7) automaton when we
use ¢ for vertices originally with rank n.

Now let C be a SCC with the greatest rank n + 1. When we consider C
without states of rank n + 1, we get, by the preceding paragraph, that each
of SCCs of this graph is equivalent to a (1,7) automaton. Hence we can use
i+ 1 in place of n + 1 and obtain an (1,7 + 1) automaton equivalent to C. O

5 Decision procedure

We now estimate complexity of the procedure which, given a deterministic
parity tree automaton .4, computes the level of T'(4) in the nondeterministic
hierarchy.

We first need to reduce the graph of A to productive states only. Assuming
that A has no more unproductive states, we compute A = A 1041 ... 42q4n+L,
where n is maximal rank of A, in time polynomial on |A| ([12]). Searching
for P(t, k)-patterns in .2, for k < n, can of course be carried on in polynomial
time.

Hence, the most costly part of the procedure consists in computing the
productive states of A (viewed as tree automaton), which amounts to solu-
tion of the non-emptiness problem for parity tree automaton. The fact that
A is deterministic does not help (any automaton can be transformed into a
deterministic one with the same nonemptiness status, namely an automaton
reading the runs of the original automaton). This problem is equivalent to
the model-checking problem for the modal p-calculus, and to solving parity
games [4]. The best deterministic algorithms known so far run in time O(n?)
and space O(n) [6], where n = | A| and (¢, k) is the index of the automaton.

The best nondeterministic estimation is UP N co-UP [5] (improving NP N
co-NP upper bound of [4]), which places our problem in PUPNeo-UF,

References

[1] Arnold, A., The p-calculus alternation-depth hierarchy is strict on binary trees,
RAIRO-Theoretical Informatics and Applications 33 (1999), 329-339.

[2] Bradfield, J.C., The modal mu-calculus alternation hierarchy is strict,
Theoret. Comput. Sci. 195 (1997), 133-153.

[3] Emerson, E.A., and C. S. Jutla, “Tree automata, mu-calculus and determinacy”,
in: Proceedings 32th Annual IEEE Symp. on Foundations of Comput. Sci.
(1991), 368-377.

[4] Emerson, E.A., C. S. Jutla, and A. P. Sistla, On model-checking for fragments
of the p-calculus, CAV’93, Lect. Notes Comput. Sci. 697 (1993), 385-396.

12

4 VA4 VyV LINJIAL

[5] Jurdzinski, M., Deciding the winner in parity games is UP N co- UP, Information
Processing Letters 68 no. 3 (1998), 119-124.

[6] Jurdziniski, M., Small progress measures for solving parity games, in: STACS
2000, Lect. Notes Comput. Sci. 1770 (2000), 290-301.

[7] Lenzi, G., A hierarchy theorem for the mu-calculus, in: ICALP ’96, Lect. Notes
Comput. Sci. 1099 (1996), 87-109.

[8] Mostowski, A.W., Regular expressions for infinite trees and a standard form
of automata, in: Computation theory, Lect. Notes Comput. Sci. 208 (1985),
169-176.

[9] Mostowski, A.W., Hierarchies of weak automata and weak monadic formulas,
Theoretical Comput. Sci. 83 (1991), 323-335.

[10] Niwinski, D., On fized point clones, ICALP’86, Lect. Notes Comput. Sci. 226
(1986), 464-473.

[11] Niwinski, D., Fized points characterization of infinite behaviour of finite state
systems, Theoretical Computer Science 189 (1997), 1-69.

[12] Niwinski, D. and 1. Walukiewicz, Relating hierarchies of word and tree automata,
STACS’98, Lect. Notes Comput. Sci. 1373 (1998), 320-331.

[13] Niwinski, D. and I. Walukiewicz, A gap property of deterministic tree languages,
Theoretical Comput. Sci. 303 (2003), 215-231.

[14] Rabin, M.O., Decidability of second-order theories and automata on infinite
trees, Trans. Amer. Soc. 141 (1969), 1-35.

[15] Rabin, M.O., “Weakly definable relations and special automata”, in:
Mathematical Logic and Foundation of Set Theory, North-Holland, Amsterdam
(1970), 1-23.

[16] Thomas, W., “Languages, automata, and logic”, in: Handbook of Formal
Languages (1997), volume 3, 389-455.

[17] Urbaniski, T. F., On deciding if deterministic Rabin language is in Bichi class,
ICALP 2000, Lect. Notes Comput. Sci. 1853 (2000), 663—-674.

[18] Wagner, K., Eine topologische Charakterisierung einiger Klassen reguldrer
Folgenmengen, J. Inf. Process. Cybern. EIK 13 (1977), 473-487.

13

	Introduction
	Basic notions
	Forbidden flower patterns
	The (1,2) case
	The (0,1) case
	The (0,2) case
	The (1,2,3) case
	The (1,n) case, n 4
	The (0,n) case, n 3

	On the positive side
	The (0,1) case
	The (1,2) case
	The (1,3) case
	The (0,2) case
	The (0,i) case, i > 2
	The (1,i) case, i > 2

	Decision procedure
	References

